refinement.v 17.7 KB
Newer Older
Amin Timany's avatar
Amin Timany committed
1 2
From iris.algebra Require Import auth.
From iris.program_logic Require Import adequacy ectxi_language.
Amin Timany's avatar
Amin Timany committed
3 4 5
From iris_examples.logrel.F_mu_ref_conc Require Import soundness_binary.
From iris_examples.logrel.F_mu_ref_conc.examples Require Import lock.
From iris_examples.logrel.F_mu_ref_conc.examples.stack Require Import
Amin Timany's avatar
Amin Timany committed
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  CG_stack FG_stack stack_rules.
From iris.proofmode Require Import tactics.

Definition stackN : namespace := nroot .@ "stack".

Section Stack_refinement.
  Context `{heapIG Σ, cfgSG Σ, inG Σ (authR stackUR)}.
  Notation D := (prodC valC valC -n> iProp Σ).
  Implicit Types Δ : listC D.

  Lemma FG_CG_counter_refinement :
    []  FG_stack log CG_stack : TForall (TProd (TProd
           (TArrow (TVar 0) TUnit)
           (TArrow TUnit (TSum TUnit (TVar 0))))
           (TArrow (TArrow (TVar 0) TUnit) TUnit)).
  Proof.
    (* executing the preambles *)
    iIntros (Δ [|??] ρ ?) "#[Hspec HΓ]"; iIntros (j K) "Hj"; last first.
    { iDestruct (interp_env_length with "HΓ") as %[=]. } 
    iClear "HΓ". cbn -[FG_stack CG_stack].
    rewrite ?empty_env_subst /CG_stack /FG_stack.
    iApply wp_value; eauto.
    iExists (TLamV _); iFrame "Hj".
    clear j K. iAlways. iIntros (τi) "%". iIntros (j K) "Hj /=".
    iMod (step_tlam _ _ j K with "[Hj]") as "Hj"; eauto.
    iApply wp_pure_step_later; auto. iNext.
    iMod (steps_newlock _ _ j (AppRCtx (RecV _) :: K) with "[Hj]")
      as (l) "[Hj Hl]"; eauto.
    iMod (step_rec _ _ j K with "[$Hj]") as "Hj"; eauto.
    simpl.
    rewrite CG_locked_push_subst CG_locked_pop_subst
            CG_iter_subst CG_snap_subst. simpl. asimpl.
    iMod (step_alloc  _ _ j (AppRCtx (RecV _) :: K) with "[Hj]")
      as (stk') "[Hj Hstk']"; [| |simpl; by iFrame|]; auto.
    iMod (step_rec _ _ j K with "[$Hj]") as "Hj"; eauto.
    simpl.
    rewrite CG_locked_push_subst CG_locked_pop_subst
            CG_iter_subst CG_snap_subst. simpl. asimpl.
    iApply (wp_bind (fill [FoldCtx; AllocCtx; AppRCtx (RecV _)]));
      iApply wp_wand_l; iSplitR; [iIntros (v) "Hv"; iExact "Hv"|].
    iApply wp_alloc; first done. iNext; iIntros (istk) "Histk".
    iApply (wp_bind (fill [AppRCtx (RecV _)]));
      iApply wp_wand_l; iSplitR; [iIntros (v) "Hv"; iExact "Hv"|].
    iApply wp_alloc; first done. iNext; iIntros (stk) "Hstk".
    simpl. iApply wp_pure_step_later; trivial. iNext. simpl.
    rewrite FG_push_subst FG_pop_subst FG_iter_subst. simpl. asimpl.
    (* establishing the invariant *)
    iMod (own_alloc ( ( : stackUR))) as (γ) "Hemp"; first done.
    set (istkG := StackG _ _ γ).
    change γ with (@stack_name _ istkG).
    change H1 with (@stack_inG _ istkG).
    clearbody istkG. clear γ H1.
    iAssert (@stack_owns _ istkG _ ) with "[Hemp]" as "Hoe".
