Commit dd104e06 by Daniël Louwrink

### update more typing rules

parent 9d43893c
 ... ... @@ -171,7 +171,7 @@ Section subtyping_rules. Qed. Lemma lty_le_exist C1 C2 : ▷ (∀ A, C1 A <: C2 A) -∗ (∀ A, C1 A <: C2 A) -∗ (∃ A, C1 A) <: (∃ A, C2 A). Proof. iIntros "#Hle" (v) "!>". iDestruct 1 as (A) "H". iExists A. by iApply "Hle". ... ... @@ -187,7 +187,7 @@ Section subtyping_rules. Qed. Lemma lty_copyable_exist (C : ltty Σ → ltty Σ) : ▷ (∀ M, lty_copyable (C M)) -∗ lty_copyable (lty_exist C). (∀ M, lty_copyable (C M)) -∗ lty_copyable (lty_exist C). Proof. iIntros "#Hle". rewrite /lty_copyable /tc_opaque. iApply lty_le_r; last by iApply lty_le_exist_copy. ... ...
 ... ... @@ -27,7 +27,7 @@ Definition lty_sum {Σ} (A1 A2 : ltty Σ) : ltty Σ := Ltty (λ w, Definition lty_forall `{heapG Σ} {k} (C : lty Σ k → ltty Σ) : ltty Σ := Ltty (λ w, ∀ A, WP w #() {{ ltty_car (C A) }})%I. Definition lty_exist {Σ k} (C : lty Σ k → ltty Σ) : ltty Σ := Ltty (λ w, ∃ A, ▷ ltty_car (C A) w)%I. Ltty (λ w, ∃ A, ltty_car (C A) w)%I. Definition lty_ref_mut `{heapG Σ} (A : ltty Σ) : ltty Σ := Ltty (λ w, ∃ (l : loc) (v : val), ⌜w = #l⌝ ∗ l ↦ v ∗ ▷ ltty_car A v)%I. ... ... @@ -130,9 +130,6 @@ Section term_types. Global Instance lty_forall_ne `{heapG Σ} k n : Proper (pointwise_relation _ (dist n) ==> dist n) (@lty_forall Σ _ k). Proof. solve_proper. Qed. Global Instance lty_exist_contractive k n : Proper (pointwise_relation _ (dist_later n) ==> dist n) (@lty_exist Σ k). Proof. solve_contractive. Qed. Global Instance lty_exist_ne k n : Proper (pointwise_relation _ (dist n) ==> dist n) (@lty_exist Σ k). Proof. solve_proper. Qed. ... ...