concurrent_runners.v 18.1 KB
Newer Older
Dan Frumin's avatar
Dan Frumin committed
1 2 3 4 5 6
(** Concurrent Runner example from
    "Modular Reasoning about Separation of Concurrent Data Structures"
    <http://www.kasv.dk/articles/hocap-ext.pdf>
*)
From iris.heap_lang Require Import proofmode notation.
From iris.algebra Require Import cmra agree frac csum excl.
7
From iris.heap_lang.lib Require Import assert.
Dan Frumin's avatar
Dan Frumin committed
8
From iris.base_logic.lib Require Import fractional.
9
From iris_examples.hocap Require Export abstract_bag shared_bag.
Dan Frumin's avatar
Dan Frumin committed
10 11
Set Default Proof Using "Type".

12 13 14 15 16
(** RA describing the evolution of a task *)
(** INIT = task has been initiated
    SET_RES v = the result of the task has been computed and it is v
    FIN v = the task has been completed with the result v *)
(* We use this RA to verify the Task.run() method *)
Dan Frumin's avatar
Dan Frumin committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
Definition saR := csumR fracR (csumR (prodR fracR (agreeR valC)) (agreeR valC)).
Class saG Σ := { sa_inG :> inG Σ saR }.
Definition INIT `{saG Σ} γ (q: Qp) := own γ (Cinl q%Qp).
Definition SET_RES `{saG Σ} γ (q: Qp) (v: val) := own γ (Cinr (Cinl (q%Qp, to_agree v))).
Definition FIN `{saG Σ} γ (v: val) := own γ (Cinr (Cinr (to_agree v))).
Global Instance INIT_fractional `{saG Σ} γ : Fractional (INIT γ)%I.
Proof.
  intros p q. rewrite /INIT.
  rewrite -own_op. f_equiv.
Qed.
Global Instance INIT_as_fractional `{saG Σ} γ q:
  AsFractional (INIT γ q) (INIT γ)%I q.
Proof.
  split; [done | apply _].
Qed.
Global Instance SET_RES_fractional `{saG Σ} γ v : Fractional (fun q => SET_RES γ q v)%I.
Proof.
  intros p q. rewrite /SET_RES.
  rewrite -own_op Cinr_op Cinl_op pair_op. repeat f_equiv.
  intros n. split; intros a Ha; exists a; set_solver.
Qed.
Global Instance SET_RES_as_fractional `{saG Σ} γ q v:
  AsFractional (SET_RES γ q v) (fun q => SET_RES γ q v)%I q.
Proof.
  split; [done | apply _].
Qed.

Lemma new_INIT `{saG Σ} : (|==>  γ, INIT γ 1%Qp)%I.
Proof. by apply own_alloc. Qed.
Lemma INIT_not_SET_RES `{saG Σ} γ q q' v :
  (INIT γ q - SET_RES γ q' v - False)%I.
Proof.
  iIntros "Hs Hp".
  iDestruct (own_valid_2 with "Hs Hp") as %[].
Qed.
Lemma INIT_not_FIN `{saG Σ} γ q v :
  (INIT γ q - FIN γ v - False)%I.
Proof.
  iIntros "Hs Hp".
  iDestruct (own_valid_2 with "Hs Hp") as %[].
Qed.
Lemma SET_RES_not_FIN `{saG Σ} γ q v v' :
  (SET_RES γ q v - FIN γ v' - False)%I.
Proof.
  iIntros "Hs Hp".
  iDestruct (own_valid_2 with "Hs Hp") as %[].
Qed.
Lemma SET_RES_agree `{saG Σ} (γ: gname) (q q': Qp) (v w: val) :
  SET_RES γ q v - SET_RES γ q' w - v = w.
Proof.
  iIntros "Hs1 Hs2".
  iDestruct (own_valid_2 with "Hs1 Hs2") as %Hfoo.
  iPureIntro. rewrite Cinr_op Cinl_op pair_op in Hfoo.
  by destruct Hfoo as [_ ?%agree_op_invL'].
Qed.
Lemma FIN_agree `{saG Σ} (γ: gname) (v w: val) :
  FIN γ v - FIN γ w - v = w.
Proof.
  iIntros "Hs1 Hs2".
  iDestruct (own_valid_2 with "Hs1 Hs2") as %Hfoo.
  iPureIntro. rewrite Cinr_op Cinr_op in Hfoo.
  by apply agree_op_invL'.
Qed.
Lemma INIT_SET_RES `{saG Σ} (v: val) γ :
  INIT γ 1%Qp == SET_RES γ 1%Qp v.
Proof.
  apply own_update.
  by apply cmra_update_exclusive.
Qed.
Lemma SET_RES_FIN `{saG Σ} (v w: val) γ :
  SET_RES γ 1%Qp v == FIN γ w.
Proof.
  apply own_update.
  by apply cmra_update_exclusive.
Qed.

93 94
(** We are going to need the oneshot RA to verify the
    Task.Join() method *)
Dan Frumin's avatar
Dan Frumin committed
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
Definition oneshotR := csumR fracR (agreeR valC).
Class oneshotG Σ := { oneshot_inG :> inG Σ oneshotR }.
Definition oneshotΣ : gFunctors := #[GFunctor oneshotR].
Instance subG_oneshotΣ {Σ} : subG oneshotΣ Σ  oneshotG Σ.
Proof. solve_inG. Qed.

Definition pending `{oneshotG Σ} γ q := own γ (Cinl q%Qp).
Definition shot `{oneshotG Σ} γ (v: val) := own γ (Cinr (to_agree v)).
Lemma new_pending `{oneshotG Σ} : (|==>  γ, pending γ 1%Qp)%I.
Proof. by apply own_alloc. Qed.
Lemma shoot `{oneshotG Σ} (v: val) γ : pending γ 1%Qp == shot γ v.
Proof.
  apply own_update.
  by apply cmra_update_exclusive.
Qed.
Lemma shot_not_pending `{oneshotG Σ} γ v q :
  shot γ v - pending γ q - False.
Proof.
  iIntros "Hs Hp".
  iPoseProof (own_valid_2 with "Hs Hp") as "H".
  iDestruct "H" as %[].
Qed.
Lemma shot_agree `{oneshotG Σ} γ (v w: val) :
  shot γ v - shot γ w - v = w.
Proof.
  iIntros "Hs1 Hs2".
  iDestruct (own_valid_2 with "Hs1 Hs2") as %Hfoo.
  iPureIntro. by apply agree_op_invL'.
Qed.
Global Instance pending_fractional `{oneshotG Σ} γ : Fractional (pending γ)%I.
Proof.
  intros p q. rewrite /pending.
  rewrite -own_op. f_equiv.
Qed.
Global Instance pending_as_fractional `{oneshotG Σ} γ q:
  AsFractional (pending γ q) (pending γ)%I q.
Proof.
  split; [done | apply _].
Qed.

Section contents.
  Context `{heapG Σ, !oneshotG Σ, !saG Σ}.
  Variable b : bag Σ.
  Variable N : namespace.

  (* new Task : Runner<A,B> -> A -> Task<A,B> *)
  Definition newTask : val := λ: "r" "a", ("r", "a", ref #0, ref NONEV).
  (* task_runner == Fst Fst Fst *)
  (* task_arg    == Snd Fst Fst *)
  (* task_state  == Snd Fst *)
  (* task_res    == Snd *)
  (* Task.Run : Task<A,B> -> () *)
  Definition task_Run : val := λ: "t",
    let: "runner" := Fst (Fst (Fst "t")) in
    let: "arg"    := Snd (Fst (Fst "t")) in
    let: "state"  := Snd (Fst "t") in
    let: "res"    := Snd "t" in
    let: "tmp" := (Fst "runner") "runner" "arg"
                  (* runner.body(runner,arg)*) in
    "res" <- (SOME "tmp");;
    "state" <- #1.

