diff --git a/opam b/opam index a26355d0974d3fd3fe588ccd6da438dcff5f2732..5888ae5e346f7207e49c55851feb987e28c07308 100644 --- a/opam +++ b/opam @@ -9,6 +9,6 @@ build: [make "-j%{jobs}%"] install: [make "install"] remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/iris_examples"] depends: [ - "coq-iris" { (= "dev.2019-06-13.0.860bd8e4") | (= "dev") } + "coq-iris" { (= "dev.2019-06-18.2.e039d7c7") | (= "dev") } "coq-autosubst" { = "dev.coq86" } ] diff --git a/theories/barrier/example_joining_existentials.v b/theories/barrier/example_joining_existentials.v index 40cd79b36b6d4486dfaa5e9ebf2410701e87e814..0ed7746c94d6abf3b6c5f66fe497f864ad0490e1 100644 --- a/theories/barrier/example_joining_existentials.v +++ b/theories/barrier/example_joining_existentials.v @@ -6,16 +6,16 @@ From iris.proofmode Require Import tactics. From iris_examples.barrier Require Import proof specification. Set Default Proof Using "Type". -Definition one_shotR (Σ : gFunctors) (F : cFunctor) := - csumR (exclR unitC) (agreeR $ laterC $ F (iPreProp Σ) _). +Definition one_shotR (Σ : gFunctors) (F : oFunctor) := + csumR (exclR unitO) (agreeR $ laterO $ F (iPreProp Σ) _). Definition Pending {Σ F} : one_shotR Σ F := Cinl (Excl ()). -Definition Shot {Σ} {F : cFunctor} (x : F (iProp Σ) _) : one_shotR Σ F := - Cinr $ to_agree $ Next $ cFunctor_map F (iProp_fold, iProp_unfold) x. +Definition Shot {Σ} {F : oFunctor} (x : F (iProp Σ) _) : one_shotR Σ F := + Cinr $ to_agree $ Next $ oFunctor_map F (iProp_fold, iProp_unfold) x. -Class oneShotG (Σ : gFunctors) (F : cFunctor) := +Class oneShotG (Σ : gFunctors) (F : oFunctor) := one_shot_inG :> inG Σ (one_shotR Σ F). -Definition oneShotΣ (F : cFunctor) : gFunctors := - #[ GFunctor (csumRF (exclRF unitC) (agreeRF (â–¶ F))) ]. +Definition oneShotΣ (F : oFunctor) : gFunctors := + #[ GFunctor (csumRF (exclRF unitO) (agreeRF (â–¶ F))) ]. Instance subG_oneShotΣ {Σ F} : subG (oneShotΣ F) Σ → oneShotG Σ F. Proof. solve_inG. Qed. @@ -59,12 +59,12 @@ Proof. iAssert (â–· (x ≡ x'))%I as "Hxx". { iCombine "Hγ" "Hγ'" as "Hγ2". iClear "Hγ Hγ'". rewrite own_valid csum_validI /= agree_validI agree_equivI bi.later_equivI /=. - rewrite -{2}[x]cFunctor_id -{2}[x']cFunctor_id. - assert (HF : cFunctor_map F (cid, cid) ≡ cFunctor_map F (iProp_fold (Σ:=Σ) â—Ž iProp_unfold, iProp_fold (Σ:=Σ) â—Ž iProp_unfold)). + rewrite -{2}[x]oFunctor_id -{2}[x']oFunctor_id. + assert (HF : oFunctor_map F (cid, cid) ≡ oFunctor_map F (iProp_fold (Σ:=Σ) â—Ž iProp_unfold, iProp_fold (Σ:=Σ) â—Ž iProp_unfold)). { apply ne_proper; first by apply _. by split; intro; simpl; symmetry; apply iProp_fold_unfold. } rewrite (HF x). rewrite (HF x'). - rewrite !cFunctor_compose. iNext. by iRewrite "Hγ2". } + rewrite !oFunctor_compose. iNext. by iRewrite "Hγ2". } iNext. iRewrite -"Hxx" in "Hx'". iExists x; iFrame "Hγ". iApply (Ψ_join with "Hx Hx'"). Qed. diff --git a/theories/barrier/specification.v b/theories/barrier/specification.v index 0dceb3e6f1f761e228d79d32686041e8b6274969..650e001176a3b5e1d3af6ca11454903e78dcdad8 100644 --- a/theories/barrier/specification.v +++ b/theories/barrier/specification.v @@ -18,7 +18,7 @@ Lemma barrier_spec (N : namespace) : (∀ l P Q, recv l (P ∗ Q) ={↑N}=> recv l P ∗ recv l Q) ∧ (∀ l P Q, (P -∗ Q) -∗ recv l P -∗ recv l Q). Proof. - exists (λ l, CofeMor (recv N l)), (λ l, CofeMor (send N l)). + exists (λ l, OfeMor (recv N l)), (λ l, OfeMor (send N l)). split_and?; simpl. - iIntros (P) "!# _". iApply (newbarrier_spec _ P with "[]"); [done..|]. iNext. eauto. diff --git a/theories/concurrent_stacks/concurrent_stack1.v b/theories/concurrent_stacks/concurrent_stack1.v index f471e164f8a1269d69af9db0f8d36c227f31abc2..2ce3dd95907cd3806e6ac7f611501f9c6b27531c 100644 --- a/theories/concurrent_stacks/concurrent_stack1.v +++ b/theories/concurrent_stacks/concurrent_stack1.v @@ -36,8 +36,8 @@ Section stacks. iIntros "H"; iDestruct "H" as (?) "[Hl Hl']"; iSplitL "Hl"; eauto. Qed. - Definition is_list_pre (P : val → iProp Σ) (F : val -c> iProp Σ) : - val -c> iProp Σ := λ v, + Definition is_list_pre (P : val → iProp Σ) (F : val -d> iProp Σ) : + val -d> iProp Σ := λ v, (v ≡ NONEV ∨ ∃ (l : loc) (h t : val), ⌜v ≡ SOMEV #l⌠∗ l ↦{-} (h, t)%V ∗ P h ∗ â–· F t)%I. Local Instance is_list_contr (P : val → iProp Σ) : Contractive (is_list_pre P). diff --git a/theories/concurrent_stacks/concurrent_stack2.v b/theories/concurrent_stacks/concurrent_stack2.v index 7f11d03c2e9b672826d4f2918701f15a7d85265d..b916382218c00ecfd056e1195b3e2f368356bf56 100644 --- a/theories/concurrent_stacks/concurrent_stack2.v +++ b/theories/concurrent_stacks/concurrent_stack2.v @@ -246,8 +246,8 @@ Section stack_works. iIntros "H"; iDestruct "H" as (?) "[Hl Hl']"; iSplitL "Hl"; eauto. Qed. - Definition is_list_pre (P : val → iProp Σ) (F : val -c> iProp Σ) : - val -c> iProp Σ := λ v, + Definition is_list_pre (P : val → iProp Σ) (F : val -d> iProp Σ) : + val -d> iProp Σ := λ v, (v ≡ NONEV ∨ ∃ (l : loc) (h t : val), ⌜v ≡ SOMEV #l⌠∗ l ↦{-} (h, t)%V ∗ P h ∗ â–· F t)%I. Local Instance is_list_contr (P : val → iProp Σ) : Contractive (is_list_pre P). diff --git a/theories/hocap/cg_bag.v b/theories/hocap/cg_bag.v index 758a7389639c5851b9ec372a0d0b68747c76ca8f..bd7014d1b131bfd50098f140d34223ad192aeb46 100644 --- a/theories/hocap/cg_bag.v +++ b/theories/hocap/cg_bag.v @@ -38,9 +38,9 @@ Definition popBag : val := λ: "b", release "l";; "v". -Canonical Structure valmultisetC := leibnizC (gmultiset valC). +Canonical Structure valmultisetO := leibnizO (gmultiset valO). Class bagG Σ := BagG -{ bag_bagG :> inG Σ (prodR fracR (agreeR valmultisetC)); +{ bag_bagG :> inG Σ (prodR fracR (agreeR valmultisetO)); lock_bagG :> lockG Σ }. diff --git a/theories/hocap/concurrent_runners.v b/theories/hocap/concurrent_runners.v index fbbbacd001869100fbc7533369dd16c231cecd95..7387613a2c2bef06e07351a0daeb334774295638 100644 --- a/theories/hocap/concurrent_runners.v +++ b/theories/hocap/concurrent_runners.v @@ -14,7 +14,7 @@ Set Default Proof Using "Type". SET_RES v = the result of the task has been computed and it is v FIN v = the task has been completed with the result v *) (* We use this RA to verify the Task.run() method *) -Definition saR := csumR fracR (csumR (prodR fracR (agreeR valC)) (agreeR valC)). +Definition saR := csumR fracR (csumR (prodR fracR (agreeR valO)) (agreeR valO)). Class saG Σ := { sa_inG :> inG Σ saR }. Definition INIT `{saG Σ} γ (q: Qp) := own γ (Cinl q%Qp). Definition SET_RES `{saG Σ} γ (q: Qp) (v: val) := own γ (Cinr (Cinl (q%Qp, to_agree v))). @@ -189,7 +189,7 @@ Section contents. Ltac solve_proper ::= solve_proper_core ltac:(fun _ => simpl; auto_equiv). Program Definition pre_runner (γ : name Σ b) (P: val → iProp Σ) (Q: val → val → iProp Σ) : - (valC -n> iProp Σ) -n> (valC -n> iProp Σ) := λne R r, + (valO -n> iProp Σ) -n> (valO -n> iProp Σ) := λne R r, (∃ (body bag : val), ⌜r = (body, bag)%V⌠∗ bagS b (N.@"bag") (λ x y, ∃ γ γ', isTask (body,x) γ γ' y P Q) γ bag ∗ â–· ∀ r a: val, â–¡ (R r ∗ P a -∗ WP body r a {{ v, Q a v }}))%I. @@ -200,7 +200,7 @@ Section contents. Proof. unfold pre_runner. solve_contractive. Qed. Definition runner (γ: name Σ b) (P: val → iProp Σ) (Q: val → val → iProp Σ) : - valC -n> iProp Σ := + valO -n> iProp Σ := (fixpoint (pre_runner γ P Q))%I. Lemma runner_unfold γ r P Q : diff --git a/theories/hocap/fg_bag.v b/theories/hocap/fg_bag.v index 7f174c70b675def0850716333c53fd19787c5622..916c489f7e95f6fcf81b2bf5bf9a31515a62afe4 100644 --- a/theories/hocap/fg_bag.v +++ b/theories/hocap/fg_bag.v @@ -34,9 +34,9 @@ Definition popBag : val := rec: "pop" "b" := else "pop" "b" end. -Canonical Structure valmultisetC := leibnizC (gmultiset valC). +Canonical Structure valmultisetO := leibnizO (gmultiset valO). Class bagG Σ := BagG -{ bag_bagG :> inG Σ (prodR fracR (agreeR valmultisetC)); +{ bag_bagG :> inG Σ (prodR fracR (agreeR valmultisetO)); }. (** Generic specification for the bag, using view shifts. *) diff --git a/theories/hocap/lib/oneshot.v b/theories/hocap/lib/oneshot.v index 24a7aa1bf63c6622bce4bb3609ee5d52ce417920..e4d20b6afb4233a04e51be481630ae00bc471de4 100644 --- a/theories/hocap/lib/oneshot.v +++ b/theories/hocap/lib/oneshot.v @@ -6,7 +6,7 @@ Set Default Proof Using "Type". (** We are going to need the oneshot RA to verify the Task.Join() method *) -Definition oneshotR := csumR fracR (agreeR valC). +Definition oneshotR := csumR fracR (agreeR valO). Class oneshotG Σ := { oneshot_inG :> inG Σ oneshotR }. Definition oneshotΣ : gFunctors := #[GFunctor oneshotR]. Instance subG_oneshotΣ {Σ} : subG oneshotΣ Σ → oneshotG Σ. diff --git a/theories/lecture_notes/coq_intro_example_2.v b/theories/lecture_notes/coq_intro_example_2.v index 6e6ced292fa05655d85dc9d1cdeea3c1f993ace4..7d95642b1107125710ecb52342a80973fca3c395 100644 --- a/theories/lecture_notes/coq_intro_example_2.v +++ b/theories/lecture_notes/coq_intro_example_2.v @@ -59,12 +59,12 @@ Section monotone_counter. *) (* - To tell Coq we wish to use such a discrete CMRA we use the constructor leibnizC. + To tell Coq we wish to use such a discrete CMRA we use the constructor leibnizO. This takes a Coq type and makes it an instance of an OFE (a step-indexed generalization of sets). This is not the place do describe Canonical Structures. A very good introduction is available at https://hal.inria.fr/hal-00816703v1/document *) - Canonical Structure mcounterRAC := leibnizC mcounterRAT. + Canonical Structure mcounterRAC := leibnizO mcounterRAT. (* To make the type mcounterRAT into an RA we need an operation. This is defined in the standard way, except we use the typeclass Op so we can reuse diff --git a/theories/lecture_notes/lists_guarded.v b/theories/lecture_notes/lists_guarded.v index 04f333627c72c9244f0e82803deeaf539065a658..82e8c6beba0c50be0f22acffb8518cb9b2853ec8 100644 --- a/theories/lecture_notes/lists_guarded.v +++ b/theories/lecture_notes/lists_guarded.v @@ -46,7 +46,7 @@ Notation iProp := (iProp Σ). (* First we define the is_list representation predicate via a guarded fixed point of the functional is_list_pre. Note the use of the later modality. The - arrows -c> express that the arrow is an arrow in the category of COFE's, + arrows -d> express that the arrow is an arrow in the category of COFE's, i.e., it is a non-expansive function. To fully understand the meaning of this it is necessary to understand the model of Iris. @@ -55,7 +55,7 @@ Notation iProp := (iProp Σ). but in more complex examples the domain of the predicate we are defining will not be a discrete type, and the condition will be meaningful and necessary. *) - Definition is_list_pre (Φ : val -c> list val -c> iProp): val -c> list val -c> iProp := λ hd xs, + Definition is_list_pre (Φ : val -d> list val -d> iProp): val -d> list val -d> iProp := λ hd xs, match xs with [] => ⌜hd = NONEV⌠| (x::xs) => (∃ (â„“ : loc) (hd' : val), ⌜hd = SOMEV #ℓ⌠∗ â„“ ↦ (x,hd') ∗ â–· Φ hd' xs) diff --git a/theories/lecture_notes/modular_incr.v b/theories/lecture_notes/modular_incr.v index 2e56aa0a4e8badef8a6988543139d31ff341431e..7b756378dfc298c1a28abfa30a013059b6a82c1d 100644 --- a/theories/lecture_notes/modular_incr.v +++ b/theories/lecture_notes/modular_incr.v @@ -9,7 +9,7 @@ From iris.bi.lib Require Import fractional. From iris.heap_lang.lib Require Import par. -Definition cntCmra : cmraT := (prodR fracR (agreeR (leibnizC Z))). +Definition cntCmra : cmraT := (prodR fracR (agreeR (leibnizO Z))). Class cntG Σ := CntG { CntG_inG :> inG Σ cntCmra }. Definition cntΣ : gFunctors := #[GFunctor cntCmra ]. diff --git a/theories/logatom/conditional_increment/cinc.v b/theories/logatom/conditional_increment/cinc.v index 7bd2e9a047de8f064f85286ae7e5fd21b458cec5..bb92592665c97b25116c3b0a9d679dd45cac564a 100644 --- a/theories/logatom/conditional_increment/cinc.v +++ b/theories/logatom/conditional_increment/cinc.v @@ -90,10 +90,10 @@ Definition cinc : val := (** ** Proof setup *) -Definition flagUR := authR $ optionUR $ exclR boolC. -Definition numUR := authR $ optionUR $ exclR ZC. -Definition tokenUR := exclR unitC. -Definition one_shotUR := csumR (exclR unitC) (agreeR unitC). +Definition flagUR := authR $ optionUR $ exclR boolO. +Definition numUR := authR $ optionUR $ exclR ZO. +Definition tokenUR := exclR unitO. +Definition one_shotUR := csumR (exclR unitO) (agreeR unitO). Class cincG Σ := ConditionalIncrementG { cinc_flagG :> inG Σ flagUR; diff --git a/theories/logatom/elimination_stack/hocap_spec.v b/theories/logatom/elimination_stack/hocap_spec.v index 8db98bffcffbbff9932918380f554b7d4b0740ab..cda7ac91a3b0585b288fbfa7e7a18de803d7b8fe 100644 --- a/theories/logatom/elimination_stack/hocap_spec.v +++ b/theories/logatom/elimination_stack/hocap_spec.v @@ -138,10 +138,10 @@ auth invariant. *) (** The CMRA & functor we need. *) Class hocapG Σ := HocapG { - hocap_stateG :> inG Σ (authR (optionUR $ exclR (listC valC))); + hocap_stateG :> inG Σ (authR (optionUR $ exclR (listO valO))); }. Definition hocapΣ : gFunctors := - #[GFunctor (exclR unitC); GFunctor (authR (optionUR $ exclR (listC valC)))]. + #[GFunctor (exclR unitO); GFunctor (authR (optionUR $ exclR (listO valO)))]. Instance subG_hocapΣ {Σ} : subG hocapΣ Σ → hocapG Σ. Proof. solve_inG. Qed. diff --git a/theories/logatom/elimination_stack/stack.v b/theories/logatom/elimination_stack/stack.v index 0c8562243d6502774ef8b19149ad6f42e24791c9..7b7aec1a4a48b156e5c4123375b95017e49948b7 100644 --- a/theories/logatom/elimination_stack/stack.v +++ b/theories/logatom/elimination_stack/stack.v @@ -13,11 +13,11 @@ heap. *) (** The CMRA & functor we need. *) (* Not bundling heapG, as it may be shared with other users. *) Class stackG Σ := StackG { - stack_tokG :> inG Σ (exclR unitC); - stack_stateG :> inG Σ (authR (optionUR $ exclR (listC valC))); + stack_tokG :> inG Σ (exclR unitO); + stack_stateG :> inG Σ (authR (optionUR $ exclR (listO valO))); }. Definition stackΣ : gFunctors := - #[GFunctor (exclR unitC); GFunctor (authR (optionUR $ exclR (listC valC)))]. + #[GFunctor (exclR unitO); GFunctor (authR (optionUR $ exclR (listO valO)))]. Instance subG_stackΣ {Σ} : subG stackΣ Σ → stackG Σ. Proof. solve_inG. Qed. diff --git a/theories/logatom/flat_combiner/atomic_sync.v b/theories/logatom/flat_combiner/atomic_sync.v index bf1b078ea6911b47eaf4020393acf3fe69961d5b..c570a6b1c78a063c9714bf3f72bb1cd62cfada2c 100644 --- a/theories/logatom/flat_combiner/atomic_sync.v +++ b/theories/logatom/flat_combiner/atomic_sync.v @@ -6,7 +6,7 @@ From iris_examples.logatom.flat_combiner Require Import sync misc. (** The simple syncer spec in [sync.v] implies a logically atomic spec. *) -Definition syncR := prodR fracR (agreeR valC). (* track the local knowledge of ghost state *) +Definition syncR := prodR fracR (agreeR valO). (* track the local knowledge of ghost state *) Class syncG Σ := sync_tokG :> inG Σ syncR. Definition syncΣ : gFunctors := #[GFunctor (constRF syncR)]. @@ -15,8 +15,8 @@ Proof. solve_inG. Qed. Section atomic_sync. Context `{EqDecision A, !heapG Σ, !lockG Σ}. - Canonical AC := leibnizC A. - Context `{!inG Σ (prodR fracR (agreeR AC))}. + Canonical AO := leibnizO A. + Context `{!inG Σ (prodR fracR (agreeR AO))}. (* TODO: Rename and make opaque; the fact that this is a half should not be visible to the user. *) @@ -56,7 +56,7 @@ Section atomic_sync. iSplitL "Hg2"; first done. iIntros "!