concurrent_runners.v 17.5 KB
Newer Older
Dan Frumin's avatar
Dan Frumin committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
(** Concurrent Runner example from
    "Modular Reasoning about Separation of Concurrent Data Structures"
    <http://www.kasv.dk/articles/hocap-ext.pdf>
*)
From iris.program_logic Require Export weakestpre.
From iris.heap_lang Require Export lang.
From iris.proofmode Require Import tactics.
From iris.heap_lang Require Import proofmode notation.
From iris.algebra Require Import cmra agree frac csum excl.
From iris.heap_lang.lib Require Import lock spin_lock.
From iris.base_logic.lib Require Import fractional.
From iris_examples.hocap Require Import abstract_bag shared_bag.
Set Default Proof Using "Type".

Definition saR := csumR fracR (csumR (prodR fracR (agreeR valC)) (agreeR valC)).
Class saG Σ := { sa_inG :> inG Σ saR }.
Definition INIT `{saG Σ} γ (q: Qp) := own γ (Cinl q%Qp).
Definition SET_RES `{saG Σ} γ (q: Qp) (v: val) := own γ (Cinr (Cinl (q%Qp, to_agree v))).
Definition FIN `{saG Σ} γ (v: val) := own γ (Cinr (Cinr (to_agree v))).
Global Instance INIT_fractional `{saG Σ} γ : Fractional (INIT γ)%I.
Proof.
  intros p q. rewrite /INIT.
  rewrite -own_op. f_equiv.
Qed.
Global Instance INIT_as_fractional `{saG Σ} γ q:
  AsFractional (INIT γ q) (INIT γ)%I q.
Proof.
  split; [done | apply _].
Qed.
Global Instance SET_RES_fractional `{saG Σ} γ v : Fractional (fun q => SET_RES γ q v)%I.
Proof.
  intros p q. rewrite /SET_RES.
  rewrite -own_op Cinr_op Cinl_op pair_op. repeat f_equiv.
  intros n. split; intros a Ha; exists a; set_solver.
Qed.
Global Instance SET_RES_as_fractional `{saG Σ} γ q v:
  AsFractional (SET_RES γ q v) (fun q => SET_RES γ q v)%I q.
Proof.
  split; [done | apply _].
Qed.

Lemma new_INIT `{saG Σ} : (|==>  γ, INIT γ 1%Qp)%I.
Proof. by apply own_alloc. Qed.
Lemma INIT_not_SET_RES `{saG Σ} γ q q' v :
  (INIT γ q - SET_RES γ q' v - False)%I.
Proof.
  iIntros "Hs Hp".
  iDestruct (own_valid_2 with "Hs Hp") as %[].
Qed.
Lemma INIT_not_FIN `{saG Σ} γ q v :
  (INIT γ q - FIN γ v - False)%I.
Proof.
  iIntros "Hs Hp".
  iDestruct (own_valid_2 with "Hs Hp") as %[].
Qed.
Lemma SET_RES_not_FIN `{saG Σ} γ q v v' :
  (SET_RES γ q v - FIN γ v' - False)%I.
Proof.
  iIntros "Hs Hp".
  iDestruct (own_valid_2 with "Hs Hp") as %[].
Qed.
Lemma SET_RES_agree `{saG Σ} (γ: gname) (q q': Qp) (v w: val) :
  SET_RES γ q v - SET_RES γ q' w - v = w.
Proof.
  iIntros "Hs1 Hs2".
  iDestruct (own_valid_2 with "Hs1 Hs2") as %Hfoo.
  iPureIntro. rewrite Cinr_op Cinl_op pair_op in Hfoo.
  by destruct Hfoo as [_ ?%agree_op_invL'].
Qed.
Lemma FIN_agree `{saG Σ} (γ: gname) (v w: val) :
  FIN γ v - FIN γ w - v = w.
Proof.
  iIntros "Hs1 Hs2".
  iDestruct (own_valid_2 with "Hs1 Hs2") as %Hfoo.
  iPureIntro. rewrite Cinr_op Cinr_op in Hfoo.
  by apply agree_op_invL'.
Qed.
Lemma INIT_SET_RES `{saG Σ} (v: val) γ :
  INIT γ 1%Qp == SET_RES γ 1%Qp v.
Proof.
  apply own_update.
  by apply cmra_update_exclusive.
Qed.
Lemma SET_RES_FIN `{saG Σ} (v w: val) γ :
  SET_RES γ 1%Qp v == FIN γ w.
Proof.
  apply own_update.
  by apply cmra_update_exclusive.
Qed.

Definition oneshotR := csumR fracR (agreeR valC).
Class oneshotG Σ := { oneshot_inG :> inG Σ oneshotR }.
Definition oneshotΣ : gFunctors := #[GFunctor oneshotR].
Instance subG_oneshotΣ {Σ} : subG oneshotΣ Σ  oneshotG Σ.
Proof. solve_inG. Qed.

Definition pending `{oneshotG Σ} γ q := own γ (Cinl q%Qp).
Definition shot `{oneshotG Σ} γ (v: val) := own γ (Cinr (to_agree v)).
Lemma new_pending `{oneshotG Σ} : (|==>  γ, pending γ 1%Qp)%I.
Proof. by apply own_alloc. Qed.
Lemma shoot `{oneshotG Σ} (v: val) γ : pending γ 1%Qp == shot γ v.
Proof.
  apply own_update.
  by apply cmra_update_exclusive.
Qed.
Lemma shot_not_pending `{oneshotG Σ} γ v q :
  shot γ v - pending γ q - False.
Proof.
  iIntros "Hs Hp".
  iPoseProof (own_valid_2 with "Hs Hp") as "H".
  iDestruct "H" as %[].
Qed.
Lemma shot_agree `{oneshotG Σ} γ (v w: val) :
  shot γ v - shot γ w - v = w.
Proof.
  iIntros "Hs1 Hs2".
  iDestruct (own_valid_2 with "Hs1 Hs2") as %Hfoo.
  iPureIntro. by apply agree_op_invL'.
Qed.
Global Instance pending_fractional `{oneshotG Σ} γ : Fractional (pending γ)%I.
Proof.
  intros p q. rewrite /pending.
  rewrite -own_op. f_equiv.
Qed.
Global Instance pending_as_fractional `{oneshotG Σ} γ q:
  AsFractional (pending γ q) (pending γ)%I q.
Proof.
  split; [done | apply _].
Qed.

Section contents.
  Context `{heapG Σ, !oneshotG Σ, !saG Σ}.
  Variable b : bag Σ.
  Variable N : namespace.

  (* new Task : Runner<A,B> -> A -> Task<A,B> *)
  Definition newTask : val := λ: "r" "a", ("r", "a", ref #0, ref NONEV).
  (* task_runner == Fst Fst Fst *)
  (* task_arg    == Snd Fst Fst *)
  (* task_state  == Snd Fst *)
  (* task_res    == Snd *)
  (* Task.Run : Task<A,B> -> () *)
  Definition task_Run : val := λ: "t",
    let: "runner" := Fst (Fst (Fst "t")) in
    let: "arg"    := Snd (Fst (Fst "t")) in
    let: "state"  := Snd (Fst "t") in
    let: "res"    := Snd "t" in
    let: "tmp" := (Fst "runner") "runner" "arg"
                  (* runner.body(runner,arg)*) in
    "res" <- (SOME "tmp");;
    "state" <- #1.

  (* Task.Join : Task<A,B> -> B *)
  Definition task_Join : val := rec: "join" "t" :=
    let: "runner" := Fst (Fst (Fst "t")) in
    let: "arg"    := Snd (Fst (Fst "t")) in
    let: "state"  := Snd (Fst "t") in
    let: "res"    := Snd "t" in
    if: (!"state" = #1) then !"res" else "join" "t".

  (* runner_body == Fst *)
  (* runner_bag  == Snd *)

  (* Runner.Fork : Runner<A,B> -> A -> Task<A,B> *)
  Definition runner_Fork : val := λ: "r" "a",
    let: "bag" := Snd "r" in
    let: "t" := newTask "r" "a" in
    pushBag b "bag" "t";;
    "t".

  (* Runner.runTask : Runner<A,B> -> () *)
  Definition runner_runTask : val := λ: "r",
    let: "bag" := Snd "r" in
    match: popBag b "bag" with
      NONE => #()
    | SOME "t" => task_Run "t"
    end.

  (* Runner.runTasks : Runner<A,B> -> () *)
  Definition runner_runTasks : val := rec: "runTasks" "r" :=
    runner_runTask "r";; "runTasks" "r".

  (* newRunner : (Runner<A,B> -> A -> B) -> nat -> Runner<A,B> *)
  Definition newRunner : val := λ: "body" "n",
    let: "bag" := newBag b #() in
    let: "r" := ("body", "bag") in
    let: "loop" :=
       (rec: "loop" "i" :=
          if: ("i" < "n")
          then Fork (runner_runTasks "r");; "loop" ("i"+#1)
          else "r"
       ) in
    "loop" #0.

  Definition task_inv (γ γ': gname) (state res: loc) (Q: val  iProp Σ) : iProp Σ :=
    ((state  #0  res  NONEV  pending γ (1/2)%Qp  INIT γ' (1/2)%Qp)
    ( v, state  #0  res  SOMEV v  pending γ (1/2)%Qp  SET_RES γ' (1/2)%Qp v)
    ( v, state  #1  res  SOMEV v  FIN γ' v  (Q v  pending γ (1/2)%Qp  shot γ v)))%I.
  Definition isTask (r: val) (γ γ': gname) (t: val) (P Q: val  iProp Σ) : iProp Σ :=
    ( (arg : val) (state res : loc),
     t = (r, arg, #state, #res)%V
      P arg  INIT γ' (1/2)%Qp
      inv (N.@"task") (task_inv γ γ' state res Q))%I.
  Definition task (γ γ': gname) (t : val) (P Q: val  iProp Σ) : iProp Σ :=
    ( (r arg : val) (state res : loc),
     t = (r, arg, #state, #res)%V
      pending γ (1/2)%Qp
      inv (N.@"task") (task_inv γ γ' state res Q))%I.

  Ltac auto_equiv :=
    (* Deal with "pointwise_relation" *)
    repeat lazymatch goal with
           | |- pointwise_relation _ _ _ _ => intros ?
           end;
    (* Normalize away equalities. *)
    repeat match goal with
           | H : _ {_} _ |-  _ => apply (discrete_iff _ _) in H
           | _ => progress simplify_eq
           end;
    (* repeatedly apply congruence lemmas and use the equalities in the hypotheses. *)
    try (f_equiv; fast_done || auto_equiv).

  Ltac solve_proper ::= solve_proper_core ltac:(fun _ => simpl; auto_equiv).

  Program Definition isRunner1 (γ : name Σ b) (P Q : val  iProp Σ) :
    (valC -n> iProp Σ) -n> (valC -n> iProp Σ) := λne R r,
    ( (body bag : val), r = (body, bag)%V
      bagS b (N.@"bag") (λ x y,  γ γ', isTask (body,x) γ γ' y P Q) γ bag
        r a: val,  (R r  P a - WP body r a {{ Q }}))%I.
  Solve Obligations with solve_proper.

  Global Instance isRunner1_contractive (γ : name Σ b) P Q :
    Contractive (isRunner1 γ P Q).
  Proof. unfold isRunner1. solve_contractive. Qed.

  Definition isRunner (γ: name Σ b) (P Q : val  iProp Σ) : valC -n> iProp Σ :=
    (fixpoint (isRunner1 γ P Q))%I.

  Lemma isRunner_unfold γ r P Q :
    isRunner γ P Q r 
      ( (body bag : val), r = (body, bag)%V
        bagS b (N.@"bag") (λ x y,  γ γ', isTask (body,x) γ γ' y P Q) γ bag
          r a: val,  (isRunner γ P Q r  P a - WP body r a {{ Q }}))%I.
  Proof. rewrite /isRunner. by rewrite {1}fixpoint_unfold. Qed.

  Global Instance isRunner_persistent γ r P Q :
    Persistent (isRunner γ P Q r).
  Proof. rewrite /isRunner fixpoint_unfold. apply _. Qed.

  Lemma newTask_spec γb (r : val) P Q a :
    {{{ isRunner γb P Q r  P a }}}
      newTask r a
    {{{ γ γ' t, RET t; isTask r γ γ' t P Q  task γ γ' t P Q }}}.
  Proof.
    iIntros (Φ) "[#Hrunner HP] HΦ".
    unfold newTask. do 2 wp_rec. iApply wp_fupd.
    wp_alloc status as "Hstatus".
    wp_alloc res as "Hres".
    iMod (new_pending) as (γ) "[Htoken Htask]".
    iMod (new_INIT) as (γ') "[Hinit Hinit']".
    iMod (inv_alloc (N.@"task") _ (task_inv γ γ' status res Q)%I with "[-HP HΦ Htask Hinit]") as "#Hinv".
    { iNext. iLeft. iFrame. }
    iModIntro. iApply "HΦ".
    iFrame. iSplitL; iExists _,_,_;[|iExists _]; iFrame "Hinv"; eauto.
  Qed.

  Lemma task_Join_spec γb γ γ' r t P Q `{ v, Timeless (Q v)}:
    {{{ isRunner γb P Q r  task γ γ' t P Q }}}
       task_Join t
    {{{ v res, RET res; res = SOMEV v  Q v }}}.
  Proof.
    iIntros (Φ) "[#Hrunner Htask] HΦ".
    iLöb as "IH".
    rewrite {2}/task_Join.
    iDestruct "Htask" as (r' arg state res) "(% & Htoken & #Htask)". simplify_eq.
    repeat wp_pure _.
    wp_bind (! #state)%E. iInv (N.@"task") as ">Hstatus" "Hcl".
    rewrite {2}/task_inv.
    iDestruct "Hstatus" as "[(Hstate & Hres)|[Hstatus|Hstatus]]".
    - wp_load.
      iMod ("Hcl" with "[Hstate Hres]") as "_".
      { iNext; iLeft; iFrame. }
      iModIntro. wp_op. wp_if.
      rewrite /task_Join. iApply ("IH" with "[$Htoken] HΦ").
      iExists _,_,_,_; iFrame "Htask". eauto.
    - iDestruct "Hstatus" as (v) "(Hstate & Hres & HQ)".
      wp_load.
      iMod ("Hcl" with "[Hstate Hres HQ]") as "_".
      { iNext; iRight; iLeft. iExists _; iFrame. }
      iModIntro. wp_op. wp_if.
      rewrite /task_Join. iApply ("IH" with "[$Htoken] HΦ").
      iExists _,_,_,_; iFrame "Htask". eauto.
    - iDestruct "Hstatus" as (v) "(Hstate & Hres & #HFIN & HQ)".
      wp_load.
      iDestruct "HQ" as "[[HQ Htoken2]|Hshot]"; last first.
      { iExFalso. iApply (shot_not_pending with "Hshot Htoken"). }
      iMod (shoot v γ with "[Htoken Htoken2]") as "#Hshot".
      { iApply (fractional_split_2 with "Htoken Htoken2").
        assert ((1 / 2 + 1 / 2)%Qp = 1%Qp) as -> by apply Qp_div_2.
        apply _. }
      iMod ("Hcl" with "[Hstate Hres]") as "_".
      { iNext. iRight. iRight. iExists _. iFrame. iFrame "HFIN".
        iRight. eauto. }
      iModIntro. wp_op. wp_if.
      iInv (N.@"task") as ">[(Hstate & Hres & Hpending & HINIT)|[Hstatus|Hstatus]]" "Hcl".
      { iExFalso. iApply (shot_not_pending with "Hshot Hpending"). }
      { iDestruct "Hstatus" as (v') "(Hstate & Hres & Hpending & HSETRES)".
        iExFalso. iApply (SET_RES_not_FIN with "HSETRES HFIN"). }
      iDestruct "Hstatus" as (v') "(Hstate & Hres & _ & HQ')".
      iAssert (v = v')%I with "[HQ']" as %<-.
      { iDestruct "HQ'" as "[[? Hpending]|Hshot']".
        - iExFalso. iApply (shot_not_pending with "Hshot Hpending").
        - iApply (shot_agree with "Hshot Hshot'"). }
      iClear "HQ'". wp_load.
      iMod ("Hcl" with "[Hres Hstate]") as "_".
      { iNext. iRight. iRight. iExists _; iFrame. iFrame "HFIN". by iRight. }
      iModIntro. iApply "HΦ"; eauto.
  Qed.

  Lemma task_Run_spec γb γ γ' r t P Q `{ v, Timeless (Q v)}:
    {{{ isRunner γb P Q r  isTask r γ γ' t P Q }}}
       task_Run t
    {{{ RET #(); True }}}.
  Proof.
    iIntros (Φ) "[#Hrunner Htask] HΦ".
    rewrite isRunner_unfold.
    iDestruct "Hrunner" as (body bag) "(% & #Hbag & #Hbody)".
    iDestruct "Htask" as (arg state res) "(% & HP & HINIT & #Htask)".
    simplify_eq. rewrite /task_Run.
    repeat wp_pure _.
    wp_bind (body _ arg).
    iDestruct ("Hbody" $! (PairV body bag) arg) as "Hbody'".
    iSpecialize ("Hbody'" with "[HP]").
    { iFrame. rewrite isRunner_unfold.
      iExists _,_; iSplitR; eauto. }
    iApply (wp_wand with "Hbody'").
    iIntros (v) "HQ". wp_let.
    wp_bind (#res <- SOME v)%E.
    iInv (N.@"task") as ">[(Hstate & Hres & Hpending & HINIT')|[Hstatus|Hstatus]]" "Hcl".
    - wp_store.
      iMod (INIT_SET_RES v γ' with "[HINIT HINIT']") as "[HSETRES HSETRES']".
      { iApply (fractional_split_2 with "HINIT HINIT'").
        assert ((1 / 2 + 1 / 2)%Qp = 1%Qp) as -> by apply Qp_div_2.
        apply _. }
      iMod ("Hcl" with "[HSETRES Hstate Hres Hpending]") as "_".
      { iNext. iRight. iLeft. iExists _; iFrame. }
      iModIntro. wp_let.
      iInv (N.@"task") as ">[(Hstate & Hres & Hpending & HINIT')|[Hstatus|Hstatus]]" "Hcl".
      { iExFalso. iApply (INIT_not_SET_RES with "HINIT' HSETRES'"). }
      + iDestruct "Hstatus" as (v') "(Hstate & Hres & Hpending & HSETRES)".
        wp_store.
        iDestruct (SET_RES_agree with "HSETRES HSETRES'") as %->.
        iMod (SET_RES_FIN v v with "[HSETRES HSETRES']") as "#HFIN".
        { iApply (fractional_split_2 with "HSETRES HSETRES'").
          assert ((1 / 2 + 1 / 2)%Qp = 1%Qp) as -> by apply Qp_div_2.
          apply _. }
        iMod ("Hcl" with "[-HΦ]") as "_".
        { iNext. do 2 iRight. iExists _; iFrame. iFrame "HFIN". iLeft. iFrame.  }
        iModIntro. by iApply "HΦ".
      + iDestruct "Hstatus" as (v') "(Hstate & Hres & HFIN & HQ')".
        iExFalso. iApply (SET_RES_not_FIN with "HSETRES' HFIN").
    - iDestruct "Hstatus" as (v') "(Hstate & Hres & Hpending & HSETRES)".
      iExFalso. iApply (INIT_not_SET_RES with "HINIT HSETRES").
    - iDestruct "Hstatus" as (v') "(Hstate & Hres & HFIN & HQ')".
      iExFalso. iApply (INIT_not_FIN with "HINIT HFIN").
  Qed.

  Lemma runner_runTask_spec γb P Q r `{ v, Timeless (Q v)}:
    {{{ isRunner γb P Q r }}}
      runner_runTask r
    {{{ RET #(); True }}}.
  Proof.
    iIntros (Φ) "#Hrunner HΦ".
    rewrite isRunner_unfold /runner_runTask.
    iDestruct "Hrunner" as (body bag) "(% & #Hbag & #Hbody)"; simplify_eq.
    repeat wp_pure _.
    wp_bind (popBag b _).
    iApply (popBag_spec with "Hbag").
    iNext. iIntros (t') "[_ [%|Ht]]"; simplify_eq.
    - wp_match. by iApply "HΦ".
    - iDestruct "Ht" as (t) "[% Ht]".
      iDestruct "Ht" as (γ γ') "Htask".
      simplify_eq. wp_match.
      iApply (task_Run_spec with "[Hbag Hbody Htask]"); last done.
      iFrame "Htask". rewrite isRunner_unfold.
      iExists _,_; iSplit; eauto.
  Qed.