  (* Task.Join : Task<A,B> -> B *)
  Definition task_Join : val := rec: "join" "t" :=
    let: "runner" := Fst (Fst (Fst "t")) in
    let: "arg"    := Snd (Fst (Fst "t")) in
    let: "state"  := Snd (Fst "t") in
    let: "res"    := Snd "t" in
163 164 165 166 167 168
    if: (!"state" = #1)
    then match: !"res" with
           NONE => assert #false
         | SOME "v" => "v"
         end
    else "join" "t".
Dan Frumin's avatar
Dan Frumin committed
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

  (* runner_body == Fst *)
  (* runner_bag  == Snd *)

  (* Runner.Fork : Runner<A,B> -> A -> Task<A,B> *)
  Definition runner_Fork : val := λ: "r" "a",
    let: "bag" := Snd "r" in
    let: "t" := newTask "r" "a" in
    pushBag b "bag" "t";;
    "t".

  (* Runner.runTask : Runner<A,B> -> () *)
  Definition runner_runTask : val := λ: "r",
    let: "bag" := Snd "r" in
    match: popBag b "bag" with
      NONE => #()
    | SOME "t" => task_Run "t"
    end.

  (* Runner.runTasks : Runner<A,B> -> () *)
  Definition runner_runTasks : val := rec: "runTasks" "r" :=
    runner_runTask "r";; "runTasks" "r".

  (* newRunner : (Runner<A,B> -> A -> B) -> nat -> Runner<A,B> *)
  Definition newRunner : val := λ: "body" "n",
    let: "bag" := newBag b #() in
    let: "r" := ("body", "bag") in
    let: "loop" :=
       (rec: "loop" "i" :=
          if: ("i" < "n")
          then Fork (runner_runTasks "r");; "loop" ("i"+#1)
          else "r"
       ) in
    "loop" #0.

  Definition task_inv (γ γ': gname) (state res: loc) (Q: val  iProp Σ) : iProp Σ :=
    ((state  #0  res  NONEV  pending γ (1/2)%Qp  INIT γ' (1/2)%Qp)
    ( v, state  #0  res  SOMEV v  pending γ (1/2)%Qp  SET_RES γ' (1/2)%Qp v)
    ( v, state  #1  res  SOMEV v  FIN γ' v  (Q v  pending γ (1/2)%Qp  shot γ v)))%I.
208
  Definition isTask (r: val) (γ γ': gname) (t: val) (P: val  iProp Σ) (Q: val  val  iProp Σ) : iProp Σ :=
Dan Frumin's avatar
Dan Frumin committed
209 210 211
    ( (arg : val) (state res : loc),
     t = (r, arg, #state, #res)%V
      P arg  INIT γ' (1/2)%Qp
212 213 214
      inv (N.@"task") (task_inv γ γ' state res (Q arg)))%I.
  Definition task (γ γ': gname) (t arg: val) (P: val  iProp Σ) (Q: val  val  iProp Σ) : iProp Σ :=
    ( (r: val) (state res : loc),
Dan Frumin's avatar
Dan Frumin committed
215 216
     t = (r, arg, #state, #res)%V
      pending γ (1/2)%Qp
217
      inv (N.@"task") (task_inv γ γ' state res (Q arg)))%I.
Dan Frumin's avatar
Dan Frumin committed
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

  Ltac auto_equiv :=
    (* Deal with "pointwise_relation" *)
    repeat lazymatch goal with
           | |- pointwise_relation _ _ _ _ => intros ?
           end;
    (* Normalize away equalities. *)
    repeat match goal with
           | H : _ {_} _ |-  _ => apply (discrete_iff _ _) in H
           | _ => progress simplify_eq
           end;
    (* repeatedly apply congruence lemmas and use the equalities in the hypotheses. *)
    try (f_equiv; fast_done || auto_equiv).

  Ltac solve_proper ::= solve_proper_core ltac:(fun _ => simpl; auto_equiv).

234
  Program Definition isRunner1 (γ : name Σ b) (P: val  iProp Σ) (Q: val  val  iProp Σ) :
Dan Frumin's avatar
Dan Frumin committed
235 236 237
    (valC -n> iProp Σ) -n> (valC -n> iProp Σ) := λne R r,
    ( (body bag : val), r = (body, bag)%V
      bagS b (N.@"bag") (λ x y,  γ γ', isTask (body,x) γ γ' y P Q) γ bag
238
        r a: val,  (R r  P a - WP body r a {{ v, Q a v }}))%I.
Dan Frumin's avatar
Dan Frumin committed
239 240 241 242 243 244
  Solve Obligations with solve_proper.