#". iIntros (f). iApply wp_wand_r. iSplitR; first by iApply "Hsyncer". iIntros (f') "#Hsynced {Hsyncer}". - iAlways. iIntros (α β x) "#Hseq". change (ofe_car AC) with A. + iAlways. iIntros (α β x) "#Hseq". change (ofe_car AO) with A. iIntros (Φ') "?". (* TODO: Why can't I iApply "Hsynced"? *) iSpecialize ("Hsynced" $! _ Φ' x). diff --git a/theories/logatom/flat_combiner/flat.v b/theories/logatom/flat_combiner/flat.v index a4dd7247bb327da0e44456c8a2c5356999a2d1c7..fec42de26b8c76405fd71d9863cbd98e2a360888 100644 --- a/theories/logatom/flat_combiner/flat.v +++ b/theories/logatom/flat_combiner/flat.v @@ -46,7 +46,7 @@ Definition mk_flat : val := let: "r" := loop "p" "s" "lk" in "r". -Definition reqR := prodR fracR (agreeR valC). (* request x should be kept same *) +Definition reqR := prodR fracR (agreeR valO). (* request x should be kept same *) Definition toks : Type := gname * gname * gname * gname * gname. (* a bunch of tokens to do state transition *) Class flatG Σ := FlatG { req_G :> inG Σ reqR; diff --git a/theories/logatom/flat_combiner/misc.v b/theories/logatom/flat_combiner/misc.v index b31ea9de467860acdd5d05b3f00f0bda884b7c72..411802921f6964c06cf236d4b7154597db288edd 100644 --- a/theories/logatom/flat_combiner/misc.v +++ b/theories/logatom/flat_combiner/misc.v @@ -20,7 +20,7 @@ Section lemmas. End lemmas. Section excl. - Context `{!inG Σ (exclR unitC)}. + Context `{!inG Σ (exclR unitO)}. Lemma excl_falso γ Q': own γ (Excl ()) ∗ own γ (Excl ()) ⊢ Q'. Proof. diff --git a/theories/logatom/snapshot/atomic_snapshot.v b/theories/logatom/snapshot/atomic_snapshot.v index 5e4b1a00b546f47c6d25d9f73cc53c6cd5794584..278cff3bec9c7205935fe33eae5e4507c43aa8bf 100644 --- a/theories/logatom/snapshot/atomic_snapshot.v +++ b/theories/logatom/snapshot/atomic_snapshot.v @@ -70,14 +70,14 @@ Definition read_with_proph : val := (** The CMRA & functor we need. *) -Definition timestampUR := gmapUR Z $ agreeR valC. +Definition timestampUR := gmapUR Z $ agreeR valO. Class atomic_snapshotG Σ := AtomicSnapshotG { - atomic_snapshot_stateG :> inG Σ $ authR $ optionUR $ exclR $ valC; + atomic_snapshot_stateG :> inG Σ $ authR $ optionUR $ exclR $ valO; atomic_snapshot_timestampG :> inG Σ $ authR $ timestampUR }. Definition atomic_snapshotΣ : gFunctors := - #[GFunctor (authR $ optionUR $ exclR $ valC); GFunctor (authR timestampUR)]. + #[GFunctor (authR $ optionUR $ exclR $ valO); GFunctor (authR timestampUR)]. Instance subG_atomic_snapshotΣ {Σ} : subG atomic_snapshotΣ Σ → atomic_snapshotG Σ. Proof. solve_inG. Qed. diff --git a/theories/logatom/treiber2.v b/theories/logatom/treiber2.v index 2501052d0396352e570cd87fb8ccdc97a88f1d3f..05ee4dc38ad6a2fcae148ec146eade2e64456cc7 100644 --- a/theories/logatom/treiber2.v +++ b/theories/logatom/treiber2.v @@ -58,10 +58,10 @@ Definition pop_stack : val := (** * Definition of the required camera *************************************) Class stackG Σ := StackG { - stack_tokG :> inG Σ (authR (optionUR (exclR (listC valC)))) }. + stack_tokG :> inG Σ (authR (optionUR (exclR (listO valO)))) }. Definition stackΣ : gFunctors := - #[GFunctor (authR (optionUR (exclR (listC valC))))]. + #[GFunctor (authR (optionUR (exclR (listO valO))))]. Instance subG_stackΣ {Σ} : subG stackΣ Σ → stackG Σ. Proof. solve_inG. Qed. diff --git a/theories/logrel/F_mu/fundamental.v b/theories/logrel/F_mu/fundamental.v index 52de92150d1e83edc7f4a02af9eb6392e8495d5a..c6a0c734218d582e055407628e715b0143266c4f 100644 --- a/theories/logrel/F_mu/fundamental.v +++ b/theories/logrel/F_mu/fundamental.v @@ -11,7 +11,7 @@ Notation "Γ ⊨ e : Ï„" := (log_typed Γ e Ï„) (at level 74, e, Ï„ at next leve Section fundamental. Context `{irisG F_mu_lang Σ}. - Notation D := (valC -n> iProp Σ). + Notation D := (valO -n> iProp Σ). Local Tactic Notation "smart_wp_bind" uconstr(ctx) ident(v) constr(Hv) uconstr(Hp) := iApply (wp_bind (fill[ctx])); diff --git a/theories/logrel/F_mu/lang.v b/theories/logrel/F_mu/lang.v index 3f901aa493decf671db51d66530cbffcfc71e7fd..a484ed711ac9e0b143ed7a3a63d2247064fb7d72 100644 --- a/theories/logrel/F_mu/lang.v +++ b/theories/logrel/F_mu/lang.v @@ -167,9 +167,9 @@ Module F_mu. fill_item_val, fill_item_no_val_inj, head_ctx_step_val. Qed. - Canonical Structure stateC := leibnizC state. - Canonical Structure valC := leibnizC val. - Canonical Structure exprC := leibnizC expr. + Canonical Structure stateO := leibnizO state. + Canonical Structure valO := leibnizO val. + Canonical Structure exprO := leibnizO expr. End F_mu. (** Language *) diff --git a/theories/logrel/F_mu/logrel.v b/theories/logrel/F_mu/logrel.v index ff721cbbc3688bc2bfe676b557e8440972f992cf..e5d014c6faf68d37215c46cd872c84c5a1045d87 100644 --- a/theories/logrel/F_mu/logrel.v +++ b/theories/logrel/F_mu/logrel.v @@ -7,57 +7,57 @@ Import uPred. (** interp : is a unary logical relation. *) Section logrel. Context `{irisG F_mu_lang Σ}. - Notation D := (valC -n> iProp Σ). + Notation D := (valO -n> iProp Σ). Implicit Types Ï„i : D. - Implicit Types Δ : listC D. - Implicit Types interp : listC D → D. + Implicit Types Δ : listO D. + Implicit Types interp : listO D → D. - Program Definition ctx_lookup (x : var) : listC D -n> D := λne Δ, + Program Definition ctx_lookup (x : var) : listO D -n> D := λne Δ, from_option id (cconst True)%I (Δ !! x). Solve Obligations with solve_proper. - Definition interp_unit : listC D -n> D := λne Δ w, (⌜w = UnitVâŒ)%I. + Definition interp_unit : listO D -n> D := λne Δ w, (⌜w = UnitVâŒ)%I. Program Definition interp_prod - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ w, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ w, (∃ w1 w2, ⌜w = PairV w1 w2⌠∧ interp1 Δ w1 ∧ interp2 Δ w2)%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Program Definition interp_sum - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ w, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ w, ((∃ w1, ⌜w = InjLV w1⌠∧ interp1 Δ w1) ∨ (∃ w2, ⌜w = InjRV w2⌠∧ interp2 Δ w2))%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Program Definition interp_arrow - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ w, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ w, (â–¡ ∀ v, interp1 Δ v → WP App (# w) (# v) {{ interp2 Δ }})%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Program Definition interp_forall - (interp : listC D -n> D) : listC D -n> D := λne Δ w, + (interp : listO D -n> D) : listO D -n> D := λne Δ w, (â–¡ ∀ Ï„i : D, ⌜∀ v, Persistent (Ï„i v)⌠→ WP TApp (# w) {{ interp (Ï„i :: Δ) }})%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Definition interp_rec1 - (interp : listC D -n> D) (Δ : listC D) (Ï„i : D) : D := λne w, + (interp : listO D -n> D) (Δ : listO D) (Ï„i : D) : D := λne w, (â–¡ (∃ v, ⌜w = FoldV v⌠∧ â–· interp (Ï„i :: Δ) v))%I. Global Instance interp_rec1_contractive - (interp : listC D -n> D) (Δ : listC D) : Contractive (interp_rec1 interp Δ). + (interp : listO D -n> D) (Δ : listO D) : Contractive (interp_rec1 interp Δ). Proof. by solve_contractive. Qed. - Lemma fixpoint_interp_rec1_eq (interp : listC D -n> D) Δ x : + Lemma fixpoint_interp_rec1_eq (interp : listO D -n> D) Δ x : fixpoint (interp_rec1 interp Δ) x ≡ interp_rec1 interp Δ (fixpoint (interp_rec1 interp Δ)) x. Proof. exact: (fixpoint_unfold (interp_rec1 interp Δ) x). Qed. - Program Definition interp_rec (interp : listC D -n> D) : listC D -n> D := λne Δ, + Program Definition interp_rec (interp : listO D -n> D) : listO D -n> D := λne Δ, fixpoint (interp_rec1 interp Δ). Next Obligation. intros interp n Δ1 Δ2 HΔ; apply fixpoint_ne => Ï„i w. solve_proper. Qed. - Fixpoint interp (Ï„ : type) : listC D -n> D := + Fixpoint interp (Ï„ : type) : listO D -n> D := match Ï„ return _ with | TUnit => interp_unit | TProd Ï„1 Ï„2 => interp_prod (interp Ï„1) (interp Ï„2) @@ -70,11 +70,11 @@ Section logrel. Notation "⟦ Ï„ ⟧" := (interp Ï„). Definition interp_env (Γ : list type) - (Δ : listC D) (vs : list val) : iProp Σ := + (Δ : listO D) (vs : list val) : iProp Σ := (⌜length Γ = length vs⌠∗ [∗] zip_with (λ Ï„, ⟦ Ï„ ⟧ Δ) Γ vs)%I. Notation "⟦ Γ ⟧*" := (interp_env Γ). - Definition interp_expr (Ï„ : type) (Δ : listC D) (e : expr) : iProp Σ := + Definition interp_expr (Ï„ : type) (Δ : listO D) (e : expr) : iProp Σ := WP e {{ ⟦ Ï„ ⟧ Δ }}%I. Class env_Persistent Δ := @@ -116,7 +116,7 @@ Section logrel. - rewrite iter_up; destruct lt_dec as [Hl | Hl]; simpl. { by rewrite !lookup_app_l. } (* FIXME: Ideally we wouldn't have to do this kinf of surgery. *) - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. do 2 f_equiv. lia. - intros w; simpl; properness; auto. apply (IHÏ„ (_ :: _)). Qed. @@ -135,11 +135,11 @@ Section logrel. - rewrite iter_up; destruct lt_dec as [Hl | Hl]; simpl. { by rewrite !lookup_app_l. } (* FIXME: Ideally we wouldn't have to do this kinf of surgery. *) - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. case EQ: (x - length Δ1) => [|n]; simpl. { symmetry. asimpl. apply (interp_weaken [] Δ1 Δ2 Ï„'). } - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. do 2 f_equiv. lia. - intros w; simpl; properness; auto. apply (IHÏ„ (_ :: _)). Qed. diff --git a/theories/logrel/F_mu_ref/fundamental.v b/theories/logrel/F_mu_ref/fundamental.v index 8fa60ef1650b67a130afa4167b3aa079a657235f..08187814b9aa62bfdffb45589d9b5cac9fe40435 100644 --- a/theories/logrel/F_mu_ref/fundamental.v +++ b/theories/logrel/F_mu_ref/fundamental.v @@ -10,7 +10,7 @@ Notation "Γ ⊨ e : Ï„" := (log_typed Γ e Ï„) (at level 74, e, Ï„ at next leve Section fundamental. Context `{heapG Σ}. - Notation D := (valC -n> iProp Σ). + Notation D := (valO -n> iProp Σ). Local Tactic Notation "smart_wp_bind" uconstr(ctx) ident(v) constr(Hv) uconstr(Hp) := iApply (wp_bind (fill [ctx])); diff --git a/theories/logrel/F_mu_ref/fundamental_binary.v b/theories/logrel/F_mu_ref/fundamental_binary.v index defc2f0813826ee9c7471ac345c54dcf76cafe9b..e4f49b9884764ce4f740b522c939c535f5c4f3d0 100644 --- a/theories/logrel/F_mu_ref/fundamental_binary.v +++ b/theories/logrel/F_mu_ref/fundamental_binary.v @@ -6,7 +6,7 @@ From iris_examples.logrel.F_mu_ref Require Import rules_binary. Section bin_log_def. Context `{heapG Σ,cfgSG Σ}. - Notation D := (prodC valC valC -n> iProp Σ). + Notation D := (prodO valO valO -n> iProp Σ). Definition bin_log_related (Γ : list type) (e e' : expr) (Ï„ : type) := ∀ Δ vvs (Ï : cfg F_mu_ref_lang), env_Persistent Δ → @@ -19,9 +19,9 @@ Notation "Γ ⊨ e '≤log≤' e' : Ï„" := Section fundamental. Context `{heapG Σ,cfgSG Σ}. - Notation D := (prodC valC valC -n> iProp Σ). + Notation D := (prodO valO valO -n> iProp Σ). Implicit Types e : expr. - Implicit Types Δ : listC D. + Implicit Types Δ : listO D. Hint Resolve to_of_val. Local Tactic Notation "smart_wp_bind" uconstr(ctx) ident(v) ident(w) diff --git a/theories/logrel/F_mu_ref/lang.v b/theories/logrel/F_mu_ref/lang.v index 596874275e030a1d0dd22909d83a93d079dd89b0..49e05629232d6782799036ac5026078311cce50f 100644 --- a/theories/logrel/F_mu_ref/lang.v +++ b/theories/logrel/F_mu_ref/lang.v @@ -214,9 +214,9 @@ Module F_mu_ref. fill_item_val, fill_item_no_val_inj, head_ctx_step_val. Qed. - Canonical Structure stateC := leibnizC state. - Canonical Structure valC := leibnizC val. - Canonical Structure exprC := leibnizC expr. + Canonical Structure stateO := leibnizO state. + Canonical Structure valO := leibnizO val. + Canonical Structure exprO := leibnizO expr. End F_mu_ref. Canonical Structure F_mu_ref_ectxi_lang := EctxiLanguage F_mu_ref.lang_mixin. diff --git a/theories/logrel/F_mu_ref/logrel.v b/theories/logrel/F_mu_ref/logrel.v index 35dc3f0f08e3df3ea1d0fb22e17d03cb3089a8c1..60fd607995d40efbc82724d4c422afb606bc0cca 100644 --- a/theories/logrel/F_mu_ref/logrel.v +++ b/theories/logrel/F_mu_ref/logrel.v @@ -9,52 +9,52 @@ Definition logN : namespace := nroot .@ "logN". (** interp : is a unary logical relation. *) Section logrel. Context `{heapG Σ}. - Notation D := (valC -n> iProp Σ). + Notation D := (valO -n> iProp Σ). Implicit Types Ï„i : D. - Implicit Types Δ : listC D. - Implicit Types interp : listC D → D. + Implicit Types Δ : listO D. + Implicit Types interp : listO D → D. - Program Definition ctx_lookup (x : var) : listC D -n> D := λne Δ, + Program Definition ctx_lookup (x : var) : listO D -n> D := λne Δ, from_option id (cconst True)%I (Δ !! x). Solve Obligations with solve_proper. - Definition interp_unit : listC D -n> D := λne Δ w, ⌜w = UnitVâŒ%I. + Definition interp_unit : listO D -n> D := λne Δ w, ⌜w = UnitVâŒ%I. Program Definition interp_prod - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ w, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ w, (∃ w1 w2, ⌜w = PairV w1 w2⌠∧ interp1 Δ w1 ∧ interp2 Δ w2)%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Program Definition interp_sum - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ w, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ w, ((∃ w1, ⌜w = InjLV w1⌠∧ interp1 Δ w1) ∨ (∃ w2, ⌜w = InjRV w2⌠∧ interp2 Δ w2))%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Program Definition interp_arrow - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ w, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ w, (â–¡ ∀ v, interp1 Δ v → WP App (# w) (# v) {{ interp2 Δ }})%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Program Definition interp_forall - (interp : listC D -n> D) : listC D -n> D := λne Δ w, + (interp : listO D -n> D) : listO D -n> D := λne Δ w, (â–¡ ∀ Ï„i : D, ⌜(∀ v, Persistent (Ï„i v))⌠→ WP TApp (# w) {{ interp (Ï„i :: Δ) }})%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Definition interp_rec1 - (interp : listC D -n> D) (Δ : listC D) (Ï„i : D) : D := λne w, + (interp : listO D -n> D) (Δ : listO D) (Ï„i : D) : D := λne w, (â–¡ (∃ v, ⌜w = FoldV v⌠∧ â–· interp (Ï„i :: Δ) v))%I. Global Instance interp_rec1_contractive - (interp : listC D -n> D) (Δ : listC D) : Contractive (interp_rec1 interp Δ). + (interp : listO D -n> D) (Δ : listO D) : Contractive (interp_rec1 interp Δ). Proof. by solve_contractive. Qed. - Lemma fixpoint_interp_rec1_eq (interp : listC D -n> D) Δ x : + Lemma fixpoint_interp_rec1_eq (interp : listO D -n> D) Δ x : fixpoint (interp_rec1 interp Δ) x ≡ interp_rec1 interp Δ (fixpoint (interp_rec1 interp Δ)) x. Proof. exact: (fixpoint_unfold (interp_rec1 interp Δ) x). Qed. - Program Definition interp_rec (interp : listC D -n> D) : listC D -n> D := λne Δ, + Program Definition interp_rec (interp : listO D -n> D) : listO D -n> D := λne Δ, fixpoint (interp_rec1 interp Δ). Next Obligation. intros interp n Δ1 Δ2 HΔ; apply fixpoint_ne => Ï„i w. solve_proper. @@ -65,11 +65,11 @@ Section logrel. Solve Obligations with solve_proper. Program Definition interp_ref - (interp : listC D -n> D) : listC D -n> D := λne Δ w, + (interp : listO D -n> D) : listO D -n> D := λne Δ w, (∃ l, ⌜w = LocV l⌠∧ inv (logN .