Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Actris
Commits
df678f5f
Commit
df678f5f
authored
Nov 15, 2019
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
More basic examples.
parent
a7b129ac
Pipeline
#21245
passed with stage
in 5 minutes and 11 seconds
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
56 additions
and
16 deletions
+56
-16
theories/examples/basics.v
theories/examples/basics.v
+56
-16
No files found.
theories/examples/basics.v
View file @
df678f5f
...
...
@@ -10,12 +10,12 @@ Definition prog1 : val := λ: <>,
recv
"c"
.
(** Tranfering References *)
Definition
prog
2
:
val
:
=
λ
:
<>,
Definition
prog
1_ref
:
val
:
=
λ
:
<>,
let
:
"c"
:
=
start_chan
(
λ
:
"c'"
,
send
"c'"
(
ref
#
42
))
in
!
(
recv
"c"
).
(** Delegation, i.e. transfering channels *)
Definition
prog
3
:
val
:
=
λ
:
<>,
Definition
prog
1_del
:
val
:
=
λ
:
<>,
let
:
"c1"
:
=
start_chan
(
λ
:
"c1'"
,
let
:
"cc2"
:
=
new_chan
#()
in
send
"c1'"
(
Fst
"cc2"
)
;;
...
...
@@ -23,14 +23,26 @@ Definition prog3 : val := λ: <>,
recv
(
recv
"c1"
).
(** Dependent protocols *)
Definition
prog
4
:
val
:
=
λ
:
<>,
Definition
prog
2
:
val
:
=
λ
:
<>,
let
:
"c"
:
=
start_chan
(
λ
:
"c'"
,
let
:
"x"
:
=
recv
"c'"
in
send
"c'"
(
"x"
+
#
2
))
in
send
"c"
#
40
;;
recv
"c"
.
Definition
prog2_ref
:
val
:
=
λ
:
<>,
let
:
"c"
:
=
start_chan
(
λ
:
"c'"
,
let
:
"l"
:
=
recv
"c'"
in
"l"
<-
!
"l"
+
#
2
;;
send
"c'"
#())
in
let
:
"l"
:
=
ref
#
40
in
send
"c"
"l"
;;
recv
"c"
;;
!
"l"
.
Definition
prog2_del
:
val
:
=
λ
:
<>,
let
:
"c1"
:
=
start_chan
(
λ
:
"c1'"
,
let
:
"cc2"
:
=
new_chan
#()
in
send
"c1'"
(
Fst
"cc2"
)
;;
let
:
"x"
:
=
recv
(
Snd
"cc2"
)
in
send
(
Snd
"cc2"
)
(
"x"
+
#
2
))
in
let
:
"c2'"
:
=
recv
"c1"
in
send
"c2'"
#
40
;;
recv
"c2'"
.
(** Transfering higher-order functions *)
Definition
prog
5
:
val
:
=
λ
:
<>,
Definition
prog
3
:
val
:
=
λ
:
<>,
let
:
"c"
:
=
start_chan
(
λ
:
"c'"
,
let
:
"f"
:
=
recv
"c'"
in
send
"c'"
(
λ
:
<>,
"f"
#()
+
#
2
))
in
let
:
"r"
:
=
ref
#
40
in
...
...
@@ -52,16 +64,24 @@ Context `{heapG Σ, proto_chanG Σ}.
Definition
prot1
:
iProto
Σ
:
=
(<?>
MSG
#
42
;
END
)%
proto
.
Definition
prot
2
:
iProto
Σ
:
=
Definition
prot
1_ref
:
iProto
Σ
:
=
(<?>
l
:
loc
,
MSG
#
l
{{
l
↦
#
42
}}
;
END
)%
proto
.
Definition
prot
3
:
iProto
Σ
:
=
Definition
prot
1_del
:
iProto
Σ
:
=
(<?>
c
:
val
,
MSG
c
{{
c
↣
prot1
}}
;
END
)%
proto
.
Definition
prot
4
:
iProto
Σ
:
=
Definition
prot
2
:
iProto
Σ
:
=
(<!>
x
:
Z
,
MSG
#
x
;
<?>
MSG
#(
x
+
2
)
;
END
)%
proto
.
Definition
prot5
:
iProto
Σ
:
=
Definition
prot2_ref
:
iProto
Σ
:
=
(<!>
(
l
:
loc
)
(
x
:
Z
),
MSG
#
l
{{
l
↦
#
x
}}
;
<?>
MSG
#()
{{
l
↦
#(
x
+
2
)
}}
;
END
)%
proto
.
Definition
prot2_del
:
iProto
Σ
:
=
(<?>
c
:
val
,
MSG
c
{{
c
↣
prot2
}}
;
END
)%
proto
.