  Global Instance isRunner1_contractive (γ : name Σ b) P Q :
    Contractive (isRunner1 γ P Q).
  Proof. unfold isRunner1. solve_contractive. Qed.

245 246
  Definition isRunner (γ: name Σ b) (P: val  iProp Σ) (Q: val  val  iProp Σ) :
    valC -n> iProp Σ :=
Dan Frumin's avatar
Dan Frumin committed
247 248 249 250 251 252
    (fixpoint (isRunner1 γ P Q))%I.

  Lemma isRunner_unfold γ r P Q :
    isRunner γ P Q r 
      ( (body bag : val), r = (body, bag)%V
        bagS b (N.@"bag") (λ x y,  γ γ', isTask (body,x) γ γ' y P Q) γ bag
253
          r a: val,  (isRunner γ P Q r  P a - WP body r a {{ v, Q a v }}))%I.
Dan Frumin's avatar
Dan Frumin committed
254 255 256 257 258 259
  Proof. rewrite /isRunner. by rewrite {1}fixpoint_unfold. Qed.

  Global Instance isRunner_persistent γ r P Q :
    Persistent (isRunner γ P Q r).
  Proof. rewrite /isRunner fixpoint_unfold. apply _. Qed.

260
  Lemma newTask_spec γb (r a : val) P (Q : val  val  iProp Σ) :
Dan Frumin's avatar
Dan Frumin committed
261 262
    {{{ isRunner γb P Q r  P a }}}
      newTask r a
263
    {{{ γ γ' t, RET t; isTask r γ γ' t P Q  task γ γ' t a P Q }}}.
Dan Frumin's avatar
Dan Frumin committed
264 265 266 267 268 269 270
  Proof.
    iIntros (Φ) "[#Hrunner HP] HΦ".
    unfold newTask. do 2 wp_rec. iApply wp_fupd.
    wp_alloc status as "Hstatus".
    wp_alloc res as "Hres".
    iMod (new_pending) as (γ) "[Htoken Htask]".
    iMod (new_INIT) as (γ') "[Hinit Hinit']".
271
    iMod (inv_alloc (N.@"task") _ (task_inv γ γ' status res (Q a))%I with "[-HP HΦ Htask Hinit]") as "#Hinv".
Dan Frumin's avatar
Dan Frumin committed
272 273
    { iNext. iLeft. iFrame. }
    iModIntro. iApply "HΦ".
274
    iFrame. iSplitL; iExists _,_,_; iFrame "Hinv"; eauto.
Dan Frumin's avatar
Dan Frumin committed
275 276
  Qed.