@ l) (interp_ref_inv l (interp Δ)))%I. Solve Obligations with solve_proper. - Fixpoint interp (Ï„ : type) : listC D -n> D := + Fixpoint interp (Ï„ : type) : listO D -n> D := match Ï„ return _ with | TUnit => interp_unit | TProd Ï„1 Ï„2 => interp_prod (interp Ï„1) (interp Ï„2) @@ -83,11 +83,11 @@ Section logrel. Notation "⟦ Ï„ ⟧" := (interp Ï„). Definition interp_env (Γ : list type) - (Δ : listC D) (vs : list val) : iProp Σ := + (Δ : listO D) (vs : list val) : iProp Σ := (⌜length Γ = length vs⌠∗ [∗] zip_with (λ Ï„, ⟦ Ï„ ⟧ Δ) Γ vs)%I. Notation "⟦ Γ ⟧*" := (interp_env Γ). - Definition interp_expr (Ï„ : type) (Δ : listC D) (e : expr) : iProp Σ := + Definition interp_expr (Ï„ : type) (Δ : listO D) (e : expr) : iProp Σ := WP e {{ ⟦ Ï„ ⟧ Δ }}%I. Class env_Persistent Δ := @@ -129,7 +129,7 @@ Section logrel. - rewrite iter_up; destruct lt_dec as [Hl | Hl]; simpl. { by rewrite !lookup_app_l. } (* FIXME: Ideally we wouldn't have to do this kinf of surgery. *) - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. do 2 f_equiv. lia. - intros w; simpl; properness; auto. apply (IHÏ„ (_ :: _)). - intros w; simpl; properness; auto. by apply IHÏ„. @@ -149,11 +149,11 @@ Section logrel. - rewrite iter_up; destruct lt_dec as [Hl | Hl]; simpl. { by rewrite !lookup_app_l. } (* FIXME: Ideally we wouldn't have to do this kinf of surgery. *) - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. case EQ: (x - length Δ1) => [|n]; simpl. { symmetry. asimpl. apply (interp_weaken [] Δ1 Δ2 Ï„'). } - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. do 2 f_equiv. lia. - intros w; simpl; properness; auto. apply (IHÏ„ (_ :: _)). - intros w; simpl; properness; auto. by apply IHÏ„. diff --git a/theories/logrel/F_mu_ref/logrel_binary.v b/theories/logrel/F_mu_ref/logrel_binary.v index 48908fe5245b3f61a55eed82325b27ee87f6e67f..1f24a7efa5b280e8f1a3fd76174d27f36eb1447a 100644 --- a/theories/logrel/F_mu_ref/logrel_binary.v +++ b/theories/logrel/F_mu_ref/logrel_binary.v @@ -25,12 +25,12 @@ Definition logN : namespace := nroot .@ "logN". (** interp : is a unary logical relation. *) Section logrel. Context `{heapG Σ, cfgSG Σ}. - Notation D := (prodC valC valC -n> iProp Σ). + Notation D := (prodO valO valO -n> iProp Σ). Implicit Types Ï„i : D. - Implicit Types Δ : listC D. - Implicit Types interp : listC D → D. + Implicit Types Δ : listO D. + Implicit Types interp : listO D → D. - Definition interp_expr (Ï„i : listC D -n> D) (Δ : listC D) + Definition interp_expr (Ï„i : listO D -n> D) (Δ : listO D) (ee : expr * expr) : iProp Σ := (∀ K, ⤇ fill K (ee.2) → WP ee.1 {{ v, ∃ v', ⤇ fill K (of_val v') ∗ Ï„i Δ (v, v') }})%I. @@ -38,28 +38,28 @@ Section logrel. Proper (dist n ==> dist n ==> (=) ==> dist n) interp_expr. Proof. solve_proper. Qed. - Program Definition ctx_lookup (x : var) : listC D -n> D := λne Δ, + Program Definition ctx_lookup (x : var) : listO D -n> D := λne Δ, from_option id (cconst True)%I (Δ !! x). Solve Obligations with solve_proper. - Program Definition interp_unit : listC D -n> D := λne Δ ww, + Program Definition interp_unit : listO D -n> D := λne Δ ww, (⌜ww.1 = UnitV⌠∧ ⌜ww.2 = UnitVâŒ)%I. Solve Obligations with solve_proper_alt. Program Definition interp_prod - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ ww, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ ww, (∃ vv1 vv2, ⌜ww = (PairV (vv1.1) (vv2.1), PairV (vv1.2) (vv2.2))⌠∧ interp1 Δ vv1 ∧ interp2 Δ vv2)%I. Solve Obligations with repeat intros ?; simpl; auto_equiv. Program Definition interp_sum - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ ww, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ ww, ((∃ vv, ⌜ww = (InjLV (vv.1), InjLV (vv.2))⌠∧ interp1 Δ vv) ∨ (∃ vv, ⌜ww = (InjRV (vv.1), InjRV (vv.2))⌠∧ interp2 Δ vv))%I. Solve Obligations with repeat intros ?; simpl; auto_equiv. Program Definition interp_arrow - (interp1 interp2 : listC D -n> D) : listC D -n> D := + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ ww, (â–¡ ∀ vv, interp1 Δ vv → interp_expr @@ -68,7 +68,7 @@ Section logrel. Solve Obligations with repeat intros ?; simpl; auto_equiv. Program Definition interp_forall - (interp : listC D -n> D) : listC D -n> D := λne Δ ww, + (interp : listO D -n> D) : listO D -n> D := λne Δ ww, (â–¡ ∀ Ï„i, ⌜∀ ww, Persistent (Ï„i ww)⌠→ interp_expr @@ -76,19 +76,19 @@ Section logrel. Solve Obligations with repeat intros ?; simpl; auto_equiv. Program Definition interp_rec1 - (interp : listC D -n> D) (Δ : listC D) (Ï„i : D) : D := λne ww, + (interp : listO D -n> D) (Δ : listO D) (Ï„i : D) : D := λne ww, (â–¡ ∃ vv, ⌜ww = (FoldV (vv.1), FoldV (vv.2))⌠∧ â–· interp (Ï„i :: Δ) vv)%I. Solve Obligations with repeat intros ?; simpl; auto_equiv. Global Instance interp_rec1_contractive - (interp : listC D -n> D) (Δ : listC D) : Contractive (interp_rec1 interp Δ). + (interp : listO D -n> D) (Δ : listO D) : Contractive (interp_rec1 interp Δ). Proof. by solve_contractive. Qed. - Lemma fixpoint_interp_rec1_eq (interp : listC D -n> D) Δ x : + Lemma fixpoint_interp_rec1_eq (interp : listO D -n> D) Δ x : fixpoint (interp_rec1 interp Δ) x ≡ interp_rec1 interp Δ (fixpoint (interp_rec1 interp Δ)) x. Proof. exact: (fixpoint_unfold (interp_rec1 interp Δ) x). Qed. - Program Definition interp_rec (interp : listC D -n> D) : listC D -n> D := λne Δ, + Program Definition interp_rec (interp : listO D -n> D) : listO D -n> D := λne Δ, fixpoint (interp_rec1 interp Δ). Next Obligation. intros interp n Δ1 Δ2 HΔ; apply fixpoint_ne => Ï„i ww. solve_proper. @@ -99,12 +99,12 @@ Section logrel. Solve Obligations with repeat intros ?; simpl; auto_equiv. Program Definition interp_ref - (interp : listC D -n> D) : listC D -n> D := λne Δ ww, + (interp : listO D -n> D) : listO D -n> D := λne Δ ww, (∃ ll, ⌜ww = (LocV (ll.1), LocV (ll.2))⌠∧ inv (logN .@ ll) (interp_ref_inv ll (interp Δ)))%I. Solve Obligations with repeat intros ?; simpl; auto_equiv. - Fixpoint interp (Ï„ : type) : listC D -n> D := + Fixpoint interp (Ï„ : type) : listO D -n> D := match Ï„ return _ with | TUnit => interp_unit | TProd Ï„1 Ï„2 => interp_prod (interp Ï„1) (interp Ï„2) @@ -118,7 +118,7 @@ Section logrel. Notation "⟦ Ï„ ⟧" := (interp Ï„). Definition interp_env (Γ : list type) - (Δ : listC D) (vvs : list (val * val)) : iProp Σ := + (Δ : listO D) (vvs : list (val * val)) : iProp Σ := (⌜length Γ = length vvs⌠∗ [∗] zip_with (λ Ï„, ⟦ Ï„ ⟧ Δ) Γ vvs)%I. Notation "⟦ Γ ⟧*" := (interp_env Γ). @@ -162,7 +162,7 @@ Section logrel. - rewrite iter_up; destruct lt_dec as [Hl | Hl]; simpl. { by rewrite !lookup_app_l. } (* FIXME: Ideally we wouldn't have to do this kinf of surgery. *) - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. do 2 f_equiv. lia. - unfold interp_expr. intros ww; simpl; properness; auto. by apply (IHÏ„ (_ :: _)). @@ -183,11 +183,11 @@ Section logrel. - rewrite iter_up; destruct lt_dec as [Hl | Hl]; simpl. { by rewrite !lookup_app_l. } (* FIXME: Ideally we wouldn't have to do this kinf of surgery. *) - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. case EQ: (x - length Δ1) => [|n]; simpl. { symmetry. asimpl. apply (interp_weaken [] Δ1 Δ2 Ï„'). } - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. do 2 f_equiv. lia. - unfold interp_expr. intros ww; simpl; properness; auto. apply (IHÏ„ (_ :: _)). diff --git a/theories/logrel/F_mu_ref/rules_binary.v b/theories/logrel/F_mu_ref/rules_binary.v index 57b846f274e361d2a86aeacc40962ea8bcaf14c8..11b7499aa7ee500498758be85d5544d4cc2f0039 100644 --- a/theories/logrel/F_mu_ref/rules_binary.v +++ b/theories/logrel/F_mu_ref/rules_binary.v @@ -7,7 +7,7 @@ Import uPred. Definition specN := nroot .