    { rewrite /stack_owns big_sepM_empty fmap_empty. iFrame "Hemp"; trivial. }
    iMod (stack_owns_alloc with "[$Hoe $Histk]") as "[Hoe Hls]".
    iAssert (StackLink τi (LocV istk, FoldV (InjLV UnitV))) with "[Hls]" as "HLK".
    { rewrite StackLink_unfold.
      iExists _, _. iSplitR; simpl; trivial.
      iFrame "Hls". iLeft. iSplit; trivial. }
    iAssert (( istk v h, (stack_owns h)
                          stk' ↦ₛ v
                          stk ↦ᵢ (FoldV (LocV istk))
                          StackLink τi (LocV istk, v)
                          l ↦ₛ (#v false)
             )%I) with "[Hoe Hstk Hstk' HLK Hl]" as "Hinv".
    { iExists _, _, _. by iFrame "Hoe Hstk' Hstk Hl HLK". }
    iMod (inv_alloc stackN with "[Hinv]") as "#Hinv"; [iNext; iExact "Hinv"|].
    clear istk.
    Opaque stack_owns.
    (* splitting *)
    iApply wp_value; simpl; trivial.
    iExists (PairV (PairV (CG_locked_pushV _ _) (CG_locked_popV _ _)) (RecV _)).
    simpl. rewrite CG_locked_push_of_val CG_locked_pop_of_val. iFrame "Hj".
    iExists (_, _), (_, _); iSplit; eauto.
    iSplit.
    (* refinement of push and pop *)
    - iExists (_, _), (_, _); iSplit; eauto. iSplit.
      + (* refinement of push *)
        iAlways. clear j K. iIntros ( [v1 v2] ) "#Hrel". iIntros (j K) "Hj /=".
        rewrite -(FG_push_folding (Loc stk)).
        iLöb as "Hlat".
        rewrite {2}(FG_push_folding (Loc stk)).
        iApply wp_pure_step_later; auto using to_of_val.
        iNext.
        rewrite -(FG_push_folding (Loc stk)).
        asimpl.
        iApply (wp_bind (fill [AppRCtx (RecV _)]));
          iApply wp_wand_l; iSplitR; [iIntros (v) "Hv"; iExact "Hv"|].
        iInv stackN as (istk v h) "[Hoe [Hstk' [Hstk [HLK Hl]]]]" "Hclose".
        iApply (wp_load with "Hstk"). iNext. iIntros "Hstk".
        iMod ("Hclose" with "[Hoe Hstk' HLK Hl Hstk]") as "_".
        { iNext. iExists _, _, _; by iFrame "Hoe Hstk' HLK Hl Hstk". }
        clear v h.
        iApply wp_pure_step_later; auto using to_of_val.
        iModIntro. iNext. asimpl.
        iApply (wp_bind (fill [FoldCtx;
                               CasRCtx (LocV _) (FoldV (LocV _)); IfCtx _ _]));
          iApply wp_wand_l; iSplitR; [iIntros (w) "Hw"; iExact "Hw"|].
        iApply wp_alloc; simpl; trivial.
        iNext. iIntros (ltmp) "Hltmp".
        iApply (wp_bind (fill [IfCtx _ _]));
          iApply wp_wand_l; iSplitR; [iIntros (w) "H"; iExact "H"|].
        iInv stackN as (istk2 v h) "[Hoe [Hstk' [Hstk [HLK Hl]]]]" "Hclose".
        (* deciding whether CAS will succeed or fail *)
        destruct (decide (istk = istk2)) as [|Hneq]; subst.
        * (* CAS succeeds *)
          (* In this case, the specification pushes *)
          iMod "Hstk'". iMod "Hl".
          iMod (steps_CG_locked_push _ _ j K with "[Hj Hl Hstk']")
            as "[Hj [Hstk' Hl]]"; first solve_ndisj.
          { rewrite CG_locked_push_of_val. by iFrame "Hspec Hstk' Hj". }
          iApply (wp_cas_suc with "Hstk"); auto.
          iNext. iIntros "Hstk".
          iMod (stack_owns_alloc with "[$Hoe $Hltmp]") as "[Hoe Hpt]".
          iMod ("Hclose" with "[-Hj]") as "_".
          { iNext. iExists ltmp, _, _.
            iFrame "Hoe Hstk' Hstk Hl".
            do 2 rewrite StackLink_unfold.
            rewrite -StackLink_unfold.
            iExists _, _. iSplit; trivial.
            iFrame "Hpt". eauto 10. }
          iModIntro.
          iApply wp_pure_step_later; auto. iNext; iApply wp_value; trivial.
          iExists UnitV; eauto.
        * iApply (wp_cas_fail with "Hstk"); auto. congruence.
          iNext. iIntros "Hstk". iMod ("Hclose" with "[-Hj]").
          { iNext. iExists _, _, _. by iFrame "Hoe Hstk' Hstk Hl". }
          iApply wp_pure_step_later; auto. iModIntro. iNext. by iApply "Hlat".
      + (* refinement of pop *)
        iAlways. clear j K. iIntros ( [v1 v2] ) "[% %]".
        iIntros (j K) "Hj /="; simplify_eq/=.
        rewrite -(FG_pop_folding (Loc stk)).
        iLöb as "Hlat".
        rewrite {2}(FG_pop_folding (Loc stk)).
        iApply wp_pure_step_later; auto. iNext.
        rewrite -(FG_pop_folding (Loc stk)).
        asimpl.
        iApply (wp_bind (fill [UnfoldCtx; AppRCtx (RecV _)]));
          iApply wp_wand_l; iSplitR; [iIntros (v) "Hv"; iExact "Hv"|].
        iInv stackN as (istk v h) "[Hoe [Hstk' [Hstk [#HLK Hl]]]]" "Hclose".
        iApply (wp_load with "Hstk"). iNext. iIntros "Hstk".
        iPoseProof "HLK" as "HLK'".
        (* Checking whether the stack is empty *)
        rewrite {2}StackLink_unfold.
        iDestruct "HLK'" as (istk2 w) "[% [Hmpt [[% %]|HLK']]]"; simplify_eq/=.
        * (* The stack is empty *)
          iMod (steps_CG_locked_pop_fail with "[$Hspec $Hstk' $Hl $Hj]")
             as "[Hj [Hstk' Hl]]"; first solve_ndisj.
          iMod ("Hclose" with "[-Hj Hmpt]") as "_".
          { iNext. iExists _, _, _. by iFrame "Hoe Hstk' Hstk Hl". }
          iApply (wp_bind (fill [AppRCtx (RecV _)]));
            iApply wp_wand_l; iSplitR; [iModIntro; iIntros (w) "Hw"; iExact "Hw"|].
          iApply wp_pure_step_later; simpl; auto using to_of_val.
          iModIntro. iNext. iApply wp_value.
          iApply wp_pure_step_later; auto. iNext. asimpl.
          clear h.
          iApply (wp_bind (fill [AppRCtx (RecV _)]));
            iApply wp_wand_l; iSplitR; [iIntros (w) "Hw"; iExact "Hw"|].
          iClear "HLK".
          iInv stackN as (istk3 w h) "[Hoe [Hstk' [Hstk [HLK Hl]]]]" "Hclose".
          iDestruct (stack_owns_later_open_close with "Hoe Hmpt") as "[Histk HLoe]".
          iApply (wp_load with "Histk").
          iNext. iIntros "Histk". iMod ("Hclose" with "[-Hj]") as "_".
          { iNext. iExists _, _, _. iFrame "Hstk' Hstk HLK Hl".
            by iApply "HLoe". }
          iApply wp_pure_step_later; simpl; trivial.
          iModIntro. iNext. asimpl.
          iApply wp_pure_step_later; trivial.
          iNext. iApply wp_value; simpl; trivial. iExists (InjLV UnitV).
          iSplit; trivial. iLeft. iExists (_, _); repeat iSplit; simpl; trivial.
        * (* The stack is not empty *)
          iMod ("Hclose" with "[-Hj Hmpt HLK']") as "_".