277 278 279 280 281
  Lemma task_Join_spec γb γ γ' (te : expr) (r t a : val) P Q
    `{!IntoVal te t}:
    {{{ isRunner γb P Q r  task γ γ' t a P Q }}}
       task_Join te
    {{{ res, RET res; Q a res }}}.
Dan Frumin's avatar
Dan Frumin committed
282 283
  Proof.
    iIntros (Φ) "[#Hrunner Htask] HΦ".
284
    rewrite -(of_to_val te t into_val).
Dan Frumin's avatar
Dan Frumin committed
285 286
    iLöb as "IH".
    rewrite {2}/task_Join.
287
    iDestruct "Htask" as (r' state res) "(% & Htoken & #Htask)". simplify_eq.
Dan Frumin's avatar
Dan Frumin committed
288
    repeat wp_pure _.
289
    wp_bind (! #state)%E. iInv (N.@"task") as "Hstatus" "Hcl".
Dan Frumin's avatar
Dan Frumin committed
290
    rewrite {2}/task_inv.
291
    iDestruct "Hstatus" as "[>(Hstate & Hres)|[Hstatus|Hstatus]]".
Dan Frumin's avatar
Dan Frumin committed
292 293 294 295 296
    - wp_load.
      iMod ("Hcl" with "[Hstate Hres]") as "_".
      { iNext; iLeft; iFrame. }
      iModIntro. wp_op. wp_if.
      rewrite /task_Join. iApply ("IH" with "[$Htoken] HΦ").
297 298
      iExists _,_,_; iFrame "Htask"; eauto.
    - iDestruct "Hstatus" as (v) "(>Hstate & >Hres & HQ)".
Dan Frumin's avatar
Dan Frumin committed
299 300 301 302 303
      wp_load.
      iMod ("Hcl" with "[Hstate Hres HQ]") as "_".
      { iNext; iRight; iLeft. iExists _; iFrame. }
      iModIntro. wp_op. wp_if.
      rewrite /task_Join. iApply ("IH" with "[$Htoken] HΦ").
304 305
      iExists _,_,_; iFrame "Htask"; eauto.
    - iDestruct "Hstatus" as (v) "(>Hstate & >Hres & #HFIN & HQ)".
Dan Frumin's avatar
Dan Frumin committed
306 307 308 309 310 311 312 313 314 315
      wp_load.
      iDestruct "HQ" as "[[HQ Htoken2]|Hshot]"; last first.
      { iExFalso. iApply (shot_not_pending with "Hshot Htoken"). }
      iMod (shoot v γ with "[Htoken Htoken2]") as "#Hshot".
      { iApply (fractional_split_2 with "Htoken Htoken2").
        assert ((1 / 2 + 1 / 2)%Qp = 1%Qp) as -> by apply Qp_div_2.
        apply _. }
      iMod ("Hcl" with "[Hstate Hres]") as "_".
      { iNext. iRight. iRight. iExists _. iFrame. iFrame "HFIN".
        iRight. eauto. }
316 317
      iModIntro. wp_op. wp_if. wp_bind (!#res)%E.
      iInv (N.@"task") as "[>(Hstate & Hres & Hpending & HINIT)|[Hstatus|Hstatus]]" "Hcl".
Dan Frumin's avatar
Dan Frumin committed
318
      { iExFalso. iApply (shot_not_pending with "Hshot Hpending"). }
319
      { iDestruct "Hstatus" as (v') "(Hstate & Hres & Hpending & >HSETRES)".
Dan Frumin's avatar
Dan Frumin committed
320 321
        iExFalso. iApply (SET_RES_not_FIN with "HSETRES HFIN"). }
      iDestruct "Hstatus" as (v') "(Hstate & Hres & _ & HQ')".
322 323 324 325
      iDestruct "HQ'" as "[[? >Hpending]|>Hshot']".
      { iExFalso. iApply (shot_not_pending with "Hshot Hpending"). }
      iDestruct (shot_agree with "Hshot Hshot'") as %->.
      wp_load.
Dan Frumin's avatar
Dan Frumin committed
326 327
      iMod ("Hcl" with "[Hres Hstate]") as "_".
      { iNext. iRight. iRight. iExists _; iFrame. iFrame "HFIN". by iRight. }
328
      iModIntro. wp_match. iApply "HΦ"; eauto.
Dan Frumin's avatar
Dan Frumin committed
329 330
  Qed.

