rules_binary.v 17.8 KB
Newer Older
1
From iris.program_logic Require Export language ectx_language ectxi_language.
Amin Timany's avatar
Amin Timany committed
2 3
From iris.program_logic Require Import lifting.
From iris.algebra Require Import auth frac agree gmap list.
Amin Timany's avatar
Amin Timany committed
4
From iris_examples.logrel.F_mu_ref_conc Require Export rules.
Amin Timany's avatar
Amin Timany committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
From iris.proofmode Require Import tactics.
Import uPred.

Definition specN := nroot .@ "spec".

(** The CMRA for the heap of the specification. *)
Definition tpoolUR : ucmraT := gmapUR nat (exclR exprC).
Definition cfgUR := prodUR tpoolUR (gen_heapUR loc val).

Fixpoint to_tpool_go (i : nat) (tp : list expr) : tpoolUR :=
  match tp with
  | [] => 
  | e :: tp => <[i:=Excl e]>(to_tpool_go (S i) tp)
  end.
Definition to_tpool : list expr  tpoolUR := to_tpool_go 0.

(** The CMRA for the thread pool. *)
Class cfgSG Σ := CFGSG { cfg_inG :> inG Σ (authR cfgUR); cfg_name : gname }.

Section definitionsS.
  Context `{cfgSG Σ, invG Σ}.

  Definition heapS_mapsto (l : loc) (q : Qp) (v: val) : iProp Σ :=
    own cfg_name ( (ε, {[ l := (q, to_agree v) ]})).

  Definition tpool_mapsto (j : nat) (e: expr) : iProp Σ :=
    own cfg_name ( ({[ j := Excl e ]}, )).

  Definition spec_inv (ρ : cfg F_mu_ref_conc_lang) : iProp Σ :=
    ( tp σ, own cfg_name ( (to_tpool tp, to_gen_heap σ))
Ralf Jung's avatar
Ralf Jung committed
35
                  rtc erased_step ρ (tp,σ))%I.
Amin Timany's avatar
Amin Timany committed
36 37 38 39 40 41 42 43 44 45 46
  Definition spec_ctx (ρ : cfg F_mu_ref_conc_lang) : iProp Σ :=
    inv specN (spec_inv ρ).

  Global Instance heapS_mapsto_timeless l q v : Timeless (heapS_mapsto l q v).
  Proof. apply _. Qed.
  Global Instance spec_ctx_persistent ρ : Persistent (spec_ctx ρ).
  Proof. apply _. Qed.
End definitionsS.
Typeclasses Opaque heapS_mapsto tpool_mapsto.

Notation "l ↦ₛ{ q } v" := (heapS_mapsto l q v)
Ralf Jung's avatar
Ralf Jung committed
47 48 49
  (at level 20, q at level 50, format "l  ↦ₛ{ q }  v") : bi_scope.
Notation "l ↦ₛ v" := (heapS_mapsto l 1 v) (at level 20) : bi_scope.
Notation "j ⤇ e" := (tpool_mapsto j e) (at level 20) : bi_scope.
Amin Timany's avatar
Amin Timany committed
50

Robbert Krebbers's avatar
Robbert Krebbers committed
51 52 53 54 55 56 57 58 59 60 61 62
Ltac iAsimpl :=
  repeat match goal with
  | |- context [ (_  ?e)%I ] => progress (
    let e' := fresh in evar (e':expr);
    assert (e = e') as ->; [asimpl; unfold e'; reflexivity|];
    unfold e'; clear e')
  | |- context [ WP ?e @ _ {{ _ }}%I ] => progress (
    let e' := fresh in evar (e':expr);
    assert (e = e') as ->; [asimpl; unfold e'; reflexivity|];
    unfold e'; clear e')
  end.

Amin Timany's avatar
Amin Timany committed
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
Section conversions.
  Context `{cfgSG Σ}.

  (** Conversion to tpools and back *)
  Lemma to_tpool_valid es :  to_tpool es.
  Proof.
    rewrite /to_tpool. move: 0.
    induction es as [|e es]=> n //. by apply insert_valid.
  Qed.