          { iNext. iExists _, _, _. by iFrame "Hstk' Hstk HLK Hl". }
          iApply (wp_bind (fill [AppRCtx (RecV _)]));
            iApply wp_wand_l; iSplitR; [iModIntro; iIntros (w') "Hw"; iExact "Hw"|].
          iApply wp_pure_step_later; simpl; auto.
          iModIntro. iNext. iApply wp_value. iApply wp_pure_step_later; auto.
          iNext. asimpl.
          clear h.
          iApply (wp_bind (fill [AppRCtx (RecV _)]));
            iApply wp_wand_l; iSplitR; [iIntros (w') "Hw"; iExact "Hw"|].
          iClear "HLK".
          iInv stackN as (istk3 w' h) "[Hoe [Hstk' [Hstk [HLK Hl]]]]" "Hclose".
          iDestruct (stack_owns_later_open_close with "Hoe Hmpt") as "[Histk HLoe]".
          iApply (wp_load with "Histk"). iNext; iIntros "Histk".
          iDestruct ("HLoe" with "Histk") as "Hh".
          iMod ("Hclose" with "[-Hj Hmpt HLK']") as "_".
          { iNext. iExists _, _, _. by iFrame "Hstk' Hstk HLK Hl". }
          iApply wp_pure_step_later; auto.
          iModIntro. iNext. asimpl.
          iDestruct "HLK'" as (y1 z1 y2 z2) "[% HLK']". subst. simpl.
          iApply wp_pure_step_later; [simpl; by rewrite ?to_of_val |].
          iNext.
          iApply (wp_bind (fill [CasRCtx (LocV _) (FoldV (LocV _)); IfCtx _ _]));
            iApply wp_wand_l; iSplitR; [iIntros (w) "Hw"; iExact "Hw"|].
          asimpl. iApply wp_pure_step_later; auto.
          simpl. iNext. iApply wp_value.
          iApply (wp_bind (fill [IfCtx _ _]));
            iApply wp_wand_l; iSplitR; [iIntros (w) "Hw"; iExact "Hw"|].
          clear istk3 h. asimpl.
          iInv stackN as (istk3 w h) "[Hoe [Hstk' [Hstk [#HLK Hl]]]]" "Hclose".
          (* deciding whether CAS will succeed or fail *)
          destruct (decide (istk2 = istk3)) as [|Hneq]; subst.
          -- (* CAS succeeds *)
            (* In this case, the specification pushes *)
            iApply (wp_cas_suc with "Hstk"); simpl; auto.
            iNext. iIntros "Hstk {HLK'}". iPoseProof "HLK" as "HLK'".
            rewrite {2}StackLink_unfold.
            iDestruct "HLK'" as (istk4 w2) "[% [Hmpt' HLK']]"; simplify_eq/=.
            iDestruct (stack_mapstos_agree with "[Hmpt Hmpt']") as %?;
              first (iSplit; [iExact "Hmpt"| iExact "Hmpt'"]).
            iDestruct "HLK'" as "[[% %]|HLK']"; simplify_eq/=.
            iDestruct "HLK'" as (yn1 yn2 zn1 zn2)
                                   "[% [% [#Hrel HLK'']]]"; simplify_eq/=.
             (* Now we have proven that specification can also pop. *)
             rewrite CG_locked_pop_of_val.
             iMod (steps_CG_locked_pop_suc with "[$Hspec $Hstk' $Hl $Hj]")
                as "[Hj [Hstk' Hl]]"; first solve_ndisj.
             iMod ("Hclose" with "[-Hj]") as "_".
             { iNext. iIntros "{Hmpt Hmpt' HLK}". rewrite StackLink_unfold.
               iDestruct "HLK''" as (istk5 w2) "[% [Hmpt HLK]]"; simplify_eq/=.
               iExists istk5, _, _. iFrame "Hoe Hstk' Hstk Hl".
               rewrite StackLink_unfold.
               iExists _, _; iSplitR; trivial.
               by iFrame "HLK". }
             iApply wp_pure_step_later; auto. iModIntro. iNext.
             iApply (wp_bind (fill [InjRCtx])); iApply wp_wand_l;
               iSplitR; [iIntros (w) "Hw"; iExact "Hw"|].
             iApply wp_pure_step_later; auto. iApply wp_value.
             iNext. iApply wp_value; simpl.
             iExists (InjRV _); iFrame "Hj".
             iRight. iExists (_, _). iSplit; trivial.
          -- (* CAS will fail *)
            iApply (wp_cas_fail with "Hstk"); [rewrite /= ?to_of_val //; congruence..|].
            iNext. iIntros "Hstk". iMod ("Hclose" with "[-Hj]") as "_".
            { iNext. iExists _, _, _. by iFrame "Hoe Hstk' Hstk HLK Hl". }
            iApply wp_pure_step_later; auto. iModIntro. iNext. by iApply "Hlat".
    - (* refinement of iter *)
      iAlways. clear j K. iIntros ( [f1 f2] ) "/= #Hfs". iIntros (j K) "Hj".
      iApply wp_pure_step_later; auto using to_of_val. iNext.
      iMod (step_rec with "[$Hspec $Hj]") as "Hj"; [by rewrite to_of_val|solve_ndisj|].
      asimpl. rewrite FG_iter_subst CG_snap_subst CG_iter_subst. asimpl.
      replace (FG_iter (of_val f1)) with (of_val (FG_iterV (of_val f1)))
        by (by rewrite FG_iter_of_val).
      replace (CG_iter (of_val f2)) with (of_val (CG_iterV (of_val f2)))
        by (by rewrite CG_iter_of_val).
      iApply (wp_bind (fill [AppRCtx _])); iApply wp_wand_l;
        iSplitR; [iIntros (w) "Hw"; iExact "Hw"|].
      iInv stackN as (istk3 w h) "[Hoe [>Hstk' [>Hstk [#HLK >Hl]]]]" "Hclose".
      iMod (steps_CG_snap _ _ _ (AppRCtx _ :: K)
            with "[Hstk' Hj Hl]") as "[Hj [Hstk' Hl]]"; first solve_ndisj.
      { rewrite ?fill_app. simpl. by iFrame "Hspec Hstk' Hl Hj". }
      iApply (wp_load with "[$Hstk]"). iNext. iIntros "Hstk".
      iMod ("Hclose" with "[-Hj]") as "_".
      { iNext. iExists _, _, _; by iFrame "Hoe Hstk' Hstk HLK Hl". }
      clear h. iModIntro.
      rewrite ?fill_app /= -FG_iter_folding.
      iLöb as "Hlat" forall (istk3 w) "HLK".
      rewrite {2}FG_iter_folding.
      iApply wp_pure_step_later; simpl; trivial.
      rewrite -FG_iter_folding. asimpl. rewrite FG_iter_subst.
      iNext.
      iApply (wp_bind (fill [LoadCtx; CaseCtx _ _])); iApply wp_wand_l;
        iSplitR; [iIntros (v) "Hw"; iExact "Hw"|].
      iApply wp_pure_step_later; trivial. iApply wp_value. iNext.
      iApply (wp_bind (fill [CaseCtx _ _])); iApply wp_wand_l;
        iSplitR; [iIntros (v) "Hw"; iExact "Hw"|].
      rewrite StackLink_unfold.
      iDestruct "HLK" as (istk4 v) "[% [Hmpt HLK]]"; simplify_eq/=.
      iInv stackN as (istk5 v' h) "[Hoe [Hstk' [Hstk [HLK' Hl]]]]" "Hclose".
      iDestruct (stack_owns_later_open_close with "Hoe Hmpt") as "[Histk HLoe]".
      iApply (wp_load with "[$Histk]"). iNext. iIntros "Histk".
      iDestruct ("HLoe" with "Histk") as "Hh".
      iDestruct "HLK" as "[[% %]|HLK'']"; simplify_eq/=.
      * rewrite CG_iter_of_val.
        iMod (steps_CG_iter_end with "[$Hspec $Hj]") as "Hj"; first solve_ndisj.
        iMod ("Hclose" with "[-Hj]").
        { iNext. iExists _, _, _. by iFrame "Hh Hstk' Hstk Hl". }
        iApply wp_pure_step_later; trivial.
        iModIntro. iNext. iApply wp_value; trivial. iExists UnitV; eauto.