331
  Lemma task_Run_spec γb γ γ' r t P Q :
Dan Frumin's avatar
Dan Frumin committed
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    {{{ isRunner γb P Q r  isTask r γ γ' t P Q }}}
       task_Run t
    {{{ RET #(); True }}}.
  Proof.
    iIntros (Φ) "[#Hrunner Htask] HΦ".
    rewrite isRunner_unfold.
    iDestruct "Hrunner" as (body bag) "(% & #Hbag & #Hbody)".
    iDestruct "Htask" as (arg state res) "(% & HP & HINIT & #Htask)".
    simplify_eq. rewrite /task_Run.
    repeat wp_pure _.
    wp_bind (body _ arg).
    iDestruct ("Hbody" $! (PairV body bag) arg) as "Hbody'".
    iSpecialize ("Hbody'" with "[HP]").
    { iFrame. rewrite isRunner_unfold.
      iExists _,_; iSplitR; eauto. }
    iApply (wp_wand with "Hbody'").
    iIntros (v) "HQ". wp_let.
    wp_bind (#res <- SOME v)%E.
350
    iInv (N.@"task") as "[>(Hstate & Hres & Hpending & HINIT')|[Hstatus|Hstatus]]" "Hcl".
Dan Frumin's avatar
Dan Frumin committed
351 352 353 354 355 356 357 358
    - wp_store.
      iMod (INIT_SET_RES v γ' with "[HINIT HINIT']") as "[HSETRES HSETRES']".
      { iApply (fractional_split_2 with "HINIT HINIT'").
        assert ((1 / 2 + 1 / 2)%Qp = 1%Qp) as -> by apply Qp_div_2.
        apply _. }
      iMod ("Hcl" with "[HSETRES Hstate Hres Hpending]") as "_".
      { iNext. iRight. iLeft. iExists _; iFrame. }
      iModIntro. wp_let.
359
      iInv (N.@"task") as "[>(Hstate & Hres & Hpending & HINIT')|[Hstatus|Hstatus]]" "Hcl".
Dan Frumin's avatar
Dan Frumin committed
360 361 362 363 364 365 366 367 368 369 370
      { iExFalso. iApply (INIT_not_SET_RES with "HINIT' HSETRES'"). }
      + iDestruct "Hstatus" as (v') "(Hstate & Hres & Hpending & HSETRES)".
        wp_store.
        iDestruct (SET_RES_agree with "HSETRES HSETRES'") as %->.
        iMod (SET_RES_FIN v v with "[HSETRES HSETRES']") as "#HFIN".
        { iApply (fractional_split_2 with "HSETRES HSETRES'").
          assert ((1 / 2 + 1 / 2)%Qp = 1%Qp) as -> by apply Qp_div_2.
          apply _. }
        iMod ("Hcl" with "[-HΦ]") as "_".
        { iNext. do 2 iRight. iExists _; iFrame. iFrame "HFIN". iLeft. iFrame.  }
        iModIntro. by iApply "HΦ".
371
      + iDestruct "Hstatus" as (v') "(Hstate & Hres & >HFIN & HQ')".
Dan Frumin's avatar
Dan Frumin committed
372
        iExFalso. iApply (SET_RES_not_FIN with "HSETRES' HFIN").
373
    - iDestruct "Hstatus" as (v') "(Hstate & Hres & Hpending & >HSETRES)".
Dan Frumin's avatar
Dan Frumin committed
374
      iExFalso. iApply (INIT_not_SET_RES with "HINIT HSETRES").
375
    - iDestruct "Hstatus" as (v') "(Hstate & Hres & >HFIN & HQ')".
Dan Frumin's avatar
Dan Frumin committed
376 377 378
      iExFalso. iApply (INIT_not_FIN with "HINIT HFIN").
  Qed.

379
  Lemma runner_runTask_spec γb P Q r:
Dan Frumin's avatar
Dan Frumin committed
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    {{{ isRunner γb P Q r }}}
      runner_runTask r
    {{{ RET #(); True }}}.
  Proof.
    iIntros (Φ) "#Hrunner HΦ".
    rewrite isRunner_unfold /runner_runTask.
    iDestruct "Hrunner" as (body bag) "(% & #Hbag & #Hbody)"; simplify_eq.
    repeat wp_pure _.
    wp_bind (popBag b _).
    iApply (popBag_spec with "Hbag").
    iNext. iIntros (t') "[_ [%|Ht]]"; simplify_eq.
    - wp_match. by iApply "HΦ".
    - iDestruct "Ht" as (t) "[% Ht]".
      iDestruct "Ht" as (γ γ') "Htask".
      simplify_eq. wp_match.
      iApply (task_Run_spec with "[Hbag Hbody Htask]"); last done.
      iFrame "Htask". rewrite isRunner_unfold.
      iExists _,_; iSplit; eauto.
  Qed.

400
  Lemma runner_runTasks_spec γb P Q r:
Dan Frumin's avatar
Dan Frumin committed
401 402 403 404 405 406 407 408 409 410 411
    {{{ isRunner γb P Q r }}}
      runner_runTasks r
    {{{ RET #(); False }}}.
  Proof.
    iIntros (Φ) "#Hrunner HΦ".
    iLöb as "IH". rewrite /runner_runTasks.
    wp_rec. wp_bind (runner_runTask r).
    iApply runner_runTask_spec; eauto.
    iNext. iIntros "_". wp_rec. by iApply "IH".
  Qed.

412
  Lemma loop_spec (n i : nat) P Q γb r:
Dan Frumin's avatar
Dan Frumin committed
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    {{{ isRunner γb P Q r }}}
      (rec: "loop" "i" :=
         if: "i" < #n
         then Fork (runner_runTasks r);; "loop" ("i" + #1)
         else r) #i
    {{{ r, RET r; isRunner γb P Q r }}}.
  Proof.
    iIntros (Φ) "#Hrunner HΦ".
    iLöb as "IH" forall (i).
    wp_rec. wp_op. case_bool_decide; wp_if; last first.
    { by iApply "HΦ". }
    wp_bind (Fork _). iApply wp_fork. iSplitL.
    - iNext. wp_rec. wp_op.
      (* Set Printing Coercions. *)
      assert ((Z.of_nat i + 1) = Z.of_nat (i + 1)) as -> by lia.
      iApply ("IH" with "HΦ").
    - iNext. by iApply runner_runTasks_spec.
  Qed.

432 433
  Lemma newRunner_spec P Q (fe ne : expr) (f : val) (n : nat)
    `{!IntoVal fe f} `{!IntoVal ne (#n)}:
Dan Frumin's avatar
Dan Frumin committed
434
    {{{  (γ: name Σ b) (r: val),
435 436
            a: val, (isRunner γ P Q r  P a - WP f r a {{ v, Q a v }}) }}}
       newRunner fe ne
Dan Frumin's avatar
Dan Frumin committed
437 438 439
    {{{ γb r, RET r; isRunner γb P Q r }}}.
  Proof.
    iIntros (Φ) "#Hf HΦ".
440 441
    rewrite -(of_to_val fe f into_val).
    rewrite -(of_to_val ne #n into_val).
Dan Frumin's avatar
Dan Frumin committed
442 443 444 445 446 447 448 449 450 451 452 453
    unfold newRunner. iApply wp_fupd.
    repeat wp_pure _.
    wp_bind (newBag b #()).
    iApply (newBag_spec b (N.@"bag") (λ x y,  γ γ', isTask (f,x) γ γ' y P Q)%I); auto.
    iNext. iIntros (bag). iDestruct 1 as (γb) "#Hbag".
    do 3 wp_let.
    iAssert (isRunner γb P Q (PairV f bag))%I with "[]" as "#Hrunner".
    { rewrite isRunner_unfold. iExists _,_. iSplit; eauto. }
    iApply (loop_spec n 0 with "Hrunner [HΦ]"); eauto.
    iNext. iIntros (r) "Hr". by iApply "HΦ".
  Qed.

454 455
  Lemma runner_Fork_spec γb (re ae:expr) (r a:val) P Q
    `{!IntoVal re r} `{!IntoVal ae a}:
Dan Frumin's avatar
Dan Frumin committed
456
    {{{ isRunner γb P Q r  P a }}}
457 458
       runner_Fork re ae
    {{{ γ γ' t, RET t; task γ γ' t a P Q }}}.
Dan Frumin's avatar
Dan Frumin committed
459 460
  Proof.
    iIntros (Φ) "[#Hrunner HP] HΦ".
461 462
    rewrite -(of_to_val re r into_val).
    rewrite -(of_to_val ae a into_val).
Dan Frumin's avatar
Dan Frumin committed
463 464 465 466
    rewrite /runner_Fork isRunner_unfold.
    iDestruct "Hrunner" as (body bag) "(% & #Hbag & #Hbody)". simplify_eq.
    Local Opaque newTask.
    repeat wp_pure _. wp_bind (newTask _ _).
467
    iApply (newTask_spec γb (body,bag) a P Q with "[Hbag Hbody HP]").
Dan Frumin's avatar
Dan Frumin committed
468 469 470 471 472 473 474 475
    { iFrame "HP". rewrite isRunner_unfold.
      iExists _,_; iSplit; eauto. }
    iNext. iIntros (γ γ' t) "[Htask Htask']". wp_let.
    wp_bind (pushBag _ _ _).
    iApply (pushBag_spec with "[$Hbag Htask]"); eauto.
    iNext. iIntros "_". wp_rec. by iApply "HΦ".
  Qed.
End contents.
476 477

Opaque isRunner task newRunner runner_Fork task_Join.