  Lemma tpool_lookup tp j : to_tpool tp !! j = Excl <$> tp !! j.
  Proof.
    cut ( i, to_tpool_go i tp !! (i + j) = Excl <$> tp !! j).
    { intros help. apply (help 0). }
    revert j. induction tp as [|e tp IH]=> //= -[|j] i /=.
    - by rewrite Nat.add_0_r lookup_insert.
    - by rewrite -Nat.add_succ_comm lookup_insert_ne; last lia.
  Qed.
  Lemma tpool_lookup_Some tp j e : to_tpool tp !! j = Excl' e  tp !! j = Some e.
  Proof. rewrite tpool_lookup fmap_Some. naive_solver. Qed.
  Hint Resolve tpool_lookup_Some.

  Lemma to_tpool_insert tp j e :
    j < length tp 
    to_tpool (<[j:=e]> tp) = <[j:=Excl e]> (to_tpool tp).
  Proof.
    intros. apply: map_eq=> i. destruct (decide (i = j)) as [->|].
    - by rewrite tpool_lookup lookup_insert list_lookup_insert.
    - rewrite tpool_lookup lookup_insert_ne // list_lookup_insert_ne //.
      by rewrite tpool_lookup.
  Qed.
  Lemma to_tpool_insert' tp j e :
    is_Some (to_tpool tp !! j) 
    to_tpool (<[j:=e]> tp) = <[j:=Excl e]> (to_tpool tp).
  Proof.
    rewrite tpool_lookup fmap_is_Some lookup_lt_is_Some. apply to_tpool_insert.
  Qed.

  Lemma to_tpool_snoc tp e :
    to_tpool (tp ++ [e]) = <[length tp:=Excl e]>(to_tpool tp).
  Proof.
    intros. apply: map_eq=> i.
    destruct (lt_eq_lt_dec i (length tp)) as [[?| ->]|?].
    - rewrite lookup_insert_ne; last lia. by rewrite !tpool_lookup lookup_app_l.
    - by rewrite lookup_insert tpool_lookup lookup_app_r // Nat.sub_diag.
    - rewrite lookup_insert_ne; last lia.
      rewrite !tpool_lookup ?lookup_ge_None_2 ?app_length //=;
         change (ofe_car exprC) with expr; lia.
  Qed.

  Lemma tpool_singleton_included tp j e :
    {[j := Excl e]}  to_tpool tp  tp !! j = Some e.
  Proof.
    move=> /singleton_included [ex [/leibniz_equiv_iff]].
    rewrite tpool_lookup fmap_Some=> [[e' [-> ->]] /Excl_included ?]. by f_equal.
  Qed.
  Lemma tpool_singleton_included' tp j e :
    {[j := Excl e]}  to_tpool tp  to_tpool tp !! j = Excl' e.
  Proof. rewrite tpool_lookup. by move=> /tpool_singleton_included=> ->. Qed.

End conversions.

Section cfg.
  Context `{heapIG Σ, cfgSG Σ}.
  Implicit Types P Q : iProp Σ.
  Implicit Types Φ : val  iProp Σ.
  Implicit Types σ : state.
  Implicit Types e : expr.
  Implicit Types v : val.

  Local Hint Resolve tpool_lookup.
  Local Hint Resolve tpool_lookup_Some.
  Local Hint Resolve to_tpool_insert.
  Local Hint Resolve to_tpool_insert'.
  Local Hint Resolve tpool_singleton_included.

Ralf Jung's avatar
Ralf Jung committed
139 140 141
  Lemma step_insert K tp j e σ κ e' σ' efs :
    tp !! j = Some (fill K e)  head_step e σ κ e' σ' efs 
    erased_step (tp, σ) (<[j:=fill K e']> tp ++ efs, σ').
Amin Timany's avatar
Amin Timany committed
142 143 144 145
  Proof.
    intros. rewrite -(take_drop_middle tp j (fill K e)) //.
    rewrite insert_app_r_alt take_length_le ?Nat.sub_diag /=;
      eauto using lookup_lt_Some, Nat.lt_le_incl.
Ralf Jung's avatar
Ralf Jung committed
146
    rewrite -(assoc_L (++)) /=. eexists.
Amin Timany's avatar
Amin Timany committed
147 148 149
    eapply step_atomic; eauto. by apply: Ectx_step'.
  Qed.

Ralf Jung's avatar
Ralf Jung committed
150 151 152
  Lemma step_insert_no_fork K tp j e σ κ e' σ' :
    tp !! j = Some (fill K e)  head_step e σ κ e' σ' [] 
    erased_step (tp, σ) (<[j:=fill K e']> tp, σ').
Amin Timany's avatar
Amin Timany committed
153 154
  Proof. rewrite -(right_id_L [] (++) (<[_:=_]>_)). by apply step_insert. Qed.