      * iDestruct "HLK''" as (yn1 yn2 zn1 zn2)
                              "[% [% [#Hrel HLK'']]]"; simplify_eq/=.
        rewrite CG_iter_of_val.
        iMod (steps_CG_iter with "[$Hspec $Hj]") as "Hj"; first solve_ndisj.
        iMod ("Hclose" with "[-Hj HLK'']") as "_".
        { iNext. iExists _, _, _. by iFrame "Hh Hstk' Hstk Hl". }
        simpl.
        iApply wp_pure_step_later; simpl; rewrite ?to_of_val; trivial.
        rewrite FG_iter_subst CG_iter_subst. asimpl.
        iModIntro. iNext.
        iApply (wp_bind (fill [AppRCtx _; AppRCtx (RecV _)]));
          iApply wp_wand_l; iSplitR; [iIntros (w') "Hw"; iExact "Hw"|].
        iApply wp_pure_step_later; simpl; rewrite ?to_of_val; trivial. iNext.
        iApply wp_value.
        iApply (wp_bind (fill [AppRCtx (RecV _)]));
          iApply wp_wand_l; iSplitR; [iIntros (w') "Hw"; iExact "Hw"|].
        rewrite StackLink_unfold.
        iDestruct "HLK''" as (istk6 w') "[% HLK]"; simplify_eq/=.
        iSpecialize ("Hfs" $! (yn1, zn1) with "Hrel").
        iSpecialize ("Hfs" $! _ (AppRCtx (RecV _) :: K)).
        iApply wp_wand_l; iSplitR "Hj"; [|iApply "Hfs"; by iFrame "#"].
        iIntros (u) "/="; iDestruct 1 as (z) "[Hj [% %]]".
        simpl. subst. asimpl.
        iMod (step_rec with "[$Hspec $Hj]") as "Hj"; [done..|].
        asimpl. rewrite CG_iter_subst. asimpl.
        replace (CG_iter (of_val f2)) with (of_val (CG_iterV (of_val f2)))
          by (by rewrite CG_iter_of_val).
        iMod (step_snd _ _ _ (AppRCtx _ :: K) with "[$Hspec Hj]") as "Hj";
          [| | |simpl; by iFrame "Hj"|]; rewrite ?to_of_val; auto.
        iApply wp_pure_step_later; trivial.
        iNext. simpl. rewrite FG_iter_subst. asimpl.
        replace (FG_iter (of_val f1)) with (of_val (FG_iterV (of_val f1)))
          by (by rewrite FG_iter_of_val).
        iApply (wp_bind (fill [AppRCtx _]));
          iApply wp_wand_l; iSplitR; [iIntros (w'') "Hw"; iExact "Hw"|].
        iApply wp_pure_step_later; auto using to_of_val.
        simpl. iNext. rewrite -FG_iter_folding. iApply wp_value.
        iApply ("Hlat" $! istk6 zn2 with "[Hj] [HLK]"); trivial.
        rewrite StackLink_unfold; iAlways; simpl.
        iDestruct "HLK" as "[Histk6 [HLK|HLK]]";
          iExists istk6, w'; iSplit; auto; iFrame "#".
        iRight. iDestruct "HLK" as (? ? ? ?) "(?&?&?&?)".
        iExists _, _, _, _; iFrame "#".
  Qed.
End Stack_refinement.

Theorem stack_ctx_refinement :
  []  FG_stack ctx CG_stack : TForall (TProd (TProd
        (TArrow (TVar 0) TUnit)
        (TArrow TUnit (TSum TUnit (TVar 0))))
        (TArrow (TArrow (TVar 0) TUnit) TUnit)).
Proof.
  set (Σ := #[invΣ; gen_heapΣ loc val; GFunctor (authR cfgUR); GFunctor (authR stackUR)]).
  set (HG := soundness_unary.HeapPreIG Σ _ _).
  eapply (binary_soundness Σ); eauto using FG_stack_closed, CG_stack_closed.
  intros; apply FG_CG_counter_refinement.
Qed.