@ "spec". (** The CMRA for the heap of the specification. *) -Definition cfgUR := prodUR (optionUR (exclR exprC)) (gen_heapUR loc val). +Definition cfgUR := prodUR (optionUR (exclR exprO)) (gen_heapUR loc val). (** The CMRA for the thread pool. *) Class cfgSG Σ := CFGSG { cfg_inG :> inG Σ (authR cfgUR); cfg_name : gname }. diff --git a/theories/logrel/F_mu_ref_conc/examples/counter.v b/theories/logrel/F_mu_ref_conc/examples/counter.v index 7c4eaa7562228113f3a3b1f12f065bc0004c9418..2f43b80ff66d286f0d1bef8cc00b34411a8b28c3 100644 --- a/theories/logrel/F_mu_ref_conc/examples/counter.v +++ b/theories/logrel/F_mu_ref_conc/examples/counter.v @@ -35,8 +35,8 @@ Definition FG_counter : expr := Section CG_Counter. Context `{heapIG Σ, cfgSG Σ}. - Notation D := (prodC valC valC -n> iProp Σ). - Implicit Types Δ : listC D. + Notation D := (prodO valO valO -n> iProp Σ). + Implicit Types Δ : listO D. (* Coarse-grained increment *) Lemma CG_increment_type x Γ : diff --git a/theories/logrel/F_mu_ref_conc/examples/stack/refinement.v b/theories/logrel/F_mu_ref_conc/examples/stack/refinement.v index 998a8e729e2233d3a3a4ee7ea8ff555c24e2fb6b..93fbed2850492b4ee4b80e31cc53f5b8d5c86225 100644 --- a/theories/logrel/F_mu_ref_conc/examples/stack/refinement.v +++ b/theories/logrel/F_mu_ref_conc/examples/stack/refinement.v @@ -10,8 +10,8 @@ Definition stackN : namespace := nroot .@ "stack". Section Stack_refinement. Context `{heapIG Σ, cfgSG Σ, inG Σ (authR stackUR)}. - Notation D := (prodC valC valC -n> iProp Σ). - Implicit Types Δ : listC D. + Notation D := (prodO valO valO -n> iProp Σ). + Implicit Types Δ : listO D. Lemma FG_CG_counter_refinement : [] ⊨ FG_stack ≤log≤ CG_stack : TForall (TProd (TProd diff --git a/theories/logrel/F_mu_ref_conc/examples/stack/stack_rules.v b/theories/logrel/F_mu_ref_conc/examples/stack/stack_rules.v index 99b1bb001ff0b0273c6d8a17060ae567dc85a905..7607df63de322c6c53900bbc5ed80b73a3ea62a5 100644 --- a/theories/logrel/F_mu_ref_conc/examples/stack/stack_rules.v +++ b/theories/logrel/F_mu_ref_conc/examples/stack/stack_rules.v @@ -5,7 +5,7 @@ Import uPred. From iris.algebra Require deprecated. Import deprecated.dec_agree. -Definition stackUR : ucmraT := gmapUR loc (agreeR valC). +Definition stackUR : ucmraT := gmapUR loc (agreeR valO). Class stackG Σ := StackG { stack_inG :> inG Σ (authR stackUR); stack_name : gname }. @@ -17,7 +17,7 @@ Notation "l ↦ˢᵗᵠv" := (stack_mapsto l v) (at level 20) : bi_scope. Section Rules. Context `{stackG Σ}. - Notation D := (prodC valC valC -n> iProp Σ). + Notation D := (prodO valO valO -n> iProp Σ). Global Instance stack_mapsto_persistent l v : Persistent (l ↦ˢᵗᵠv). Proof. apply _. Qed. diff --git a/theories/logrel/F_mu_ref_conc/fundamental_binary.v b/theories/logrel/F_mu_ref_conc/fundamental_binary.v index b683aa59d3949624daa9fe8a704b36d61fe752d6..260f457f25904e0ea04e215fa09c507b6b484e38 100644 --- a/theories/logrel/F_mu_ref_conc/fundamental_binary.v +++ b/theories/logrel/F_mu_ref_conc/fundamental_binary.v @@ -6,7 +6,7 @@ From iris.program_logic Require Export lifting. Section bin_log_def. Context `{heapIG Σ, cfgSG Σ}. - Notation D := (prodC valC valC -n> iProp Σ). + Notation D := (prodO valO valO -n> iProp Σ). Definition bin_log_related (Γ : list type) (e e' : expr) (Ï„ : type) := ∀ Δ vvs, env_Persistent Δ → @@ -19,9 +19,9 @@ Notation "Γ ⊨ e '≤log≤' e' : Ï„" := Section fundamental. Context `{heapIG Σ, cfgSG Σ}. - Notation D := (prodC valC valC -n> iProp Σ). + Notation D := (prodO valO valO -n> iProp Σ). Implicit Types e : expr. - Implicit Types Δ : listC D. + Implicit Types Δ : listO D. Hint Resolve to_of_val. Local Tactic Notation "smart_wp_bind" uconstr(ctx) ident(v) ident(w) diff --git a/theories/logrel/F_mu_ref_conc/fundamental_unary.v b/theories/logrel/F_mu_ref_conc/fundamental_unary.v index 97fa81ba433ba487eae6bcec05a259b87593dd6a..e79b8a7351b60793496016dc8f06823ba9709212 100644 --- a/theories/logrel/F_mu_ref_conc/fundamental_unary.v +++ b/theories/logrel/F_mu_ref_conc/fundamental_unary.v @@ -11,7 +11,7 @@ Notation "Γ ⊨ e : Ï„" := (log_typed Γ e Ï„) (at level 74, e, Ï„ at next leve Section typed_interp. Context `{heapIG Σ}. - Notation D := (valC -n> iProp Σ). + Notation D := (valO -n> iProp Σ). Local Tactic Notation "smart_wp_bind" uconstr(ctx) ident(v) constr(Hv) uconstr(Hp) := iApply (wp_bind (fill [ctx])); diff --git a/theories/logrel/F_mu_ref_conc/lang.v b/theories/logrel/F_mu_ref_conc/lang.v index f852b58c5bbfe4cd6f64b50bce19a58145ea26f9..274441f4ec8ce318c920a1ca5954f648ae8c88c6 100644 --- a/theories/logrel/F_mu_ref_conc/lang.v +++ b/theories/logrel/F_mu_ref_conc/lang.v @@ -303,9 +303,9 @@ Module F_mu_ref_conc. fill_item_val, fill_item_no_val_inj, head_ctx_step_val. Qed. - Canonical Structure stateC := leibnizC state. - Canonical Structure valC := leibnizC val. - Canonical Structure exprC := leibnizC expr. + Canonical Structure stateO := leibnizO state. + Canonical Structure valO := leibnizO val. + Canonical Structure exprO := leibnizO expr. End F_mu_ref_conc. Canonical Structure F_mu_ref_conc_ectxi_lang := diff --git a/theories/logrel/F_mu_ref_conc/logrel_binary.v b/theories/logrel/F_mu_ref_conc/logrel_binary.v index 469776613373e6a46e1b106240c4ff2de1c1e374..cdbb64c6be5a4a52698d774a696f1a203ff02e68 100644 --- a/theories/logrel/F_mu_ref_conc/logrel_binary.v +++ b/theories/logrel/F_mu_ref_conc/logrel_binary.v @@ -28,12 +28,12 @@ Definition logN : namespace := nroot .@ "logN". (** interp : is a unary logical relation. *) Section logrel. Context `{heapIG Σ, cfgSG Σ}. - Notation D := (prodC valC valC -n> iProp Σ). + Notation D := (prodO valO valO -n> iProp Σ). Implicit Types Ï„i : D. - Implicit Types Δ : listC D. - Implicit Types interp : listC D → D. + Implicit Types Δ : listO D. + Implicit Types interp : listO D → D. - Definition interp_expr (Ï„i : listC D -n> D) (Δ : listC D) + Definition interp_expr (Ï„i : listO D -n> D) (Δ : listO D) (ee : expr * expr) : iProp Σ := (∀ j K, j ⤇ fill K (ee.2) → WP ee.1 {{ v, ∃ v', j ⤇ fill K (of_val v') ∗ Ï„i Δ (v, v') }})%I. @@ -41,35 +41,35 @@ Section logrel. Proper (dist n ==> dist n ==> (=) ==> dist n) interp_expr. Proof. unfold interp_expr; solve_proper. Qed. - Program Definition ctx_lookup (x : var) : listC D -n> D := λne Δ, + Program Definition ctx_lookup (x : var) : listO D -n> D := λne Δ, from_option id (cconst True)%I (Δ !! x). Solve Obligations with solve_proper. - Program Definition interp_unit : listC D -n> D := λne Δ ww, + Program Definition interp_unit : listO D -n> D := λne Δ ww, (⌜ww.1 = UnitV⌠∧ ⌜ww.2 = UnitVâŒ)%I. Solve Obligations with solve_proper_alt. - Program Definition interp_nat : listC D -n> D := λne Δ ww, + Program Definition interp_nat : listO D -n> D := λne Δ ww, (∃ n : nat, ⌜ww.1 = #nv n⌠∧ ⌜ww.2 = #nv nâŒ)%I. Solve Obligations with solve_proper. - Program Definition interp_bool : listC D -n> D := λne Δ ww, + Program Definition interp_bool : listO D -n> D := λne Δ ww, (∃ b : bool, ⌜ww.1 = #â™v b⌠∧ ⌜ww.2 = #â™v bâŒ)%I. Solve Obligations with solve_proper. Program Definition interp_prod - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ ww, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ ww, (∃ vv1 vv2, ⌜ww = (PairV (vv1.1) (vv2.1), PairV (vv1.2) (vv2.2))⌠∧ interp1 Δ vv1 ∧ interp2 Δ vv2)%I. Solve Obligations with solve_proper. Program Definition interp_sum - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ ww, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ ww, ((∃ vv, ⌜ww = (InjLV (vv.1), InjLV (vv.2))⌠∧ interp1 Δ vv) ∨ (∃ vv, ⌜ww = (InjRV (vv.1), InjRV (vv.2))⌠∧ interp2 Δ vv))%I. Solve Obligations with solve_proper. Program Definition interp_arrow - (interp1 interp2 : listC D -n> D) : listC D -n> D := + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ ww, (â–¡ ∀ vv, interp1 Δ vv → interp_expr @@ -78,7 +78,7 @@ Section logrel. Solve Obligations with solve_proper. Program Definition interp_forall - (interp : listC D -n> D) : listC D -n> D := λne Δ ww, + (interp : listO D -n> D) : listO D -n> D := λne Δ ww, (â–¡ ∀ Ï„i, ⌜∀ ww, Persistent (Ï„i ww)⌠→ interp_expr @@ -86,19 +86,19 @@ Section logrel. Solve Obligations with solve_proper. Program Definition interp_rec1 - (interp : listC D -n> D) (Δ : listC D) (Ï„i : D) : D := λne ww, + (interp : listO D -n> D) (Δ : listO D) (Ï„i : D) : D := λne ww, (â–¡ ∃ vv, ⌜ww = (FoldV (vv.1), FoldV (vv.2))⌠∧ â–· interp (Ï„i :: Δ) vv)%I. Solve Obligations with solve_proper. Global Instance interp_rec1_contractive - (interp : listC D -n> D) (Δ : listC D) : Contractive (interp_rec1 interp Δ). + (interp : listO D -n> D) (Δ : listO D) : Contractive (interp_rec1 interp Δ). Proof. solve_contractive. Qed. - Lemma fixpoint_interp_rec1_eq (interp : listC D -n> D) Δ x : + Lemma fixpoint_interp_rec1_eq (interp : listO D -n> D) Δ x : fixpoint (interp_rec1 interp Δ) x ≡ interp_rec1 interp Δ (fixpoint (interp_rec1 interp Δ)) x. Proof. exact: (fixpoint_unfold (interp_rec1 interp Δ) x). Qed. - Program Definition interp_rec (interp : listC D -n> D) : listC D -n> D := λne Δ, + Program Definition interp_rec (interp : listO D -n> D) : listO D -n> D := λne Δ, fixpoint (interp_rec1 interp Δ). Next Obligation. intros interp n Δ1 Δ2 HΔ; apply fixpoint_ne => Ï„i ww. solve_proper. @@ -109,12 +109,12 @@ Section logrel. Solve Obligations with solve_proper. Program Definition interp_ref - (interp : listC D -n> D) : listC D -n> D := λne Δ ww, + (interp : listO D -n> D) : listO D -n> D := λne Δ ww, (∃ ll, ⌜ww = (LocV (ll.1), LocV (ll.2))⌠∧ inv (logN .@ ll) (interp_ref_inv ll (interp Δ)))%I. Solve Obligations with solve_proper. - Fixpoint interp (Ï„ : type) : listC D -n> D := + Fixpoint interp (Ï„ : type) : listO D -n> D := match Ï„ return _ with | TUnit => interp_unit | TNat => interp_nat @@ -130,7 +130,7 @@ Section logrel. Notation "⟦ Ï„ ⟧" := (interp Ï„). Definition interp_env (Γ : list type) - (Δ : listC D) (vvs : list (val * val)) : iProp Σ := + (Δ : listO D) (vvs : list (val * val)) : iProp Σ := (⌜length Γ = length vvs⌠∗ [∗] zip_with (λ Ï„, ⟦ Ï„ ⟧ Δ) Γ vvs)%I. Notation "⟦ Γ ⟧*" := (interp_env Γ). @@ -174,7 +174,7 @@ Section logrel. - rewrite iter_up; destruct lt_dec as [Hl | Hl]; simpl. { by rewrite !lookup_app_l. } (* FIXME: Ideally we wouldn't have to do this kinf of surgery. *) - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. do 2 f_equiv. lia. - unfold interp_expr. intros ww; simpl; properness; auto. by apply (IHÏ„ (_ :: _)). @@ -195,11 +195,11 @@ Section logrel. - rewrite iter_up; destruct lt_dec as [Hl | Hl]; simpl. { by rewrite !lookup_app_l. } (* FIXME: Ideally we wouldn't have to do this kinf of surgery. *) - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. case EQ: (x - length Δ1) => [|n]; simpl. { symmetry. asimpl. apply (interp_weaken [] Δ1 Δ2 Ï„'). } - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. do 2 f_equiv. lia. - unfold interp_expr. intros ww; simpl; properness; auto. apply (IHÏ„ (_ :: _)). diff --git a/theories/logrel/F_mu_ref_conc/logrel_unary.v b/theories/logrel/F_mu_ref_conc/logrel_unary.v index 53715af0032bb367ffa819e9380ef77ebfd436d9..a1da8812dad1a577651b6270dcb802599fc1593b 100644 --- a/theories/logrel/F_mu_ref_conc/logrel_unary.v +++ b/theories/logrel/F_mu_ref_conc/logrel_unary.v @@ -10,53 +10,53 @@ Definition logN : namespace := nroot .@ "logN". (** interp : is a unary logical relation. *) Section logrel. Context `{heapIG Σ}. - Notation D := (valC -n> iProp Σ). + Notation D := (valO -n> iProp Σ). Implicit Types Ï„i : D. - Implicit Types Δ : listC D. - Implicit Types interp : listC D → D. + Implicit Types Δ : listO D. + Implicit Types interp : listO D → D. - Program Definition env_lookup (x : var) : listC D -n> D := λne Δ, + Program Definition env_lookup (x : var) : listO D -n> D := λne Δ, from_option id (cconst True)%I (Δ !! x). Solve Obligations with solve_proper. - Definition interp_unit : listC D -n> D := λne Δ w, ⌜w = UnitVâŒ%I. - Definition interp_nat : listC D -n> D := λne Δ w, ⌜∃ n, w = #nv nâŒ%I. - Definition interp_bool : listC D -n> D := λne Δ w, ⌜∃ n, w = #â™v nâŒ%I. + Definition interp_unit : listO D -n> D := λne Δ w, ⌜w = UnitVâŒ%I. + Definition interp_nat : listO D -n> D := λne Δ w, ⌜∃ n, w = #nv nâŒ%I. + Definition interp_bool : listO D -n> D := λne Δ w, ⌜∃ n, w = #â™v nâŒ%I. Program Definition interp_prod - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ w, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ w, (∃ w1 w2, ⌜w = PairV w1 w2⌠∧ interp1 Δ w1 ∧ interp2 Δ w2)%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Program Definition interp_sum - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ w, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ w, ((∃ w1, ⌜w = InjLV w1⌠∧ interp1 Δ w1) ∨ (∃ w2, ⌜w = InjRV w2⌠∧ interp2 Δ w2))%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Program Definition interp_arrow - (interp1 interp2 : listC D -n> D) : listC D -n> D := λne Δ w, + (interp1 interp2 : listO D -n> D) : listO D -n> D := λne Δ w, (â–¡ ∀ v, interp1 Δ v → WP App (of_val w) (of_val v) {{ interp2 Δ }})%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Program Definition interp_forall - (interp : listC D -n> D) : listC D -n> D := λne Δ w, + (interp : listO D -n> D) : listO D -n> D := λne Δ w, (â–¡ ∀ Ï„i : D, ⌜∀ v, Persistent (Ï„i v)⌠→ WP TApp (of_val w) {{ interp (Ï„i :: Δ) }})%I. Solve Obligations with repeat intros ?; simpl; solve_proper. Definition interp_rec1 - (interp : listC D -n> D) (Δ : listC D) (Ï„i : D) : D := λne w, + (interp : listO D -n> D) (Δ : listO D) (Ï„i : D) : D := λne w, (â–¡ (∃ v, ⌜w = FoldV v⌠∧ â–· interp (Ï„i :: Δ) v))%I. Global Instance interp_rec1_contractive - (interp : listC D -n> D) (Δ : listC D) : Contractive (interp_rec1 interp Δ). + (interp : listO D -n> D) (Δ : listO D) : Contractive (interp_rec1 interp Δ). Proof. by solve_contractive. Qed. - Lemma fixpoint_interp_rec1_eq (interp : listC D -n> D) Δ x : + Lemma fixpoint_interp_rec1_eq (interp : listO D -n> D) Δ x : fixpoint (interp_rec1 interp Δ) x ≡ interp_rec1 interp Δ (fixpoint (interp_rec1 interp Δ)) x. Proof. exact: (fixpoint_unfold (interp_rec1 interp Δ) x). Qed. - Program Definition interp_rec (interp : listC D -n> D) : listC D -n> D := λne Δ, + Program Definition interp_rec (interp : listO D -n> D) : listO D -n> D := λne Δ, fixpoint (interp_rec1 interp Δ). Next Obligation. intros interp n Δ1 Δ2 HΔ; apply fixpoint_ne => Ï„i w. solve_proper. @@ -67,11 +67,11 @@ Section logrel. Solve Obligations with solve_proper. Program Definition interp_ref - (interp : listC D -n> D) : listC D -n> D := λne Δ w, + (interp : listO D -n> D) : listO D -n> D := λne Δ w, (∃ l, ⌜w = LocV l⌠∧ inv (logN .