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  Lemma nsteps_inv_r {A} n (R : A  A  Prop) x y :
    nsteps R (S n) x y   z, nsteps R n x z  R z y.
  Proof.
    revert x y; induction n; intros x y.
    - inversion 1; subst.
      match goal with H : nsteps _ 0 _ _ |- _ => inversion H end; subst.
      eexists; repeat econstructor; eauto.
    - inversion 1; subst.
      edestruct IHn as [z [? ?]]; eauto.
      exists z; split; eauto using nsteps_l.
  Qed.

  Lemma step_pure' E ρ j K e e' (P : Prop) n :
    P 
    PureExec P n e e' 
Amin Timany's avatar
Amin Timany committed
170 171 172
    nclose specN  E 
    spec_ctx ρ  j  fill K e ={E}= j  fill K e'.
  Proof.
173 174 175
    iIntros (HP Hex ?) "[#Hspec Hj]". rewrite /spec_ctx /tpool_mapsto.
    iInv specN as (tp σ) ">[Hown Hrtc]" "Hclose".
    iDestruct "Hrtc" as %Hrtc.
Amin Timany's avatar
Amin Timany committed
176
    iDestruct (own_valid_2 with "Hown Hj")
177
      as %[[Htpj%tpool_singleton_included' _]%prod_included ?]%auth_valid_discrete_2.
Amin Timany's avatar
Amin Timany committed
178 179 180 181 182
    iMod (own_update_2 with "Hown Hj") as "[Hown Hj]".
    { by eapply auth_update, prod_local_update_1,
        singleton_local_update, (exclusive_local_update _ (Excl (fill K e'))). }
    iFrame "Hj". iApply "Hclose". iNext. iExists (<[j:=fill K e']> tp), σ.
    rewrite to_tpool_insert'; last eauto.
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    iFrame. iPureIntro.
    apply rtc_nsteps in Hrtc; destruct Hrtc as [m Hrtc].
    specialize (Hex HP). apply (nsteps_rtc (m + n)).
    eapply nsteps_trans; eauto.
    revert e e' Htpj Hex.
    induction n => e e' Htpj Hex.
    - inversion Hex; subst.
      rewrite list_insert_id; eauto. econstructor.
    - apply nsteps_inv_r in Hex.
      destruct Hex as [z [Hex1 Hex2]].
      specialize (IHn _ _ Htpj Hex1).
      eapply nsteps_r; eauto.
      replace (<[j:=fill K e']> tp) with
          (<[j:=fill K e']> (<[j:=fill K z]> tp)); last first.
      { clear. revert tp; induction j; intros tp.
        - destruct tp; trivial.
        - destruct tp; simpl; auto. by rewrite IHj. }
      destruct Hex2 as [Hexs Hexd].
      specialize (Hexs σ). destruct Hexs as [e'' [σ' [efs Hexs]]].
      specialize (Hexd σ [] e'' σ' efs Hexs); destruct Hexd as [? [? [? ?]]];
        subst.
      inversion Hexs; simpl in *; subst.
      rewrite -!fill_app.
      eapply step_insert_no_fork; eauto.
      { apply list_lookup_insert. apply lookup_lt_is_Some; eauto. }
Amin Timany's avatar
Amin Timany committed
208 209
  Qed.

210 211 212 213 214 215

  Lemma do_step_pure E ρ j K e e' `{!PureExec True 1 e e'}:
    nclose specN  E 
    spec_ctx ρ  j  fill K e ={E}= j  fill K e'.
  Proof. by eapply step_pure'; last eauto. Qed.

Amin Timany's avatar
Amin Timany committed
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  Lemma step_alloc E ρ j K e v:
    to_val e = Some v  nclose specN  E 
    spec_ctx ρ  j  fill K (Alloc e) ={E}=  l, j  fill K (Loc l)  l ↦ₛ v.
  Proof.
    iIntros (??) "[#Hinv Hj]". rewrite /spec_ctx /tpool_mapsto.
    iInv specN as (tp σ) ">[Hown %]" "Hclose".
    destruct (exist_fresh (dom (gset positive) σ)) as [l Hl%not_elem_of_dom].
    iDestruct (own_valid_2 with "Hown Hj")
      as %[[?%tpool_singleton_included' _]%prod_included ?]%auth_valid_discrete_2.
    iMod (own_update_2 with "Hown Hj") as "[Hown Hj]".
    { by eapply auth_update, prod_local_update_1,
        singleton_local_update, (exclusive_local_update _ (Excl (fill K (Loc l)))). }
    iMod (own_update with "Hown") as "[Hown Hl]".
    { eapply auth_update_alloc, prod_local_update_2,
        (alloc_singleton_local_update _ l (1%Qp,to_agree v)); last done.
      by apply lookup_to_gen_heap_None. }
    iExists l. rewrite /heapS_mapsto. iFrame "Hj Hl". iApply "Hclose". iNext.
    iExists (<[j:=fill K (Loc l)]> tp), (<[l:=v]>σ).
    rewrite to_gen_heap_insert to_tpool_insert'; last eauto. iFrame. iPureIntro.
    eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto.
  Qed.

  Lemma step_load E ρ j K l q v:
    nclose specN  E 
    spec_ctx ρ  j  fill K (Load (Loc l))  l ↦ₛ{q} v
    ={E}= j  fill K (of_val v)  l ↦ₛ{q} v.
  Proof.
    iIntros (?) "(#Hinv & Hj & Hl)".
    rewrite /spec_ctx /tpool_mapsto /heapS_mapsto.
    iInv specN as (tp σ) ">[Hown %]" "Hclose".
    iDestruct (own_valid_2 with "Hown Hj")
      as %[[?%tpool_singleton_included' _]%prod_included ?]%auth_valid_discrete_2.
    iDestruct (own_valid_2 with "Hown Hl") 
      as %[[? ?%gen_heap_singleton_included]%prod_included ?]%auth_valid_discrete_2.     iMod (own_update_2 with "Hown Hj") as "[Hown Hj]".
    { by eapply auth_update, prod_local_update_1, singleton_local_update,
        (exclusive_local_update _ (Excl (fill K (of_val v)))). }
    iFrame "Hj Hl". iApply "Hclose". iNext.
    iExists (<[j:=fill K (of_val v)]> tp), σ.
    rewrite to_tpool_insert'; last eauto. iFrame. iPureIntro.
    eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto.
  Qed.

  Lemma step_store E ρ j K l v' e v:
    to_val e = Some v  nclose specN  E 
    spec_ctx ρ  j  fill K (Store (Loc l) e)  l ↦ₛ v'
    ={E}= j  fill K Unit  l ↦ₛ v.
  Proof.
    iIntros (??) "(#Hinv & Hj & Hl)".
    rewrite /spec_ctx /tpool_mapsto /heapS_mapsto.
    iInv specN as (tp σ) ">[Hown %]" "Hclose".
    iDestruct (own_valid_2 with "Hown Hj")
      as %[[?%tpool_singleton_included' _]%prod_included _]%auth_valid_discrete_2.
    iDestruct (own_valid_2 with "Hown Hl")
      as %[[_ Hl%gen_heap_singleton_included]%prod_included _]%auth_valid_discrete_2.
    iMod (own_update_2 with "Hown Hj") as "[Hown Hj]".
    { by eapply auth_update, prod_local_update_1, singleton_local_update,
        (exclusive_local_update _ (Excl (fill K Unit))). }
    iMod (own_update_2 with "Hown Hl") as "[Hown Hl]".
    { eapply auth_update, prod_local_update_2, singleton_local_update,
        (exclusive_local_update _ (1%Qp, to_agree v)); last done.
      by rewrite /to_gen_heap lookup_fmap Hl. }
    iFrame "Hj Hl". iApply "Hclose". iNext.
    iExists (<[j:=fill K Unit]> tp), (<[l:=v]>σ).
    rewrite to_gen_heap_insert to_tpool_insert'; last eauto. iFrame. iPureIntro.
    eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto.
  Qed.