  Lemma runner_runTasks_spec γb P Q r `{ v, Timeless (Q v)}:
    {{{ isRunner γb P Q r }}}
      runner_runTasks r
    {{{ RET #(); False }}}.
  Proof.
    iIntros (Φ) "#Hrunner HΦ".
    iLöb as "IH". rewrite /runner_runTasks.
    wp_rec. wp_bind (runner_runTask r).
    iApply runner_runTask_spec; eauto.
    iNext. iIntros "_". wp_rec. by iApply "IH".
  Qed.

  Lemma loop_spec (n i : nat) P Q γb r `{ v, Timeless (Q v)}:
    {{{ isRunner γb P Q r }}}
      (rec: "loop" "i" :=
         if: "i" < #n
         then Fork (runner_runTasks r);; "loop" ("i" + #1)
         else r) #i
    {{{ r, RET r; isRunner γb P Q r }}}.
  Proof.
    iIntros (Φ) "#Hrunner HΦ".
    iLöb as "IH" forall (i).
    wp_rec. wp_op. case_bool_decide; wp_if; last first.
    { by iApply "HΦ". }
    wp_bind (Fork _). iApply wp_fork. iSplitL.
    - iNext. wp_rec. wp_op.
      (* Set Printing Coercions. *)
      assert ((Z.of_nat i + 1) = Z.of_nat (i + 1)) as -> by lia.
      iApply ("IH" with "HΦ").
    - iNext. by iApply runner_runTasks_spec.
  Qed.

  Lemma newRunner_spec (f : val) (n : nat) P Q `{ v, Timeless (Q v)}:
    {{{  (γ: name Σ b) (r: val),
            a: val, (isRunner γ P Q r  P a - WP f r a {{ Q }}) }}}
       newRunner f #n
    {{{ γb r, RET r; isRunner γb P Q r }}}.
  Proof.
    iIntros (Φ) "#Hf HΦ".
    unfold newRunner. iApply wp_fupd.
    repeat wp_pure _.
    wp_bind (newBag b #()).
    iApply (newBag_spec b (N.@"bag") (λ x y,  γ γ', isTask (f,x) γ γ' y P Q)%I); auto.
    iNext. iIntros (bag). iDestruct 1 as (γb) "#Hbag".
    do 3 wp_let.
    iAssert (isRunner γb P Q (PairV f bag))%I with "[]" as "#Hrunner".
    { rewrite isRunner_unfold. iExists _,_. iSplit; eauto. }
    iApply (loop_spec n 0 with "Hrunner [HΦ]"); eauto.
    iNext. iIntros (r) "Hr". by iApply "HΦ".
  Qed.

  Lemma runner_Fork_spec γb r P Q a `{ v, Timeless (Q v)}:
    {{{ isRunner γb P Q r  P a }}}
       runner_Fork r a
    {{{ γ γ' t, RET t; task γ γ' t P Q }}}.
  Proof.
    iIntros (Φ) "[#Hrunner HP] HΦ".
    rewrite /runner_Fork isRunner_unfold.
    iDestruct "Hrunner" as (body bag) "(% & #Hbag & #Hbody)". simplify_eq.
    Local Opaque newTask.
    repeat wp_pure _. wp_bind (newTask _ _).
    iApply (newTask_spec γb (PairV body bag) P Q with "[Hbag Hbody HP]").
    { iFrame "HP". rewrite isRunner_unfold.
      iExists _,_; iSplit; eauto. }
    iNext. iIntros (γ γ' t) "[Htask Htask']". wp_let.
    wp_bind (pushBag _ _ _).
    iApply (pushBag_spec with "[$Hbag Htask]"); eauto.
    iNext. iIntros "_". wp_rec. by iApply "HΦ".
  Qed.
End contents.