@ l) (interp_ref_inv l (interp Δ)))%I. Solve Obligations with solve_proper. - Fixpoint interp (Ï„ : type) : listC D -n> D := + Fixpoint interp (Ï„ : type) : listO D -n> D := match Ï„ return _ with | TUnit => interp_unit | TNat => interp_nat @@ -87,11 +87,11 @@ Section logrel. Notation "⟦ Ï„ ⟧" := (interp Ï„). Definition interp_env (Γ : list type) - (Δ : listC D) (vs : list val) : iProp Σ := + (Δ : listO D) (vs : list val) : iProp Σ := (⌜length Γ = length vs⌠∗ [∗] zip_with (λ Ï„, ⟦ Ï„ ⟧ Δ) Γ vs)%I. Notation "⟦ Γ ⟧*" := (interp_env Γ). - Definition interp_expr (Ï„ : type) (Δ : listC D) (e : expr) : iProp Σ := + Definition interp_expr (Ï„ : type) (Δ : listO D) (e : expr) : iProp Σ := WP e {{ ⟦ Ï„ ⟧ Δ }}%I. Class env_Persistent Δ := @@ -133,7 +133,7 @@ Section logrel. - rewrite iter_up; destruct lt_dec as [Hl | Hl]; simpl. { by rewrite !lookup_app_l. } (* FIXME: Ideally we wouldn't have to do this kinf of surgery. *) - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. do 2 f_equiv. lia. - intros w; simpl; properness; auto. apply (IHÏ„ (_ :: _)). - intros w; simpl; properness; auto. by apply IHÏ„. @@ -152,11 +152,11 @@ Section logrel. - rewrite iter_up; destruct lt_dec as [Hl | Hl]; simpl. { by rewrite !lookup_app_l. } (* FIXME: Ideally we wouldn't have to do this kinf of surgery. *) - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. case EQ: (x - length Δ1) => [|n]; simpl. { symmetry. asimpl. apply (interp_weaken [] Δ1 Δ2 Ï„'). } - change (bi_ofeC (uPredI (iResUR Σ))) with (uPredC (iResUR Σ)). + change (bi_ofeO (uPredI (iResUR Σ))) with (uPredO (iResUR Σ)). rewrite !lookup_app_r; [|lia ..]. do 2 f_equiv. lia. - intros w; simpl; properness; auto. apply (IHÏ„ (_ :: _)). - intros w; simpl; properness; auto. by apply IHÏ„. diff --git a/theories/logrel/F_mu_ref_conc/rules_binary.v b/theories/logrel/F_mu_ref_conc/rules_binary.v index 7c2449c084ebff96740364625142ac61b0712831..1d8f47e9aff9b58c1a54ed6e50f175d6f27ceb5f 100644 --- a/theories/logrel/F_mu_ref_conc/rules_binary.v +++ b/theories/logrel/F_mu_ref_conc/rules_binary.v @@ -8,7 +8,7 @@ Import uPred. Definition specN := nroot .@ "spec". (** The CMRA for the heap of the specification. *) -Definition tpoolUR : ucmraT := gmapUR nat (exclR exprC). +Definition tpoolUR : ucmraT := gmapUR nat (exclR exprO). Definition cfgUR := prodUR tpoolUR (gen_heapUR loc val). Fixpoint to_tpool_go (i : nat) (tp : list expr) : tpoolUR := @@ -107,7 +107,7 @@ Section conversions. - by rewrite lookup_insert tpool_lookup lookup_app_r // Nat.sub_diag. - rewrite lookup_insert_ne; last lia. rewrite !tpool_lookup ?lookup_ge_None_2 ?app_length //=; - change (ofe_car exprC) with expr; lia. + change (ofe_car exprO) with expr; lia. Qed. Lemma tpool_singleton_included tp j e : diff --git a/theories/logrel/prelude/base.v b/theories/logrel/prelude/base.v index ce6f8bef757c932a8b2b90e8d214edb7c1d64c99..1007bee3497f775f1a6d96bce4a7d4981f53214b 100644 --- a/theories/logrel/prelude/base.v +++ b/theories/logrel/prelude/base.v @@ -5,7 +5,7 @@ From iris.base_logic Require Import invariants. From Autosubst Require Export Autosubst. Import uPred. -Canonical Structure varC := leibnizC var. +Canonical Structure varO := leibnizO var. Section Autosubst_Lemmas. Context {term : Type} {Ids_term : Ids term} diff --git a/theories/logrel_heaplang/ltyping.v b/theories/logrel_heaplang/ltyping.v index ed3fb03443609dcac13de08b3a3ce2fb04e412a1..4e35302fa1ce3f81a20772cf66a250bedcd0e10f 100644 --- a/theories/logrel_heaplang/ltyping.v +++ b/theories/logrel_heaplang/ltyping.v @@ -20,11 +20,11 @@ Section lty_ofe. Instance lty_equiv : Equiv (lty Σ) := λ A B, ∀ w, A w ≡ B w. Instance lty_dist : Dist (lty Σ) := λ n A B, ∀ w, A w ≡{n}≡ B w. Lemma lty_ofe_mixin : OfeMixin (lty Σ). - Proof. by apply (iso_ofe_mixin (lty_car : _ → val -c> _)). Qed. + Proof. by apply (iso_ofe_mixin (lty_car : _ → val -d> _)). Qed. Canonical Structure ltyC := OfeT (lty Σ) lty_ofe_mixin. Global Instance lty_cofe : Cofe ltyC. Proof. - apply (iso_cofe_subtype' (λ A : val -c> iProp Σ, ∀ w, Persistent (A w)) + apply (iso_cofe_subtype' (λ A : val -d> iProp Σ, ∀ w, Persistent (A w)) (@Lty _) lty_car)=> //. - apply _. - apply limit_preserving_forall=> w. diff --git a/theories/spanning_tree/mon.v b/theories/spanning_tree/mon.v index 9e14e57adf867ea9e3c72762ff72ae3b9e3f5601..3173b076fb17303a4c14d720d5dcdc3ed3591b85 100644 --- a/theories/spanning_tree/mon.v +++ b/theories/spanning_tree/mon.v @@ -11,11 +11,11 @@ From stdpp Require Import gmap mapset. From iris_examples.spanning_tree Require Import graph. (* children cofe *) -Canonical Structure chlC := leibnizC (option loc * option loc). +Canonical Structure chlO := leibnizO (option loc * option loc). (* The graph monoid. *) Definition graphN : namespace := nroot .@ "SPT_graph". Definition graphUR : ucmraT := - optionUR (prodR fracR (gmapR loc (exclR chlC))). + optionUR (prodR fracR (gmapR loc (exclR chlO))). (* The monoid for talking about which nodes are marked. These markings are duplicatable. *) Definition markingUR : ucmraT := gsetUR loc. @@ -67,9 +67,9 @@ Section marking_definitions. End marking_definitions. (* The monoid representing graphs *) -Definition Gmon := gmapR loc (exclR chlC). +Definition Gmon := gmapR loc (exclR chlO). -Definition excl_chlC_chl (ch : exclR chlC) : option (option loc * option loc) := +Definition excl_chlC_chl (ch : exclR chlO) : option (option loc * option loc) := match ch with | Excl w => Some w | Excl_Bot => None @@ -533,7 +533,7 @@ Lemma graph_op_path' (G G' : Gmon) x z p : ✓ (G â‹… G') → x ∈ dom (gset _) G' → valid_path (Gmon_graph G) z x p → False. Proof. rewrite comm; apply graph_op_path. Qed. -Lemma in_dom_singleton (x : loc) (w : chlC) : +Lemma in_dom_singleton (x : loc) (w : chlO) : x ∈ dom (gset loc) (x [↦] w : gmap loc _). Proof. by rewrite dom_singleton elem_of_singleton. Qed. diff --git a/theories/spanning_tree/spanning.v b/theories/spanning_tree/spanning.v index 6afd1516514cffeca605b39dce8160cd965a9b62..661cc5911e1394066dec96ba23a55dd029b7f697 100644 --- a/theories/spanning_tree/spanning.v +++ b/theories/spanning_tree/spanning.v @@ -244,7 +244,7 @@ Section Helpers. - intros x; rewrite elem_of_union; intuition. - intros x y; rewrite elem_of_union; intuition eauto. Qed. - Lemma front_singleton (g : graph loc) (t : gset loc) l (w : chlC) u1 u2 : + Lemma front_singleton (g : graph loc) (t : gset loc) l (w : chlO) u1 u2 : g !! l = Some (u1, u2) → match u1 with |Some l1 => l1 ∈ t | None => True end → match u2 with |Some l2 => l2 ∈ t | None => True end → @@ -259,8 +259,8 @@ Section Helpers. Lemma empty_graph_divide q : own_graph q ∅ ⊢ own_graph (q / 2) ∅ ∗ own_graph (q / 2) ∅. Proof. - setoid_replace (∅ : gmapR loc (exclR chlC)) with - (∅ â‹… ∅ : gmapR loc (exclR chlC)) at 1 by (by rewrite ucmra_unit_left_id). + setoid_replace (∅ : gmapR loc (exclR chlO)) with + (∅ â‹… ∅ : gmapR loc (exclR chlO)) at 1 by (by rewrite ucmra_unit_left_id). by rewrite graph_divide. Qed.