  Lemma step_cas_fail E ρ j K l q v' e1 v1 e2 v2:
    to_val e1 = Some v1  to_val e2 = Some v2  nclose specN  E  v'  v1 
    spec_ctx ρ  j  fill K (CAS (Loc l) e1 e2)  l ↦ₛ{q} v'
    ={E}= j  fill K (# false)  l ↦ₛ{q} v'.
  Proof.
    iIntros (????) "(#Hinv & Hj & Hl)".
    rewrite /spec_ctx /tpool_mapsto /heapS_mapsto.
    iInv specN as (tp σ) ">[Hown %]" "Hclose".
    iDestruct (own_valid_2 with "Hown Hj")
      as %[[?%tpool_singleton_included' _]%prod_included ?]%auth_valid_discrete_2.
    iDestruct (own_valid_2 with "Hown Hl")
      as %[[_ ?%gen_heap_singleton_included]%prod_included _]%auth_valid_discrete_2.
    iMod (own_update_2 with "Hown Hj") as "[Hown Hj]".
    { by eapply auth_update, prod_local_update_1, singleton_local_update,
        (exclusive_local_update _ (Excl (fill K (# false)))). }
    iFrame "Hj Hl". iApply "Hclose". iNext.
    iExists (<[j:=fill K (# false)]> tp), σ.
    rewrite to_tpool_insert'; last eauto. iFrame. iPureIntro.
    eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto.
  Qed.

  Lemma step_cas_suc E ρ j K l e1 v1 v1' e2 v2:
    to_val e1 = Some v1  to_val e2 = Some v2  nclose specN  E  v1 = v1' 
    spec_ctx ρ  j  fill K (CAS (Loc l) e1 e2)  l ↦ₛ v1'
    ={E}= j  fill K (# true)  l ↦ₛ v2.
  Proof.
    iIntros (????) "(#Hinv & Hj & Hl)"; subst.
    rewrite /spec_ctx /tpool_mapsto /heapS_mapsto.
    iInv specN as (tp σ) ">[Hown %]" "Hclose".
    iDestruct (own_valid_2 with "Hown Hj")
      as %[[?%tpool_singleton_included' _]%prod_included _]%auth_valid_discrete_2.
    iDestruct (own_valid_2 with "Hown Hl")
      as %[[_ Hl%gen_heap_singleton_included]%prod_included _]%auth_valid_discrete_2.
    iMod (own_update_2 with "Hown Hj") as "[Hown Hj]".
    { by eapply auth_update, prod_local_update_1, singleton_local_update,
        (exclusive_local_update _ (Excl (fill K (# true)))). }
    iMod (own_update_2 with "Hown Hl") as "[Hown Hl]".
    { eapply auth_update, prod_local_update_2, singleton_local_update,
        (exclusive_local_update _ (1%Qp, to_agree v2)); last done.
      by rewrite /to_gen_heap lookup_fmap Hl. }
    iFrame "Hj Hl". iApply "Hclose". iNext.
    iExists (<[j:=fill K (# true)]> tp), (<[l:=v2]>σ).
    rewrite to_gen_heap_insert to_tpool_insert'; last eauto. iFrame. iPureIntro.
    eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto.
  Qed.

  Lemma step_rec E ρ j K e1 e2 v :
    to_val e2 = Some v  nclose specN  E 
    spec_ctx ρ  j  fill K (App (Rec e1) e2)
    ={E}= j  fill K (e1.[Rec e1,e2/]).
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
  Proof. by intros ?; apply: do_step_pure. Qed.

  Lemma step_lam E ρ j K e1 e2 v :
    to_val e2 = Some v  nclose specN  E 
    spec_ctx ρ  j  fill K (App (Lam e1) e2)
    ={E}= j  fill K (e1.[e2/]).
  Proof. by intros ?; apply: do_step_pure. Qed.

  Lemma step_letin E ρ j K e1 e2 v :
    to_val e1 = Some v  nclose specN  E 
    spec_ctx ρ  j  fill K (LetIn e1 e2)
    ={E}= j  fill K (e2.[e1/]).
  Proof. by intros ?; apply: do_step_pure. Qed.

  Lemma step_seq E ρ j K e1 e2 v :
    to_val e1 = Some v  nclose specN  E 
    spec_ctx ρ  j  fill K (Seq e1 e2)
    ={E}= j  fill K e2.
  Proof. by intros ?; apply: do_step_pure. Qed.
Amin Timany's avatar
Amin Timany committed
352 353 354 355

  Lemma step_tlam E ρ j K e :
    nclose specN  E 
    spec_ctx ρ  j  fill K (TApp (TLam e)) ={E}= j  fill K e.
356
  Proof. by intros ?; apply: do_step_pure. Qed.
Amin Timany's avatar
Amin Timany committed
357 358 359 360

  Lemma step_Fold E ρ j K e v :
    to_val e = Some v  nclose specN  E 
    spec_ctx ρ  j  fill K (Unfold (Fold e)) ={E}= j  fill K e.
361
  Proof. by intros ?; apply: do_step_pure. Qed.
Amin Timany's avatar
Amin Timany committed
362 363 364 365

  Lemma step_fst E ρ j K e1 v1 e2 v2 :
    to_val e1 = Some v1  to_val e2 = Some v2  nclose specN  E 
    spec_ctx ρ  j  fill K (Fst (Pair e1 e2)) ={E}= j  fill K e1.
366
  Proof. by intros; apply: do_step_pure. Qed.
Amin Timany's avatar
Amin Timany committed
367 368 369 370

  Lemma step_snd E ρ j K e1 v1 e2 v2 :
    to_val e1 = Some v1  to_val e2 = Some v2  nclose specN  E 
    spec_ctx ρ  j  fill K (Snd (Pair e1 e2)) ={E}= j  fill K e2.
371
  Proof. by intros; apply: do_step_pure. Qed.
Amin Timany's avatar
Amin Timany committed
372 373 374 375 376

  Lemma step_case_inl E ρ j K e0 v0 e1 e2 :
    to_val e0 = Some v0  nclose specN  E 
    spec_ctx ρ  j  fill K (Case (InjL e0) e1 e2)
      ={E}= j  fill K (e1.[e0/]).
377
  Proof. by intros; apply: do_step_pure. Qed.
Amin Timany's avatar
Amin Timany committed
378 379 380 381 382

  Lemma step_case_inr E ρ j K e0 v0 e1 e2 :
    to_val e0 = Some v0  nclose specN  E 
    spec_ctx ρ  j  fill K (Case (InjR e0) e1 e2)
      ={E}= j  fill K (e2.[e0/]).
383
  Proof. by intros; apply: do_step_pure. Qed.
Amin Timany's avatar
Amin Timany committed
384 385 386 387

  Lemma step_if_false E ρ j K e1 e2 :
    nclose specN  E 
    spec_ctx ρ  j  fill K (If (# false) e1 e2) ={E}= j  fill K e2.
388
  Proof. by intros; apply: do_step_pure. Qed.
Amin Timany's avatar
Amin Timany committed
389 390 391 392

  Lemma step_if_true E ρ j K e1 e2 :
    nclose specN  E 
    spec_ctx ρ  j  fill K (If (# true) e1 e2) ={E}= j  fill K e1.
393
  Proof. by intros; apply: do_step_pure. Qed.
Amin Timany's avatar
Amin Timany committed
394 395 396 397 398

  Lemma step_nat_binop E ρ j K op a b :
    nclose specN  E 
    spec_ctx ρ  j  fill K (BinOp op (#n a) (#n b))
      ={E}= j  fill K (of_val (binop_eval op a b)).
399
  Proof. by intros; apply: do_step_pure. Qed.
Amin Timany's avatar
Amin Timany committed
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

  Lemma step_fork E ρ j K e :
    nclose specN  E 
    spec_ctx ρ  j  fill K (Fork e) ={E}=  j', j  fill K Unit  j'  e.
  Proof.
    iIntros (?) "[#Hspec Hj]". rewrite /spec_ctx /tpool_mapsto.
    iInv specN as (tp σ) ">[Hown %]" "Hclose".
    iDestruct (own_valid_2 with "Hown Hj")
      as %[[?%tpool_singleton_included' _]%prod_included ?]%auth_valid_discrete_2.
    assert (j < length tp) by eauto using lookup_lt_Some.
    iMod (own_update_2 with "Hown Hj") as "[Hown Hj]".
    { by eapply auth_update, prod_local_update_1,
        singleton_local_update, (exclusive_local_update _ (Excl (fill K Unit))). }
    iMod (own_update with "Hown") as "[Hown Hfork]".
    { eapply auth_update_alloc, prod_local_update_1,
        (alloc_singleton_local_update _ (length tp) (Excl e)); last done.
Robbert Krebbers's avatar
Robbert Krebbers committed
416
      rewrite lookup_insert_ne ?tpool_lookup; last lia.
Amin Timany's avatar
Amin Timany committed
417 418 419 420 421 422 423
      by rewrite lookup_ge_None_2. }
    iExists (length tp). iFrame "Hj Hfork". iApply "Hclose". iNext.
    iExists (<[j:=fill K Unit]> tp ++ [e]), σ.
    rewrite to_tpool_snoc insert_length to_tpool_insert //. iFrame. iPureIntro.
    eapply rtc_r, step_insert; eauto. econstructor; eauto.
  Qed.
End cfg.