Commit 3736872f authored by Dan Frumin's avatar Dan Frumin

flocked accessor

parent 2299d5e8
......@@ -374,6 +374,33 @@ Section flock.
rewrite /is_flock. by iFrame "Hlock".
Qed.
(** `flocked` supports invariant access just like regular invariants *)
Lemma flocked_inv_open E i X γ I :
resN E
I !! i = Some X
flocked γ I ={E}=
(res_prop X) ( (res_prop X) ={E}= flocked γ I).
Proof.
iIntros (? Hi). rewrite {1}/flocked.
iDestruct 1 as (fa ?) "(Hst & Hfa & Htokens)".
rewrite (big_sepM_lookup_acc _ I i X) //.
iDestruct "Htokens" as "[(T2 & #Hinv & Hρ) Htokens]".
iMod (cinv_open with "Hinv Hρ") as "(HC & Hρ & Hcl)"; first solve_ndisj.
rewrite /C /=. iDestruct "HC" as "[[HR >T1] | >T2']"; last first.
{ iDestruct (own_valid_2 with "T2 T2'") as %?. done. }
iMod ("Hcl" with "[T2]") as "_".
{ iNext. iRight. done. }
iModIntro. iFrame "HR". iIntros "HR".
iMod (cinv_open with "Hinv Hρ") as "(HC & Hρ & Hcl)"; first solve_ndisj.
iDestruct "HC" as "[[? >T1'] | >T2]".
{ iDestruct (own_valid_2 with "T1 T1'") as %?. done. }
iMod ("Hcl" with "[T1 HR]") as "_".
{ iNext. iLeft. iFrame. }
iModIntro. rewrite /flocked. iExists fa.
iFrame "Hst Hfa". iSplit; first eauto.
iApply "Htokens". by iFrame.
Qed.
Lemma acquire_flock_single_spec γ lk i X :
{{{ is_flock γ lk flock_res γ i X }}}
acquire lk
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment