flock.v 33.8 KB
Newer Older
Léon Gondelman's avatar
Léon Gondelman committed
1
From iris.heap_lang Require Export proofmode notation.
Dan Frumin's avatar
Dan Frumin committed
2
From iris.heap_lang Require Import spin_lock.
3
From iris.base_logic.lib Require Import cancelable_invariants auth saved_prop.
Dan Frumin's avatar
Dan Frumin committed
4
From iris.algebra Require Import auth agree excl frac gmap gset.
Robbert Krebbers's avatar
Robbert Krebbers committed
5
From iris.bi.lib Require Import fractional.
Léon Gondelman's avatar
Léon Gondelman committed
6

7
Inductive lockstate :=
Dan Frumin's avatar
Dan Frumin committed
8
  | Locked
9
10
11
  | Unlocked.
Canonical Structure lockstateC := leibnizC lockstate.

12
13
Instance lockstate_inhabited : Inhabited lockstate := populate Unlocked.

Dan Frumin's avatar
Dan Frumin committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
(** We need to be able to allocate resources into the lock even when
    it is in use -- for that we need to have /active/ and /pending/
    propositions. If the lock is unlocked (not acquired), then all the
    propositions are active (can be acquired); if the lock is locked
    (acquired), then some thread has the ownership of the active
    propositions, but any other thread can add a pending proposition.
    Pending propositions are thus always held by the lock.

    When a thread acquires the lock, it gets all the active
    propositions. For the whole construction to make sense, the thread
    should return exactly the same propositions once it releases the
    lock. For this to work we need to ensure that the set of active
    proposition has not changed since the lock has been acquired.
    Thus, we use ghost state to track the exact content of the set of
    active propositions.

    If we have a full access to the resource (with fraction 1), we may
    want to cancel it and get the proposition back. In order to do
    that we need to make sure that if we have the full fraction for
    accessing the resource, then this resource cannot be active. For
    that purpose we also need to store the information about the
    fractional permissions for the active propositions.

    Finally, the actual propositional content of the resources is
    shared via cancellable invariants. Each proposition (active or
    pending) is stored in a cancellable invariant associated with it:
Dan Frumin's avatar
Dan Frumin committed
40

Dan Frumin's avatar
Dan Frumin committed
41
42
43
44
45
        C(X) = X.prop ∗ X.token₁ ∨ X.token₂

    The exclusive tokens allow the thread to take out the proposition
    for the whole duration of the critical section. *)

46
Record flock_name := {
Dan Frumin's avatar
Dan Frumin committed
47
  (** ghost name for the actual spin lock invariant *)
Dan Frumin's avatar
Dan Frumin committed
48
  flock_lock_name : gname;
Dan Frumin's avatar
Dan Frumin committed
49
  (** -//- for keeping the track of the state of the flock *)
50
  flock_state_name : gname;
Dan Frumin's avatar
Dan Frumin committed
51
  (** -//- for keeping track of all propositions in the flock *)
52
  flock_props_name : gname;
Dan Frumin's avatar
Dan Frumin committed
53
  (** -//- for keeping track of the "active" propositions,
Dan Frumin's avatar
Dan Frumin committed
54
55
      once you relase the lock you need to know that the set of the active propositions
      has not changed since you have acquired it *)
56
  flock_props_active_name : gname
57
58
}.

Dan Frumin's avatar
Dan Frumin committed
59
60
(* Defined as `positive` so that we have a `Fresh` instance for `gset positive`.
   Doubles as an invariant name. *)
61
Definition prop_id := positive.
Dan Frumin's avatar
Dan Frumin committed
62
Canonical Structure gnameC := leibnizC gname.
63

Dan Frumin's avatar
Dan Frumin committed
64
65
66
67
68
69
(** The trick here is to store only ghost names associated with a 'flock resource' in the flock invariant.
    If we start storing propositions, then we end up in the LATER HELL *)
Record lock_res_name := {
  flock_cinv_name : gname;
  flock_token1_name : gname;
  flock_token2_name : gname;
Dan Frumin's avatar
Dan Frumin committed
70
}.
Dan Frumin's avatar
Dan Frumin committed
71
Canonical Structure lock_res_nameC := leibnizC lock_res_name.
72

73
74
75
Class flockG Σ :=
  FlockG {
    flock_stateG :> inG Σ (authR (optionUR (exclR lockstateC)));
76
    flock_lockG  :> lockG Σ;
Dan Frumin's avatar
Dan Frumin committed
77
78
79
80
81
    flock_cinvG  :> cinvG Σ;
    (* note the difference between the two RAs here ! *)
    flock_props_active :> inG Σ (authR (optionUR (exclR (gmapC prop_id (prodC fracC lock_res_nameC)))));
    flock_props :> inG Σ (authR (gmapUR prop_id (prodR fracR (agreeR lock_res_nameC))));
    flock_tokens :> inG Σ (exclR unitC);
82
83
  }.

Dan Frumin's avatar
Dan Frumin committed
84
85
86
87
88
89
90
91
Record lock_res `{flockG Σ} := {
  res_prop : iProp Σ;
  res_frac : frac;
  res_name : lock_res_name;
}.

Definition LockRes `{flockG Σ} (R : iProp Σ) (π : frac) (ρ : lock_res_name) :=
  {| res_prop := R; res_frac := π; res_name := ρ |}.
92

Dan Frumin's avatar
Dan Frumin committed
93
94
95
96
97
98
99
100
101
102
103
(* TODO: DF, finish this *)
(* Definition flockΣ : gFunctors := *)
(*   #[GFunctor (authR (optionUR (exclR lockstateC))) *)
(*    ;lockΣ *)
(*    ;savedPropΣ *)
(*    ;GFunctor fracR *)
(*    ;GFunctor (authR (optionUR (exclR (gmapC prop_id PropPermC)))) *)
(*    ;GFunctor (authR (gmapUR prop_id (prodR fracR (agreeR (prodC gnameC gnameC)))))%CF]. *)

(* Instance subG_flockΣ Σ : subG flockΣ Σ → flockG Σ. *)
(* Proof. solve_inG. Qed. *)
104

Léon Gondelman's avatar
Léon Gondelman committed
105
Section flock.
106
107
  Context `{heapG Σ, flockG Σ}.
  Variable N : namespace.
Dan Frumin's avatar
Dan Frumin committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
  Definition invN := N.@"flock_inv".
  Definition lockN := N.@"flock_lock".
  Definition resN := N.@"flock_res".

  (** * Definitions **)
  Definition token (ρ : lock_res_name) : iProp Σ :=
    own (flock_token1_name ρ) (Excl ()).
  Definition token (ρ : lock_res_name) : iProp Σ :=
    own (flock_token2_name ρ) (Excl ()).

  (* Definition C' (X : lock_res) : iProp Σ := *)
  (*   (res_prop X ∗ token₁ (res_name X) ∨ token₂ (res_name X))%I. *)

  Definition C (R : iProp Σ) (ρ : lock_res_name) : iProp Σ :=
    (R  token ρ  token ρ)%I.

  (* Tokens that allow you to get all the propositions from `A` out of the invariants *)
  Definition all_tokens (P : gmap prop_id lock_res_name) : iProp Σ :=
    ([ map] i  X  P, token X)%I.
Dan Frumin's avatar
Dan Frumin committed
127

Dan Frumin's avatar
Dan Frumin committed
128
129
130
  (** For active propositions we also need to know the fraction which was used to access it *)
  Definition from_active (A : gmap prop_id (frac * lock_res_name))
    := fmap snd A.
Dan Frumin's avatar
Dan Frumin committed
131

Dan Frumin's avatar
Dan Frumin committed
132
133
134
135
  Definition flock_res (γ : flock_name) (s : prop_id) (X : lock_res) : iProp Σ :=
    (own (flock_props_name γ) ( {[s := (res_frac X, to_agree (res_name X))]})
     cinv (resN.@s) (flock_cinv_name (res_name X)) (C (res_prop X) (res_name X))
     cinv_own (flock_cinv_name (res_name X)) (res_frac X))%I.
136

Dan Frumin's avatar
Dan Frumin committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  Definition flocked
    (γ : flock_name) (A : gmap prop_id lock_res) : iProp Σ :=
    ( fa : gmap prop_id (frac * lock_res_name),
         fa = fmap (λ X, (res_frac X, res_name X)) A
       (* Information we retain: the flock is locked .. *)
        own (flock_state_name γ) ( (Excl' Locked))
       (* What are the exact propositions that we have activated.. *)
        own (flock_props_active_name γ) ( (Excl' fa))
       (* Tokens and permissions for closing the active propositions .. *)
        ([ map] i  X  A, token (res_name X)
                   cinv (resN.@i) (flock_cinv_name (res_name X)) (C (res_prop X) (res_name X))
                   cinv_own (flock_cinv_name (res_name X)) (res_frac X)))%I.

  Definition to_props_map (f : gmap prop_id lock_res_name)
    : gmapUR prop_id (prodR fracR (agreeR lock_res_nameC)) :=
    fmap (λ X, (1%Qp, to_agree X)) f.
Dan Frumin's avatar
Dan Frumin committed
153
154

  Definition flock_inv (γ : flock_name) : iProp Σ :=
Dan Frumin's avatar
Dan Frumin committed
155
156
    ( (s : lockstate)
       (** fa -- active propositions, fp -- pending propositions *)
Dan Frumin's avatar
Dan Frumin committed
157
158
       (fa : gmap prop_id (frac * lock_res_name))
       (fp : gmap prop_id lock_res_name),
Dan Frumin's avatar
Dan Frumin committed
159
       fp ## from_active fa 
Dan Frumin's avatar
Dan Frumin committed
160
       own (flock_state_name γ) ( (Excl' s)) 
Dan Frumin's avatar
Dan Frumin committed
161
       own (flock_props_name γ) ( to_props_map (fp  from_active fa)) 
Dan Frumin's avatar
Dan Frumin committed
162
163
       own (flock_props_active_name γ) ( Excl' fa) 
       all_tokens fp 
Dan Frumin's avatar
Dan Frumin committed
164
       match s with
Dan Frumin's avatar
Dan Frumin committed
165
       | Locked =>
Dan Frumin's avatar
Dan Frumin committed
166
         locked (flock_lock_name γ) 
Dan Frumin's avatar
Dan Frumin committed
167
168
169
170
         ([ map] i  πX  fa, own (flock_props_name γ) ( {[i:=(πX.1,to_agree πX.2)]}))
       | Unlocked =>
         (* there are no active proposition *)
         own (flock_props_active_name γ) ( Excl' )
Dan Frumin's avatar
Dan Frumin committed
171
172
173
       end)%I.

  Definition is_flock (γ : flock_name) (lk : val) : iProp Σ :=
Dan Frumin's avatar
Dan Frumin committed
174
175
    (inv invN (flock_inv γ) 
     is_lock lockN (flock_lock_name γ) lk
Dan Frumin's avatar
Dan Frumin committed
176
177
         (own (flock_state_name γ) ( (Excl' Unlocked))))%I.

Dan Frumin's avatar
Dan Frumin committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
  (** * Lemmata **)

  (** ** Basic properties of the CAPs *)
  (* Lemma flock_res_op (γ : flock_name) (s : prop_id) (R : iProp Σ) (π1 π2 : frac) : *)
  (*   flock_res γ s R (π1+π2) ⊣⊢ flock_res γ s R π1 ∗ flock_res γ s R π2. *)
  (* Proof. *)
  (*   rewrite /flock_res. iSplit. *)
  (*   - iDestruct 1 as (ρ) "(Hs & #Hinv & Hρ)". *)
  (*     iDestruct "Hρ" as "[Hρ1 Hρ2]". *)
  (*     iDestruct "Hs" as "[Hs1 Hs2]". *)
  (*     iSplitL "Hρ1 Hs1"; iExists _; by iFrame. *)
  (*   - iIntros "[H1 H2]". *)
  (*     iDestruct "H1" as (ρ) "(Hs1 & #Hinv1 & Hρ1)". *)
  (*     iDestruct "H2" as (ρ') "(Hs2 & #Hinv2 & Hρ2)". *)
  (*     iCombine "Hs1 Hs2" as "Hs". *)
  (*     iDestruct (own_valid with "Hs") *)
  (*       as %Hfoo%auth_valid_discrete. *)
  (*     simpl in Hfoo. apply singleton_valid in Hfoo. *)
  (*     destruct Hfoo as [_ Hfoo%agree_op_inv']. *)
  (*     fold_leibniz. rewrite -!Hfoo. *)
  (*     iCombine "Hρ1 Hρ2" as "Hρ". *)
  (*     rewrite !frac_op' agree_idemp. *)
  (*     iExists ρ. by iFrame. *)
  (* Qed. *)

  (* Global Instance flock_res_fractional γ s R : Fractional (flock_res γ s R). *)
  (* Proof. intros p q. apply flock_res_op. Qed. *)

  (* Global Instance flock_res_as_fractional γ s R π : *)
  (*   AsFractional (flock_res γ s R π) (flock_res γ s R) π. *)
  (* Proof. split. done. apply _. Qed. *)
Dan Frumin's avatar
Dan Frumin committed
209

Dan Frumin's avatar
Dan Frumin committed
210
211
  Lemma to_props_map_singleton_included fp i q ρ:
    {[i := (q, to_agree ρ)]}  to_props_map fp  fp !! i = Some ρ.
212
  Proof.
Dan Frumin's avatar
Dan Frumin committed
213
214
215
    rewrite singleton_included=> -[[q' av] []].
    rewrite /to_props_map lookup_fmap fmap_Some_equiv => -[v' [Hi [/= -> ->]]].
    move=> /Some_pair_included_total_2 [_] /to_agree_included /leibniz_equiv_iff -> //.
216
217
  Qed.

Dan Frumin's avatar
Dan Frumin committed
218
219
220
  Lemma to_props_map_delete fp i:
    delete i (to_props_map fp) = to_props_map (delete i fp).
  Proof.
Dan Frumin's avatar
Dan Frumin committed
221
    by rewrite /to_props_map fmap_delete.
Dan Frumin's avatar
Dan Frumin committed
222
  Qed.
Léon Gondelman's avatar
Léon Gondelman committed
223

Dan Frumin's avatar
Dan Frumin committed
224
225
226
227
228
  (** ** Spectral and physical operations *)
  Lemma flock_res_alloc_strong (X : gset prop_id) γ lk R E :
    N  E 
    is_flock γ lk -
     R ={E}=  s ρ, s  X  flock_res γ s (LockRes R 1 ρ).
229
  Proof.
Dan Frumin's avatar
Dan Frumin committed
230
231
232
233
234
235
    iIntros (?) "Hl HR". rewrite /is_flock.
    iDestruct "Hl" as "(#Hfl & #Hlk)".

    (* Pick a fresh name *)
    iInv invN as (s fa fp)
      "(>% & >Hstate & >Haprops & >Haactive & >Htokens & Hst)" "Hcl".
Dan Frumin's avatar
Dan Frumin committed
236
237
    pose (i := (fresh ((dom (gset prop_id) (fp  from_active fa))  X))).
    assert (i  (dom (gset prop_id) (fp  from_active fa))  X) as Hs.
Dan Frumin's avatar
Dan Frumin committed
238
    { apply is_fresh. }
Dan Frumin's avatar
Dan Frumin committed
239
    apply not_elem_of_union in Hs. destruct Hs as [Hi1 Hi2].
Dan Frumin's avatar
Dan Frumin committed
240
241
242
243
244
245
246
247
248
249

    (* Alloc all the data for the resource *)
    iMod (own_alloc (Excl ())) as (γt) "T1"; first done.
    iMod (own_alloc (Excl ())) as (γt) "T2"; first done.
    iMod (cinv_alloc _ (resN.@i) (R  own γt (Excl ())  own γt (Excl ()))%I with "[HR T1]") as (γc) "[#HR Hρ]".
    { iNext. iLeft. by iFrame. }
    pose (ρ :=
            {| flock_cinv_name := γc;
               flock_token1_name := γt;
               flock_token2_name := γt |}).
Dan Frumin's avatar
Dan Frumin committed
250

Dan Frumin's avatar
Dan Frumin committed
251
252
253
254
    (* Put it in the map of flock resources *)
    iMod (own_update  with "Haprops") as "Haprops".
    { apply (auth_update_alloc _ (to_props_map (<[i := ρ]> fp  from_active fa))
                               {[ i := (1%Qp, to_agree ρ) ]}).
Dan Frumin's avatar
Dan Frumin committed
255
256
257
258
259
      rewrite -insert_union_l.
      rewrite /to_props_map /= fmap_insert.
      apply alloc_local_update; last done.
      apply (not_elem_of_dom (to_props_map (fp  from_active fa)) i (D:=gset prop_id)).
      by rewrite /to_props_map dom_fmap. }
Dan Frumin's avatar
Dan Frumin committed
260
261
262
263
264
265
266
267
268
    iDestruct "Haprops" as "[Haprops Hi]".
    iMod ("Hcl" with "[-Hi Hρ]") as "_".
    { iNext. iExists s, fa,(<[i:=ρ]>fp).
      iFrame. rewrite /all_tokens big_sepM_insert; last first.
      { apply (not_elem_of_dom _ i (D:=gset prop_id)).
        revert Hi1. rewrite dom_union_L not_elem_of_union.
        set_solver. }
      iFrame. iPureIntro.
      apply map_disjoint_insert_l_2; eauto.
Dan Frumin's avatar
Dan Frumin committed
269
      eapply (not_elem_of_dom (D:=gset prop_id)).
Dan Frumin's avatar
Dan Frumin committed
270
271
272
273
      intros Hi; apply Hi1. rewrite dom_union_L elem_of_union. eauto.
    }
    iModIntro; iExists i, ρ; iSplit; eauto.
    by iFrame.
Dan Frumin's avatar
Dan Frumin committed
274
275
  Qed.

Dan Frumin's avatar
Dan Frumin committed
276
277
278
279
280
  Lemma flock_res_dealloc γ lk i X E :
    N  E 
    res_frac X = 1%Qp 
    is_flock γ lk -
    flock_res γ i X ={E}=  (res_prop X).
Dan Frumin's avatar
Dan Frumin committed
281
  Proof.
Dan Frumin's avatar
Dan Frumin committed
282
283
284
285
286
287
288
289
290
291
292
    iIntros (? HX) "Hl HR". rewrite /is_flock.
    iDestruct "Hl" as "(#Hfl & #Hlk)".
    destruct X as [R ? ρ]. simpl in HX. rewrite HX; clear HX.
    iDestruct "HR" as "(Hi & #Hiinv & Hρ)".

    iInv invN as ([|] fa fp)
      "(>% & >Hstate & >Haprops & >Haactive & >Htokens & Hst)" "Hcl".
    (* Locked *)
    - iDestruct "Hst" as ">[Hlocked Hactives]".
      (* We can now show that the proposition `i` is *not* active *)
      iDestruct (own_valid_2 with "Haprops Hi")
Dan Frumin's avatar
Dan Frumin committed
293
        as %[Hfoo%to_props_map_singleton_included _]%auth_valid_discrete_2.
Dan Frumin's avatar
Dan Frumin committed
294
      iAssert (fa !! i = None)%I with "[-]" as %Hbar.
Dan Frumin's avatar
Dan Frumin committed
295
296
297
      { remember (fa !! i) as fai. destruct fai as [[π ρ']|]; last done.
        symmetry in Heqfai.
        rewrite (big_sepM_lookup _ fa i (π, ρ')) //.
Dan Frumin's avatar
Dan Frumin committed
298
        (* TODO: RK, please look at this! *)
Dan Frumin's avatar
Dan Frumin committed
299
        iDestruct (own_valid_2 with "Hi Hactives") as %Hbaz.
Dan Frumin's avatar
Dan Frumin committed
300
301
302
303
304
        exfalso. revert Hbaz.
        rewrite -auth_frag_op /=. intros Hbaz%auth_own_valid.
        revert Hbaz. simpl. rewrite op_singleton pair_op /=.
        rewrite singleton_valid. intros [Hlol _]. simpl in *.
        eapply exclusive_l ; eauto. apply _. }
Dan Frumin's avatar
Dan Frumin committed
305
      assert (fp !! i = Some ρ) as Hbaz.
Dan Frumin's avatar
Dan Frumin committed
306
307
      { apply lookup_union_Some in Hfoo; last done.
        destruct Hfoo as [? | Hfoo]; first done.
Dan Frumin's avatar
Dan Frumin committed
308
        exfalso. revert Hfoo. by rewrite /from_active lookup_fmap Hbar.
Dan Frumin's avatar
Dan Frumin committed
309
310
      }

Dan Frumin's avatar
Dan Frumin committed
311
      iMod (own_update_2 with "Haprops Hi") as "Haprops".
Dan Frumin's avatar
Dan Frumin committed
312
      { apply auth_update_dealloc, (delete_singleton_local_update _ i _). }
Dan Frumin's avatar
Dan Frumin committed
313
314
315
316
317
318
      rewrite /all_tokens (big_sepM_delete _ fp i ρ) //.
      iDestruct "Htokens" as "[T2 Htokens]".
      iMod (cinv_cancel with "Hiinv Hρ") as "HC". solve_ndisj.
      rewrite /C /=. iDestruct "HC" as "[[HR >T1] | >T2']"; last first.
      { iDestruct (own_valid_2 with "T2 T2'") as %?. done. }
      iFrame "HR".
Dan Frumin's avatar
Dan Frumin committed
319

Dan Frumin's avatar
Dan Frumin committed
320
321
322
323
      (* Now that the resource is cancelled we close the flock invariant *)
      iApply "Hcl". iNext.
      iExists Locked,fa,(delete i fp). iFrame.
      iSplit.
324
      + iPureIntro. solve_map_disjoint.
Dan Frumin's avatar
Dan Frumin committed
325
326
327
328
329
      + rewrite to_props_map_delete delete_union.
        rewrite (delete_notin (from_active fa)) //.
        rewrite /from_active lookup_fmap Hbar //.
    (* Unlocked *)
    - iDestruct "Hst" as ">Hfactive".
Dan Frumin's avatar
Dan Frumin committed
330
331
332
333
      iAssert (fa = ∅⌝)%I with "[-]" as %->.
      { iDestruct (own_valid_2 with "Haactive Hfactive")
          as %[Hfoo%Excl_included _]%auth_valid_discrete_2.
        iPureIntro. by unfold_leibniz. }
Dan Frumin's avatar
Dan Frumin committed
334
335
      rewrite /from_active fmap_empty /= right_id.
      iDestruct (own_valid_2 with "Haprops Hi")
Dan Frumin's avatar
Dan Frumin committed
336
        as %[Hfoo%to_props_map_singleton_included _]%auth_valid_discrete_2.
Dan Frumin's avatar
Dan Frumin committed
337
      iMod (own_update_2 with "Haprops Hi") as "Haprops".
Dan Frumin's avatar
Dan Frumin committed
338
      { apply auth_update_dealloc, (delete_singleton_local_update _ i _). }
Dan Frumin's avatar
Dan Frumin committed
339
340
341
342
343
344
345
346
347
348
349
      rewrite /all_tokens (big_sepM_delete _ fp i ρ) //.
      iDestruct "Htokens" as "[T2 Htokens]".
      iMod (cinv_cancel with "Hiinv Hρ") as "HC". solve_ndisj.
      rewrite /C /=. iDestruct "HC" as "[[HR >T1] | >T2']"; last first.
      { iDestruct (own_valid_2 with "T2 T2'") as %?. done. }
      iFrame "HR".

      (* Now that the resource is cancelled we close the flock invariant *)
      iApply "Hcl". iNext.
      iExists Unlocked,,(delete i fp). iFrame.
      iSplit.
350
      + iPureIntro. solve_map_disjoint.
Dan Frumin's avatar
Dan Frumin committed
351
352
      + rewrite /from_active fmap_empty /= right_id.
        by rewrite to_props_map_delete.
Dan Frumin's avatar
Dan Frumin committed
353
  Qed.
354

Dan Frumin's avatar
Dan Frumin committed
355
  Lemma newflock_spec :
Dan Frumin's avatar
Dan Frumin committed
356
    {{{ True }}} newlock #() {{{ lk γ, RET lk; is_flock γ lk }}}.
357
358
  Proof.
    iIntros (Φ) "_ HΦ". rewrite -wp_fupd.
359
360
    iMod (own_alloc ( (Excl' Unlocked)   (Excl' Unlocked)))
      as (γ_state) "[Hauth Hfrag]"; first done.
361
362
363
364
365
366
    iMod (own_alloc ( to_props_map )) as (γ_props) "Hprops".
    { apply auth_valid_discrete. simpl.
      split; last done. apply ucmra_unit_least. }
    iMod (own_alloc (( Excl' )  ( Excl' ))) as (γ_ac_props) "[Hacprops1 Hacprops2]".
    { apply auth_valid_discrete. simpl.
      split; last done. by rewrite left_id. }
Dan Frumin's avatar
Dan Frumin committed
367
    iApply (newlock_spec lockN (own γ_state ( (Excl' Unlocked))) with "Hfrag").
368
    iNext. iIntros (lk γ_lock) "#Hlock".
Dan Frumin's avatar
Dan Frumin committed
369
    pose (γ := (Build_flock_name γ_lock γ_state γ_props γ_ac_props)).
Dan Frumin's avatar
Dan Frumin committed
370
371
372
    iMod (inv_alloc invN _ (flock_inv γ) with "[-HΦ]") as "#Hinv".
    { iNext. iExists Unlocked, , . rewrite /from_active fmap_empty right_id. iFrame.
      iSplit; eauto. by rewrite /all_tokens big_sepM_empty. }
Dan Frumin's avatar
Dan Frumin committed
373
    iModIntro. iApply ("HΦ" $! lk γ with "[-]").
374
375
    rewrite /is_flock. by iFrame "Hlock".
  Qed.
Léon Gondelman's avatar
Léon Gondelman committed
376

Dan Frumin's avatar
Dan Frumin committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
  (** `flocked` supports invariant access just like regular invariants *)
  Lemma flocked_inv_open E i X γ I :
    resN  E 
    I !! i = Some X 
    flocked γ I ={E}=
     (res_prop X)  ( (res_prop X) ={E}= flocked γ I).
  Proof.
    iIntros (? Hi). rewrite {1}/flocked.
    iDestruct 1 as (fa ?) "(Hst & Hfa & Htokens)".
    rewrite (big_sepM_lookup_acc _ I i X) //.
    iDestruct "Htokens" as "[(T2 & #Hinv & Hρ) Htokens]".
    iMod (cinv_open with "Hinv Hρ") as "(HC & Hρ & Hcl)"; first solve_ndisj.
    rewrite /C /=. iDestruct "HC" as "[[HR >T1] | >T2']"; last first.
    { iDestruct (own_valid_2 with "T2 T2'") as %?. done. }
    iMod ("Hcl" with "[T2]") as "_".
    { iNext. iRight. done. }
    iModIntro. iFrame "HR". iIntros "HR".
    iMod (cinv_open with "Hinv Hρ") as "(HC & Hρ & Hcl)"; first solve_ndisj.
    iDestruct "HC" as "[[? >T1'] | >T2]".
    { iDestruct (own_valid_2 with "T1 T1'") as %?. done. }
    iMod ("Hcl" with "[T1 HR]") as "_".
    { iNext. iLeft. iFrame. }
    iModIntro. rewrite /flocked. iExists fa.
    iFrame "Hst Hfa". iSplit; first eauto.
    iApply "Htokens". by iFrame.
  Qed.

Dan Frumin's avatar
Dan Frumin committed
404
405
  Lemma acquire_flock_single_spec γ lk i X :
    {{{ is_flock γ lk  flock_res γ i X }}}
406
      acquire lk
Dan Frumin's avatar
Dan Frumin committed
407
    {{{ RET #();  (res_prop X)  ( (res_prop X) ={}= flocked γ {[i:=X]}) }}}.
408
  Proof.
Dan Frumin's avatar
Dan Frumin committed
409
    destruct X as [R π ρ].
Dan Frumin's avatar
Dan Frumin committed
410
    iIntros (Φ) "(Hl & HRres) HΦ".
Dan Frumin's avatar
Dan Frumin committed
411
412
    rewrite /is_flock. iDestruct "Hl" as "(#Hfl & #Hlk)".
    iApply wp_fupd.
Dan Frumin's avatar
Dan Frumin committed
413
414
    iApply (acquire_spec with "Hlk").
    iNext. iIntros "[Hlocked Hunlk]".
Dan Frumin's avatar
Dan Frumin committed
415
    iInv invN as ([|] fa fp)
Dan Frumin's avatar
Dan Frumin committed
416
417
      "(>% & >Hstate & >Haprops & >Haactive & >Htokens & Hst)" "Hcl".
    - iDestruct "Hst" as "(>Hlocked2 & ?)".
Dan Frumin's avatar
Dan Frumin committed
418
      iExFalso. iApply (locked_exclusive with "Hlocked Hlocked2").
Dan Frumin's avatar
Dan Frumin committed
419
    - iDestruct "Hst" as ">Hfactive".
Dan Frumin's avatar
Dan Frumin committed
420
421
422
423
      iAssert (fa = ∅⌝)%I with "[-]" as %->.
      { iDestruct (own_valid_2 with "Haactive Hfactive")
          as %[Hfoo%Excl_included _]%auth_valid_discrete_2.
        iPureIntro. by unfold_leibniz. }
Dan Frumin's avatar
Dan Frumin committed
424
425
      rewrite /from_active fmap_empty /= right_id.
      iDestruct "HRres" as "(Hi & #Hinv & Hρ)".
Dan Frumin's avatar
Dan Frumin committed
426
427

      (* Unlocked ~~> Locked *)
Dan Frumin's avatar
Dan Frumin committed
428
      iMod (own_update_2 with "Hstate Hunlk") as "Hstate".
Dan Frumin's avatar
Dan Frumin committed
429
      { apply (auth_update _ _ (Excl' Locked) (Excl' Locked)).
Dan Frumin's avatar
Dan Frumin committed
430
431
432
        apply option_local_update.
        by apply exclusive_local_update. }
      iDestruct "Hstate" as "[Hstate Hflkd]".
Léon Gondelman's avatar
Léon Gondelman committed
433

Dan Frumin's avatar
Dan Frumin committed
434
      (* (i,ρ) ∈ fp *)
Dan Frumin's avatar
Dan Frumin committed
435
      iDestruct (own_valid_2 with "Haprops Hi")
Dan Frumin's avatar
Dan Frumin committed
436
        as %[Hfoo%to_props_map_singleton_included _]%auth_valid_discrete_2.
Dan Frumin's avatar
Dan Frumin committed
437
438

      (* move (i,ρ) to the set of active propositions *)
Dan Frumin's avatar
Dan Frumin committed
439
440
      rewrite /all_tokens (big_sepM_delete _ fp i ρ) //.
      iDestruct "Htokens" as "[T2 Htokens]".
Dan Frumin's avatar
Dan Frumin committed
441

Dan Frumin's avatar
Dan Frumin committed
442
      iMod (own_update_2 with "Haactive Hfactive") as "[Haactive Hfactive]".
Dan Frumin's avatar
Dan Frumin committed
443
444
      { apply (auth_update _ _ (Excl' {[ i := (π, ρ) ]})
                               (Excl' {[ i := (π, ρ) ]})).
Dan Frumin's avatar
Dan Frumin committed
445
        by apply option_local_update, exclusive_local_update. }
Dan Frumin's avatar
Dan Frumin committed
446

Dan Frumin's avatar
Dan Frumin committed
447
448
449
      iMod ("Hcl" with "[Haactive Hi Hlocked Haprops Htokens Hstate]") as "_".
      { iNext. iExists Locked,{[i := (π, ρ)]},(delete i fp).
        iFrame. iSplitR ; [ | iSplitL "Haprops"].
Dan Frumin's avatar
Dan Frumin committed
450
451
        - iPureIntro.
          rewrite /from_active map_fmap_singleton /=.
Dan Frumin's avatar
Dan Frumin committed
452
          apply map_disjoint_singleton_r, lookup_delete.
Dan Frumin's avatar
Dan Frumin committed
453
        - rewrite /from_active map_fmap_singleton /=.
Dan Frumin's avatar
Dan Frumin committed
454
455
456
          rewrite -insert_union_singleton_r.
          2: { apply lookup_delete. }
          rewrite insert_delete insert_id //.
Dan Frumin's avatar
Dan Frumin committed
457
        - rewrite /all_tokens big_sepM_singleton //. }
Dan Frumin's avatar
Dan Frumin committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
      iMod (cinv_open with "Hinv Hρ") as "(HC & Hρ & Hcl)"; first done.
      rewrite /C /=. iDestruct "HC" as "[[HR >T1] | >T2']"; last first.
      { iDestruct (own_valid_2 with "T2 T2'") as %?. done. }
      iMod ("Hcl" with "[T2]") as "_".
      { iNext. iRight. done. }
      iModIntro.
      iApply "HΦ". iFrame "HR". iIntros "HR".
      rewrite /flocked. iExists ({[i:=(π,ρ)]}).
      iFrame "Hflkd Hfactive".
      rewrite big_sepM_singleton /=.
      iMod (cinv_open with "Hinv Hρ") as "(HC & Hρ & Hcl)"; first done.
      iDestruct "HC" as "[[? >T1'] | >T2]".
      { iDestruct (own_valid_2 with "T1 T1'") as %?. done. }
      iFrame "T2 Hρ Hinv".
      iMod ("Hcl" with "[-]") as "_".
      { iNext. iLeft. iFrame. }
      iModIntro. iPureIntro. rewrite map_fmap_singleton //.
Dan Frumin's avatar
Dan Frumin committed
475
  Qed.
Dan Frumin's avatar
Dan Frumin committed
476

Dan Frumin's avatar
Dan Frumin committed
477
478
  Lemma release_cancel_spec γ lk i X :
    {{{ is_flock γ lk  flocked γ {[i:=X]} }}}
479
      release lk
Dan Frumin's avatar
Dan Frumin committed
480
    {{{ RET #(); flock_res γ i X }}}.
481
  Proof.
Dan Frumin's avatar
Dan Frumin committed
482
    iIntros (Φ) "(#Hl & H) HΦ". rewrite -fupd_wp.
Dan Frumin's avatar
Dan Frumin committed
483
    rewrite /is_flock. iDestruct "Hl" as "(#Hinv & #Hlk)".
Dan Frumin's avatar
Dan Frumin committed
484
485
486
487
488
489

    destruct X as [R π ρ]. rewrite /flocked /=.
    iDestruct "H" as (fa' Hfa) "(Hflkd & Hfactive & Hfa)".
    iInv invN as ([|] fa fp)
      "(>% & >Hstate & >Haprops & >Haactive & >Htokens & Hst)" "Hcl";
      last first.
Dan Frumin's avatar
Dan Frumin committed
490
491
492
    - iDestruct (own_valid_2 with "Hstate Hflkd")
          as %[Hfoo%Excl_included _]%auth_valid_discrete_2.
      fold_leibniz. inversion Hfoo.
Dan Frumin's avatar
Dan Frumin committed
493
    - iDestruct "Hst" as ">[Hlocked Hactives]".
Dan Frumin's avatar
Dan Frumin committed
494
495
496
497
498
499
      iDestruct (own_valid_2 with "Haactive Hfactive")
        as %[Hfoo%Excl_included _]%auth_valid_discrete_2.
      fold_leibniz. simplify_eq/=.

      (* Locked ~~> Unlocked *)
      iMod (own_update_2 with "Hstate Hflkd") as "Hstate".
500
501
502
      { apply (auth_update _ _ (Excl' Unlocked) (Excl' Unlocked)).
        apply option_local_update.
        by apply exclusive_local_update. }
Dan Frumin's avatar
Dan Frumin committed
503
      iDestruct "Hstate" as "[Hstate Hunflkd]".
Léon Gondelman's avatar
Léon Gondelman committed
504

Dan Frumin's avatar
Dan Frumin committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
      rewrite !map_fmap_singleton /=.
      rewrite !big_sepM_singleton /=.

      (* Empty up the set of active propositions *)
      iMod (own_update_2 with "Haactive Hfactive") as "[Haactive Hfactive]".
      { apply (auth_update _ _ (Excl' )
                               (Excl' )).
        by apply option_local_update, exclusive_local_update. }

      iDestruct "Hfa" as "(T2 & #Hiinv & Hρ)".

      iMod ("Hcl" with "[-HΦ Hlocked Hactives Hunflkd Hρ]") as "_".
      { iNext. iExists Unlocked,,(<[i:=ρ]>fp).
        iSplitR; eauto.
        - rewrite /from_active fmap_empty. iPureIntro.
520
          solve_map_disjoint.
Dan Frumin's avatar
Dan Frumin committed
521
522
        - iFrame. rewrite /from_active fmap_empty right_id /=.
          rewrite map_fmap_singleton.
Dan Frumin's avatar
Dan Frumin committed
523
524
525
526
          assert (fp !! i = None).
          { eapply map_disjoint_Some_r; first eassumption.
            rewrite /from_active !map_fmap_singleton.
            by rewrite lookup_singleton. }
Dan Frumin's avatar
Dan Frumin committed
527
528
529
530
          rewrite -insert_union_singleton_r // /=. iFrame.
          rewrite /all_tokens big_sepM_insert //.
          iFrame.
      }
Dan Frumin's avatar
Dan Frumin committed
531
      iApply (release_spec with "[$Hlk $Hlocked $Hunflkd]").
Dan Frumin's avatar
Dan Frumin committed
532
533
      iModIntro. iNext. iIntros "_". iApply "HΦ".
      by iFrame.
Dan Frumin's avatar
Dan Frumin committed
534
  Qed.
Dan Frumin's avatar
Dan Frumin committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

  (** LULZ *)

  Lemma extract_existential {A B C : Type} `{EqDecision A, Countable A} (I : gmap A B) (P : A -> B -> C -> iProp Σ) :
    (([ map] a  b  I,  c : C, P a b c) 
      J : gmap A (B*C), fmap fst J = I  [ map] a  bc  J, P a bc.1 bc.2)%I.
  Proof.
    simple refine (map_ind (λ I, (([ map] a  b  I,  c : C, P a b c) 
      J : gmap A (B*C), fmap fst J = I  [ map] a  bc  J, P a bc.1 bc.2)) _ _ I); simpl.
    - rewrite big_sepM_empty.
      iIntros "_". iExists . iSplit; eauto. by rewrite fmap_empty.
    - iIntros (a b I' Ha HI') "H".
      rewrite big_sepM_insert; auto.
      iDestruct "H" as "[HC H]".
      iDestruct "HC" as (c) "Habc".
      rewrite HI'. iDestruct "H" as (J' HJ') "H".
      iExists (<[a:=(b,c)]>J'). iSplit.
      + iPureIntro. by rewrite fmap_insert /=HJ'.
      + rewrite big_sepM_insert; eauto with iFrame.
        cut (fst <$> J' !! a = None).
        { destruct (J' !! a); eauto; inversion 1. }
        rewrite -lookup_fmap HJ' //.
Dan Frumin's avatar
Dan Frumin committed
557
558
  Qed.

Dan Frumin's avatar
Dan Frumin committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
  Lemma big_sepM_own_frag {A B : Type} {C} `{EqDecision A, Countable A}
        `{inG Σ (authR (gmapUR A C))} (f : B  C) (m : gmap A B) (γ : gname) :
    own γ ( ) -
    own γ ( (f <$> m)) - [ map] ix  m, own γ ( {[ i := f x ]}).
  Proof.
    simple refine (map_ind (λ m, _)%I _ _ m); simpl.
    - iIntros "He". rewrite fmap_empty big_sepM_empty. iSplit; eauto.
    - iIntros (i x m' Hi IH) "He".
      rewrite fmap_insert insert_union_singleton_l.
      assert (({[i := f x]}  (f <$> m')) = {[i := f x]}  (f <$> m')) as ->.
      { rewrite /op /cmra_op /= /gmap_op.
        apply map_eq. intros j. destruct (decide (i = j)) as [->|?].
        - etransitivity. eapply lookup_union_Some_l. apply lookup_insert.
          symmetry. rewrite lookup_merge lookup_insert.
          rewrite lookup_fmap Hi /=. done.
        - remember (m' !! j) as mj.
          destruct mj; simplify_eq/=.
          + etransitivity. apply lookup_union_Some_raw.
            right. split; first by rewrite lookup_insert_ne.
            by rewrite lookup_fmap -Heqmj.
            symmetry. rewrite lookup_merge lookup_singleton_ne; eauto.
            rewrite lookup_fmap -Heqmj. done.
          + etransitivity. apply lookup_union_None.
            split; first by rewrite lookup_singleton_ne.
            rewrite lookup_fmap -Heqmj //.
            symmetry.
            rewrite lookup_merge lookup_singleton_ne // lookup_fmap -Heqmj //. }
      rewrite auth_frag_op own_op IH big_sepM_insert; last eauto.
      iSplit; iIntros "[$ Hm']"; by iApply "He".
  Qed.
Dan Frumin's avatar
Dan Frumin committed
589

Dan Frumin's avatar
Dan Frumin committed
590
591
592
593
594
595
596
597
598
  Lemma own_frag_empty γ X :
    own (flock_props_name γ) ( X) ==
    own (flock_props_name γ) ( X)  own (flock_props_name γ) ( ).
  Proof.
    iIntros "H". rewrite -own_op.
    iApply (own_update with "H").
    by apply auth_update_alloc.
  Qed.

Dan Frumin's avatar
Dan Frumin committed
599
600
601
602
603
604
605
606
607
  (* THIS IS NOT TRUE *)
  Global Instance snd_cmramorphism :
    CmraMorphism (@snd Qp (agree lock_res_name)).
  Proof.
    split; first apply _.
    - move=> n [? ?] [// ?].
    - move=> [a b]/=. admit.
  Admitted.

Dan Frumin's avatar
Dan Frumin committed
608
609
610
  Lemma acquire_flock_spec γ lk (I : gmap prop_id lock_res) :
    {{{ is_flock γ lk  [ map] i  X  I, flock_res γ i X }}}
      acquire lk
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    {{{ RET #(); flocked γ I }}}.
  Proof.
    iIntros (Φ) "(Hl & HRres) HΦ".
    rewrite /is_flock. iDestruct "Hl" as "(#Hfl & #Hlk)".
    iApply wp_fupd.
    iApply (acquire_spec with "Hlk").
    iNext. iIntros "[Hlocked Hunlk]".
    iInv invN as ([|] fa fp)
      "(>% & >Hstate & >Haprops & >Haactive & >Htokens & Hst)" "Hcl".
    - iDestruct "Hst" as "(>Hlocked2 & ?)".
      iExFalso. iApply (locked_exclusive with "Hlocked Hlocked2").
    - iDestruct "Hst" as ">Hfactive".
      iAssert (fa = ∅⌝)%I with "[-]" as %->.
      { iDestruct (own_valid_2 with "Haactive Hfactive")
          as %[Hfoo%Excl_included _]%auth_valid_discrete_2.
        iPureIntro. by unfold_leibniz. }
      rewrite /from_active fmap_empty /= right_id.

      (* Unlocked ~~> Locked *)
      iMod (own_update_2 with "Hstate Hunlk") as "Hstate".
      { apply (auth_update _ _ (Excl' Locked) (Excl' Locked)).
        apply option_local_update.
        by apply exclusive_local_update. }
      iDestruct "Hstate" as "[Hstate Hflkd]".

      iApply "HΦ". rewrite /flocked.
      iFrame "Hflkd".

      (* Designate the propositions from I as active *)
      pose (fa := fmap (λ X, (res_frac X, res_name X)) I).
      iExists fa.
      iAssert (fa = (λ X, (res_frac X, res_name X)) <$> I)%I as "$".
      { eauto. }

      iMod (own_update_2 with "Haactive Hfactive") as "[Haactive Hfactive]".
      { apply (auth_update _ _ (Excl' fa)
                               (Excl' fa)).
        by apply option_local_update, exclusive_local_update. }
      iFrame "Hfactive".

      rewrite /flock_res. rewrite !big_sepM_sepM.
      iDestruct "HRres" as "(HI & #Hinvs & Hρs)".
      iFrame "Hinvs Hρs".

      (* this is going to be annoying .. *)
      (* show that I ⊆ fp, or, better fp = fp' ∪ I *)

      (* first obtain the empty fragment for big_sepM_own_frag *)
Dan Frumin's avatar
Dan Frumin committed
659
660
      iMod (own_frag_empty with "Haprops") as "[Haprops #Hemp]".

661
662
663
664
665
666
667
668
669
      pose (I' := (fmap (λ X, (res_frac X, to_agree (res_name X))) I)).
      iAssert (own (flock_props_name γ) ( I'))
        with "[HI Hemp]" as "HI".
      { by iApply (big_sepM_own_frag with "Hemp"). }

      (* I' ≼ fp *)
      iDestruct (own_valid_2 with "Haprops HI")
        as %[Hfoo _]%auth_valid_discrete_2.

Dan Frumin's avatar
Dan Frumin committed
670
671
      (* TODO: RK, please take a look at this horrific script *)
      (* We are going to separate the active resources I out of the fp map *)
672
      pose (I'' := fmap res_name I).
Dan Frumin's avatar
Dan Frumin committed
673
      assert ( P', P' ## I''  fp  P'  I'') as [P' HP'].
674
      { subst I'' I' fa. clear H1.
Dan Frumin's avatar
Dan Frumin committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
        unfold to_props_map in *.
        pose (f := (λ X, (res_frac X, to_agree (res_name X)))).
        pose (g := (λ X:lock_res_name, (1%Qp, to_agree X))).
        (* Proof idea:
          f <$> I ≼ g <$> fp
             implies
          snd <$> f <$> I ≼ snd <$> g <$> fp
          =  to_agree o res_name <$> I ≼ to_agree <$> fp *)
        assert (((snd <$> (f <$> I)) : gmapUR prop_id (agreeR lock_res_nameC))  (snd <$> (g <$> fp))) as Hbar.
        { (* TODO: this is the /proper/ proof of the statement, but
             the proof is incorrect because currently projections are
             not morphisms *)
          eapply cmra_morphism_monotone; last exact: Hfoo.
          apply gmap_fmap_cmra_morphism. apply _.
        }
        rewrite -!map_fmap_compose in Hbar.
        assert ((to_agree  res_name <$> I)  to_agree <$> fp) as Hbaz by exact: Hbar.
        rewrite map_fmap_compose in Hbaz.

        (* which implies the following *)
        assert ( i, to_agree <$> (res_name <$> (I !! i))  to_agree <$> (fp !! i)) as Hbork.
        { intros i. rewrite -!lookup_fmap. revert i.
          apply lookup_included. exact: Hbaz. }
        clear Hbaz Hbar Hfoo.

700
        generalize dependent fp.
Dan Frumin's avatar
Dan Frumin committed
701
        induction I as [|i X I HI IHI] using map_ind; intros fp.
702
        + rewrite fmap_empty.
Dan Frumin's avatar
Dan Frumin committed
703
704
          exists fp. rewrite right_id.
          split; first solve_map_disjoint; auto.
705
706
        + rewrite fmap_insert=>Hfp.
          specialize (IHI (delete i fp)).
Dan Frumin's avatar
Dan Frumin committed
707
708
709
710
711
712
713
714
715
          assert ( j, to_agree <$> (res_name <$> I !! j)
                          (to_agree <$> delete i fp !! j)) as goodboi.
          { intros j.
            destruct (decide (i = j)) as [<-|?].
            - by rewrite HI lookup_delete.
            - specialize (Hfp j).
              rewrite lookup_insert_ne in Hfp; last done.
              rewrite lookup_delete_ne //. }
          specialize (IHI goodboi). clear goodboi.
716
717
          destruct IHI as [P [HP HU]].
          assert (P !! i = None) as HPi.
Dan Frumin's avatar
Dan Frumin committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
          { destruct (P !! i) as [Y|] eqn:HPi; auto; simplify_eq/=.
            exfalso. unfold_leibniz.
            specialize (HU i). fold_leibniz.
            rewrite (lookup_union_Some_l _ _ _ _ HPi) in HU.
            rewrite lookup_delete in HU. done. }
          exists P. split; first solve_map_disjoint.
          rewrite -insert_union_r // -HU.
          rewrite insert_delete=> j.
          specialize (Hfp j).
          destruct (decide (i = j)) as [<-|?].
          * revert Hfp. rewrite !lookup_insert.
            intros Hfp.
            destruct (proj1( option_included _ _) Hfp)
              as [?|(a&?&Ha&Hj&Heq)]; simplify_eq/=.
            destruct (fp !! i) as [Y|] eqn:HY; simplify_eq/=.
            revert Heq. rewrite to_agree_included HY.
            intros [->%to_agree_inj | ->]; reflexivity.
          * rewrite lookup_insert_ne //. }
      fold_leibniz.

738
      destruct HP' as [HP' ->].
Dan Frumin's avatar
Dan Frumin committed
739

740
741
742
743
744
745
746
747
748
749
      rewrite /all_tokens big_sepM_union //.
      iDestruct "Htokens" as "[Htokens H]".
      rewrite /I'' big_sepM_fmap. iFrame.
      iApply "Hcl".
      iNext. iExists Locked, fa, P'.
      assert (res_name <$> I = from_active fa) as <-.
      { rewrite /from_active -map_fmap_compose.
        apply map_eq=> k. by rewrite lookup_fmap. }
      iFrame. iSplit; eauto.
      rewrite big_sepM_fmap.
Dan Frumin's avatar
Dan Frumin committed
750
      iApply (big_sepM_own_frag with "Hemp HI").
Dan Frumin's avatar
Dan Frumin committed
751
  Qed.
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

  Lemma release_cancel_spec' γ lk I :
    {{{ is_flock γ lk  flocked γ I }}}
      release lk
    {{{ RET #(); [ map] i  X  I, flock_res γ i X }}}.
  Proof.
    iIntros (Φ) "(#Hl & H) HΦ". rewrite -fupd_wp.
    rewrite /is_flock. iDestruct "Hl" as "(#Hinv & #Hlk)".

    rewrite {1}/flocked /=.
    iDestruct "H" as (fa' Hfa) "(Hflkd & Hfactive & Hfa)".
    do 2 rewrite big_sepM_sepM.
    iDestruct "Hfa" as "(HT2s & #Hinvs & Hρs)".

    iInv invN as ([|] fa fp)
      "(>% & >Hstate & >Haprops & >Haactive & >Htokens & Hst)" "Hcl";
      last first.
    - iDestruct (own_valid_2 with "Hstate Hflkd")
          as %[Hfoo%Excl_included _]%auth_valid_discrete_2.
      fold_leibniz. inversion Hfoo.
    - iDestruct "Hst" as ">[Hlocked Hactives]".
      iDestruct (own_valid_2 with "Haactive Hfactive")
        as %[Hfoo%Excl_included _]%auth_valid_discrete_2.
      fold_leibniz. simplify_eq/=.

      (* Locked ~~> Unlocked *)
      iMod (own_update_2 with "Hstate Hflkd") as "Hstate".
      { apply (auth_update _ _ (Excl' Unlocked) (Excl' Unlocked)).
        apply option_local_update.
        by apply exclusive_local_update. }
      iDestruct "Hstate" as "[Hstate Hunflkd]".

      (* Empty up the set of active propositions *)
      iMod (own_update_2 with "Haactive Hfactive") as "[Haactive Hfactive]".
      { apply (auth_update _ _ (Excl' )
                               (Excl' )).
        by apply option_local_update, exclusive_local_update. }


      pose (fa := ((λ X : lock_res, (res_frac X, res_name X)) <$> I)).
      iMod ("Hcl" with "[-HΦ Hlocked Hactives Hunflkd Hρs]") as "_".
      { iNext. iExists Unlocked,,(fp  from_active fa).
        iSplitR; eauto.
        - rewrite /from_active fmap_empty. iPureIntro.
          solve_map_disjoint.
        - iFrame. rewrite /from_active fmap_empty right_id /=.
          iFrame "Haprops".
          rewrite /all_tokens.
          rewrite big_sepM_union // -map_fmap_compose.
          rewrite big_sepM_fmap. by iFrame. }
      iApply (release_spec with "[$Hlk $Hlocked $Hunflkd]").
      iModIntro. iNext. iIntros "_". iApply "HΦ".
      rewrite /flock_res !big_sepM_sepM.
      iFrame "Hρs Hinvs".
      rewrite big_sepM_fmap. iFrame.
  Qed.
Dan Frumin's avatar
Dan Frumin committed
808

Léon Gondelman's avatar
Léon Gondelman committed
809
End flock.