Definition
prot3
:
iProto
Σ
:
=
(<!>
(
P
:
iProp
Σ
)
(
Φ
:
Z
→
iProp
Σ
)
(
vf
:
val
),
MSG
vf
{{
{{{
P
}}}
vf
#()
{{{
x
,
RET
#
x
;
Φ
x
}}}
}}
;
<?>
(
vg
:
val
),
...
...
@@ -83,36 +103,56 @@ Proof.
-
wp_recv
as
"_"
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog
2
_spec
:
{{{
True
}}}
prog
2
#()
{{{
RET
#
42
;
True
}}}.
Lemma
prog
1_ref
_spec
:
{{{
True
}}}
prog
1_ref
#()
{{{
RET
#
42
;
True
}}}.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot
2
)
;
iIntros
(
c
)
"Hc"
.
wp_apply
(
start_chan_proto_spec
prot
1_ref
)
;
iIntros
(
c
)
"Hc"
.
-
wp_alloc
l
as
"Hl"
.
by
wp_send
with
"[$Hl]"
.
-
wp_recv
(
l
)
as
"Hl"
.
wp_load
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog
3
_spec
:
{{{
True
}}}
prog
3
#()
{{{
RET
#
42
;
True
}}}.
Lemma
prog
1_del
_spec
:
{{{
True
}}}
prog
1_del
#()
{{{
RET
#
42
;
True
}}}.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot
3
)
;
iIntros
(
c
)
"Hc"
.
wp_apply
(
start_chan_proto_spec
prot
1_del
)
;
iIntros
(
c
)
"Hc"
.
-
wp_apply
(
new_chan_proto_spec
with
"[//]"
).
iIntros
(
c2
c2'
)
"Hcc2"
.
iMod
(
"Hcc2"
$!
prot1
)
as
"[Hc2 Hc2']"
.
wp_send
with
"[$Hc2]"
.
by
wp_send
with
"[]"
.
-
wp_recv
(
c2
)
as
"Hc2"
.
wp_recv
as
"_"
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog
4
_spec
:
{{{
True
}}}
prog
4
#()
{{{
RET
#
42
;
True
}}}.
Lemma
prog
2
_spec
:
{{{
True
}}}
prog
2
#()
{{{
RET
#
42
;
True
}}}.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot
4
)
;
iIntros
(
c
)
"Hc"
.
wp_apply
(
start_chan_proto_spec
prot
2
)
;
iIntros
(
c
)
"Hc"
.
-
wp_recv
(
x
)
as
"_"
.
by
wp_send
with
"[]"
.
-
wp_send
with
"[//]"
.
wp_recv
as
"_"
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog5_spec
:
{{{
True
}}}
prog5
#()
{{{
RET
#
42
;
True
}}}.
Lemma
prog2_ref_spec
:
{{{
True
}}}
prog2_ref
#()
{{{
RET
#
42
;
True
}}}.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot2_ref
)
;
iIntros
(
c
)
"Hc"
.
-
wp_recv
(
l
x
)
as
"Hl"
.
wp_load
.
wp_store
.
by
wp_send
with
"[Hl]"
.
-
wp_alloc
l
as
"Hl"
.
wp_send
with
"[$Hl]"
.
wp_recv
as
"Hl"
.
wp_load
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog2_del_spec
:
{{{
True
}}}
prog2_del
#()
{{{
RET
#
42
;
True
}}}.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot5
)
;
iIntros
(
c
)
"Hc"
.
wp_apply
(
start_chan_proto_spec
prot2_del
)
;
iIntros
(
c
)
"Hc"
.
-
wp_apply
(
new_chan_proto_spec
with
"[//]"
).
iIntros
(
c2
c2'
)
"Hcc2"
.
iMod
(
"Hcc2"
$!
prot2
)
as
"[Hc2 Hc2']"
.
wp_send
with
"[$Hc2]"
.
wp_recv
(
x
)
as
"_"
.
by
wp_send
with
"[]"
.
-
wp_recv
(
c2
)
as
"Hc2"
.
wp_send
with
"[//]"
.
wp_recv
as
"_"
.
by
iApply
"HΦ"
.
Qed
.
Lemma
prog3_spec
:
{{{
True
}}}
prog3
#()
{{{
RET
#
42
;
True
}}}.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
(
start_chan_proto_spec
prot3
)
;
iIntros
(
c
)
"Hc"
.
-
wp_recv
(
P
Ψ
vf
)
as
"#Hf"
.
wp_send
with
"[]"
;
last
done
.
iIntros
"!>"
(
Ψ
'
)
"HP HΨ'"
.
wp_apply
(
"Hf"
with
"HP"
)
;
iIntros
(
x
)
"HΨ"
.
wp_pures
.
by
iApply
"HΨ'"
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment