From c914ef04e2c79d3f52d40ace2a9c6faea0ad63e5 Mon Sep 17 00:00:00 2001 From: Jonas Kastberg Hinrichsen <jihgfee@gmail.com> Date: Thu, 21 Mar 2024 20:27:47 +0100 Subject: [PATCH] WIP: Computable consistency --- multi_actris/channel/proto_alt.v | 1408 ++++++++++++++++++++++++++++++ 1 file changed, 1408 insertions(+) create mode 100644 multi_actris/channel/proto_alt.v diff --git a/multi_actris/channel/proto_alt.v b/multi_actris/channel/proto_alt.v new file mode 100644 index 0000000..29d8603 --- /dev/null +++ b/multi_actris/channel/proto_alt.v @@ -0,0 +1,1408 @@ +(** This file defines the core of the Actris logic: It defines dependent +separation protocols and the various operations on it like dual, append, and +branching. + +Dependent separation protocols [iProto] are defined by instantiating the +parameterized version in [proto_model] with the type of propositions [iProp] of Iris. +We define ways of constructing instances of the instantiated type via two +constructors: +- [iProto_end], which is identical to [proto_end]. +- [iProto_message], which takes an [action] and an [iMsg]. The type [iMsg] is a + sequence of binders [iMsg_exist], terminated by the payload constructed with + [iMsg_base] based on arguments [v], [P] and [prot], which are the value, the + carried proposition and the [iProto] tail, respectively. + +For convenience sake, we provide the following notations: +- [END], which is simply [iProto_end]. +- [∃ x, m], which is [iMsg_exist] with argument [m]. +- [MSG v {{ P }}; prot], which is [iMsg_Base] with arguments [v], [P] and [prot]. +- [<a> m], which is [iProto_message] with arguments [a] and [m]. + +We also include custom notation to more easily construct complete constructions: +- [<a x1 .. xn> m], which is [<a> ∃ x1, .. ∃ xn, m]. +- [<a x1 .. xn> MSG v; {{ P }}; prot], which constructs a full protocol. + +Futhermore, we define the following operations: +- [iProto_dual], which turns all [Send] of a protocol into [Recv] and vice-versa. +- [iProto_app], which appends two protocols. + +In addition we define the subprotocol relation [iProto_le] [⊑], which generalises +the following inductive definition for asynchronous subtyping on session types: + + p1 <: p2 p1 <: p2 p1 <: !B.p3 ?A.p3 <: p2 +---------- ---------------- ---------------- ---------------------------- +end <: end !A.p1 <: !A.p2 ?A.p1 <: ?A.p2 ?A.p1 <: !B.p2 + +Example: + +!R <: !R ?Q <: ?Q ?Q <: ?Q +------------------- -------------- +?Q.!R <: !R.?Q ?P.?Q <: ?P.?Q +------------------------------------ + ?P.?Q.!R <: !R.?P.?Q + +Lastly, relevant type classes instances are defined for each of the above +notions, such as contractiveness and non-expansiveness, after which the +specifications of the message-passing primitives are defined in terms of the +protocol connectives. *) +From iris.algebra Require Import gmap excl_auth gmap_view. +From iris.proofmode Require Import proofmode. +From iris.base_logic Require Export lib.iprop. +From iris.base_logic Require Import lib.own. +From iris.program_logic Require Import language. +From multi_actris.channel Require Import proto_model. +Set Default Proof Using "Type". +Export action. + +(** * Setup of Iris's cameras *) +Class protoG Σ V := + protoG_authG :: + inG Σ (gmap_viewR natO + (optionUR (exclR (laterO (proto (leibnizO V) (iPropO Σ) (iPropO Σ)))))). + +Definition protoΣ V := #[ + GFunctor ((gmap_viewRF natO (optionRF (exclRF (laterOF (protoOF (leibnizO V) idOF idOF)))))) +]. +Global Instance subG_chanΣ {Σ V} : subG (protoΣ V) Σ → protoG Σ V. +Proof. solve_inG. Qed. + +(** * Types *) +Definition iProto Σ V := proto V (iPropO Σ) (iPropO Σ). +Declare Scope proto_scope. +Delimit Scope proto_scope with proto. +Bind Scope proto_scope with iProto. +Local Open Scope proto. + +(** * Messages *) +Section iMsg. + Set Primitive Projections. + Record iMsg Σ V := IMsg { iMsg_car : V → laterO (iProto Σ V) -n> iPropO Σ }. +End iMsg. +Arguments IMsg {_ _} _. +Arguments iMsg_car {_ _} _. + +Declare Scope msg_scope. +Delimit Scope msg_scope with msg. +Bind Scope msg_scope with iMsg. +Global Instance iMsg_inhabited {Σ V} : Inhabited (iMsg Σ V) := populate (IMsg inhabitant). + +Section imsg_ofe. + Context {Σ : gFunctors} {V : Type}. + + Instance iMsg_equiv : Equiv (iMsg Σ V) := λ m1 m2, + ∀ w p, iMsg_car m1 w p ≡ iMsg_car m2 w p. + Instance iMsg_dist : Dist (iMsg Σ V) := λ n m1 m2, + ∀ w p, iMsg_car m1 w p ≡{n}≡ iMsg_car m2 w p. + + Lemma iMsg_ofe_mixin : OfeMixin (iMsg Σ V). + Proof. by apply (iso_ofe_mixin (iMsg_car : _ → V -d> _ -n> _)). Qed. + Canonical Structure iMsgO := Ofe (iMsg Σ V) iMsg_ofe_mixin. + + Global Instance iMsg_cofe : Cofe iMsgO. + Proof. by apply (iso_cofe (IMsg : (V -d> _ -n> _) → _) iMsg_car). Qed. +End imsg_ofe. + +Program Definition iMsg_base_def {Σ V} + (v : V) (P : iProp Σ) (p : iProto Σ V) : iMsg Σ V := + IMsg (λ v', λne p', ⌜ v = v' ⌠∗ Next p ≡ p' ∗ P)%I. +Next Obligation. solve_proper. Qed. +Definition iMsg_base_aux : seal (@iMsg_base_def). by eexists. Qed. +Definition iMsg_base := iMsg_base_aux.(unseal). +Definition iMsg_base_eq : @iMsg_base = @iMsg_base_def := iMsg_base_aux.(seal_eq). +Arguments iMsg_base {_ _} _%V _%I _%proto. +Global Instance: Params (@iMsg_base) 3 := {}. + +Program Definition iMsg_exist_def {Σ V A} (m : A → iMsg Σ V) : iMsg Σ V := + IMsg (λ v', λne p', ∃ x, iMsg_car (m x) v' p')%I. +Next Obligation. solve_proper. Qed. +Definition iMsg_exist_aux : seal (@iMsg_exist_def). by eexists. Qed. +Definition iMsg_exist := iMsg_exist_aux.(unseal). +Definition iMsg_exist_eq : @iMsg_exist = @iMsg_exist_def := iMsg_exist_aux.(seal_eq). +Arguments iMsg_exist {_ _ _} _%msg. +Global Instance: Params (@iMsg_exist) 3 := {}. + +Definition iMsg_texist {Σ V} {TT : tele} (m : TT → iMsg Σ V) : iMsg Σ V := + tele_fold (@iMsg_exist Σ V) (λ x, x) (tele_bind m). +Arguments iMsg_texist {_ _ !_} _%msg /. + +Notation "'MSG' v {{ P } } ; p" := (iMsg_base v P p) + (at level 200, v at level 20, right associativity, + format "MSG v {{ P } } ; p") : msg_scope. +Notation "'MSG' v ; p" := (iMsg_base v True p) + (at level 200, v at level 20, right associativity, + format "MSG v ; p") : msg_scope. +Notation "∃ x .. y , m" := + (iMsg_exist (λ x, .. (iMsg_exist (λ y, m)) ..)%msg) : msg_scope. +Notation "'∃..' x .. y , m" := + (iMsg_texist (λ x, .. (iMsg_texist (λ y, m)) .. )%msg) + (at level 200, x binder, y binder, right associativity, + format "∃.. x .. y , m") : msg_scope. + +Lemma iMsg_texist_exist {Σ V} {TT : tele} w lp (m : TT → iMsg Σ V) : + iMsg_car (∃.. x, m x)%msg w lp ⊣⊢ (∃.. x, iMsg_car (m x) w lp). +Proof. + rewrite /iMsg_texist iMsg_exist_eq. + induction TT as [|T TT IH]; simpl; [done|]. f_equiv=> x. apply IH. +Qed. + +(** * Operators *) +Definition iProto_end_def {Σ V} : iProto Σ V := proto_end. +Definition iProto_end_aux : seal (@iProto_end_def). by eexists. Qed. +Definition iProto_end := iProto_end_aux.(unseal). +Definition iProto_end_eq : @iProto_end = @iProto_end_def := iProto_end_aux.(seal_eq). +Arguments iProto_end {_ _}. + +Definition iProto_message_def {Σ V} (a : action) (m : iMsg Σ V) : iProto Σ V := + proto_message a (iMsg_car m). +Definition iProto_message_aux : seal (@iProto_message_def). by eexists. Qed. +Definition iProto_message := iProto_message_aux.(unseal). +Definition iProto_message_eq : + @iProto_message = @iProto_message_def := iProto_message_aux.(seal_eq). +Arguments iProto_message {_ _} _ _%msg. +Global Instance: Params (@iProto_message) 3 := {}. + +Notation "'END'" := iProto_end : proto_scope. + +Notation "< a > m" := (iProto_message a m) + (at level 200, a at level 10, m at level 200, + format "< a > m") : proto_scope. +Notation "< a @ x1 .. xn > m" := (iProto_message a (∃ x1, .. (∃ xn, m) ..)) + (at level 200, a at level 10, x1 closed binder, xn closed binder, m at level 200, + format "< a @ x1 .. xn > m") : proto_scope. +Notation "< a @.. x1 .. xn > m" := (iProto_message a (∃.. x1, .. (∃.. xn, m) ..)) + (at level 200, a at level 10, x1 closed binder, xn closed binder, m at level 200, + format "< a @.. x1 .. xn > m") : proto_scope. + +Class MsgTele {Σ V} {TT : tele} (m : iMsg Σ V) + (tv : TT -t> V) (tP : TT -t> iProp Σ) (tp : TT -t> iProto Σ V) := + msg_tele : m ≡ (∃.. x, MSG tele_app tv x {{ tele_app tP x }}; tele_app tp x)%msg. +Global Hint Mode MsgTele ! ! - ! - - - : typeclass_instances. + +(** * Operations *) +Program Definition iMsg_map {Σ V} + (rec : iProto Σ V → iProto Σ V) (m : iMsg Σ V) : iMsg Σ V := + IMsg (λ v, λne p1', ∃ p1, iMsg_car m v (Next p1) ∗ p1' ≡ Next (rec p1))%I. +Next Obligation. solve_proper. Qed. + +Program Definition iProto_map_app_aux {Σ V} + (f : action → action) (p2 : iProto Σ V) + (rec : iProto Σ V -n> iProto Σ V) : iProto Σ V -n> iProto Σ V := λne p, + proto_elim p2 (λ a m, + proto_message (f a) (iMsg_car (iMsg_map rec (IMsg m)))) p. +Next Obligation. + intros Σ V f p2 rec n p1 p1' Hp. apply proto_elim_ne=> // a m1 m2 Hm. + apply proto_message_ne=> v p' /=. by repeat f_equiv. +Qed. + +Global Instance iProto_map_app_aux_contractive {Σ V} f (p2 : iProto Σ V) : + Contractive (iProto_map_app_aux f p2). +Proof. + intros n rec1 rec2 Hrec p1; simpl. apply proto_elim_ne=> // a m1 m2 Hm. + apply proto_message_ne=> v p' /=. by repeat (f_contractive || f_equiv). +Qed. + +Definition iProto_map_app {Σ V} (f : action → action) + (p2 : iProto Σ V) : iProto Σ V -n> iProto Σ V := + fixpoint (iProto_map_app_aux f p2). + +Definition iProto_app_def {Σ V} (p1 p2 : iProto Σ V) : iProto Σ V := + iProto_map_app id p2 p1. +Definition iProto_app_aux : seal (@iProto_app_def). Proof. by eexists. Qed. +Definition iProto_app := iProto_app_aux.(unseal). +Definition iProto_app_eq : @iProto_app = @iProto_app_def := iProto_app_aux.(seal_eq). +Arguments iProto_app {_ _} _%proto _%proto. +Global Instance: Params (@iProto_app) 2 := {}. +Infix "<++>" := iProto_app (at level 60) : proto_scope. +Notation "m <++> p" := (iMsg_map (flip iProto_app p) m) : msg_scope. + +Definition iProto_dual_def {Σ V} (p : iProto Σ V) : iProto Σ V := + iProto_map_app action_dual proto_end p. +Definition iProto_dual_aux : seal (@iProto_dual_def). Proof. by eexists. Qed. +Definition iProto_dual := iProto_dual_aux.(unseal). +Definition iProto_dual_eq : + @iProto_dual = @iProto_dual_def := iProto_dual_aux.(seal_eq). +Arguments iProto_dual {_ _} _%proto. +Global Instance: Params (@iProto_dual) 2 := {}. +Notation iMsg_dual := (iMsg_map iProto_dual). + +Definition iProto_dual_if {Σ V} (d : bool) (p : iProto Σ V) : iProto Σ V := + if d then iProto_dual p else p. +Arguments iProto_dual_if {_ _} _ _%proto. +Global Instance: Params (@iProto_dual_if) 3 := {}. + +(** * Proofs *) +Section proto. + Context `{!protoG Σ V}. + Implicit Types v : V. + Implicit Types p pl pr : iProto Σ V. + Implicit Types m : iMsg Σ V. + + (** ** Equality *) + Lemma iProto_case p : p ≡ END ∨ ∃ t n m, p ≡ <(t,n)> m. + Proof. + rewrite iProto_message_eq iProto_end_eq. + destruct (proto_case p) as [|([a n]&m&?)]; [by left|right]. + by exists a, n, (IMsg m). + Qed. + Lemma iProto_message_equivI `{!BiInternalEq SPROP} a1 a2 m1 m2 : + (<a1> m1) ≡ (<a2> m2) ⊣⊢@{SPROP} ⌜ a1 = a2 ⌠∧ + (∀ v lp, iMsg_car m1 v lp ≡ iMsg_car m2 v lp). + Proof. rewrite iProto_message_eq. apply proto_message_equivI. Qed. + + Lemma iProto_message_end_equivI `{!BiInternalEq SPROP} a m : + (<a> m) ≡ END ⊢@{SPROP} False. + Proof. rewrite iProto_message_eq iProto_end_eq. apply proto_message_end_equivI. Qed. + Lemma iProto_end_message_equivI `{!BiInternalEq SPROP} a m : + END ≡ (<a> m) ⊢@{SPROP} False. + Proof. by rewrite internal_eq_sym iProto_message_end_equivI. Qed. + + (** ** Non-expansiveness of operators *) + Global Instance iMsg_car_proper : + Proper (iMsg_equiv ==> (=) ==> (≡) ==> (≡)) (iMsg_car (Σ:=Σ) (V:=V)). + Proof. + intros m1 m2 meq v1 v2 veq p1 p2 peq. rewrite meq. + f_equiv; [ by f_equiv | done ]. + Qed. + Global Instance iMsg_car_ne n : + Proper (iMsg_dist n ==> (=) ==> (dist n) ==> (dist n)) (iMsg_car (Σ:=Σ) (V:=V)). + Proof. + intros m1 m2 meq v1 v2 veq p1 p2 peq. rewrite meq. + f_equiv; [ by f_equiv | done ]. + Qed. + + Global Instance iMsg_contractive v n : + Proper (dist n ==> dist_later n ==> dist n) (iMsg_base (Σ:=Σ) (V:=V) v). + Proof. rewrite iMsg_base_eq=> P1 P2 HP p1 p2 Hp w q /=. solve_contractive. Qed. + Global Instance iMsg_ne v : NonExpansive2 (iMsg_base (Σ:=Σ) (V:=V) v). + Proof. rewrite iMsg_base_eq=> P1 P2 HP p1 p2 Hp w q /=. solve_proper. Qed. + Global Instance iMsg_proper v : + Proper ((≡) ==> (≡) ==> (≡)) (iMsg_base (Σ:=Σ) (V:=V) v). + Proof. apply (ne_proper_2 _). Qed. + + Global Instance iMsg_exist_ne A n : + Proper (pointwise_relation _ (dist n) ==> (dist n)) (@iMsg_exist Σ V A). + Proof. rewrite iMsg_exist_eq=> m1 m2 Hm v p /=. f_equiv=> x. apply Hm. Qed. + Global Instance iMsg_exist_proper A : + Proper (pointwise_relation _ (≡) ==> (≡)) (@iMsg_exist Σ V A). + Proof. rewrite iMsg_exist_eq=> m1 m2 Hm v p /=. f_equiv=> x. apply Hm. Qed. + + Global Instance msg_tele_base (v:V) (P : iProp Σ) (p : iProto Σ V) : + MsgTele (TT:=TeleO) (MSG v {{ P }}; p) v P p. + Proof. done. Qed. + Global Instance msg_tele_exist {A} {TT : A → tele} (m : A → iMsg Σ V) tv tP tp : + (∀ x, MsgTele (TT:=TT x) (m x) (tv x) (tP x) (tp x)) → + MsgTele (TT:=TeleS TT) (∃ x, m x) tv tP tp. + Proof. intros Hm. rewrite /MsgTele /=. f_equiv=> x. apply Hm. Qed. + + Global Instance iProto_message_ne a : + NonExpansive (iProto_message (Σ:=Σ) (V:=V) a). + Proof. rewrite iProto_message_eq. solve_proper. Qed. + Global Instance iProto_message_proper a : + Proper ((≡) ==> (≡)) (iProto_message (Σ:=Σ) (V:=V) a). + Proof. apply (ne_proper _). Qed. + + Lemma iProto_message_equiv {TT1 TT2 : tele} a1 a2 + (m1 m2 : iMsg Σ V) + (v1 : TT1 -t> V) (v2 : TT2 -t> V) + (P1 : TT1 -t> iProp Σ) (P2 : TT2 -t> iProp Σ) + (prot1 : TT1 -t> iProto Σ V) (prot2 : TT2 -t> iProto Σ V) : + MsgTele m1 v1 P1 prot1 → + MsgTele m2 v2 P2 prot2 → + ⌜ a1 = a2 ⌠-∗ + (■∀.. (xs1 : TT1), tele_app P1 xs1 -∗ + ∃.. (xs2 : TT2), ⌜tele_app v1 xs1 = tele_app v2 xs2⌠∗ + â–· (tele_app prot1 xs1 ≡ tele_app prot2 xs2) ∗ + tele_app P2 xs2) -∗ + (■∀.. (xs2 : TT2), tele_app P2 xs2 -∗ + ∃.. (xs1 : TT1), ⌜tele_app v1 xs1 = tele_app v2 xs2⌠∗ + â–· (tele_app prot1 xs1 ≡ tele_app prot2 xs2) ∗ + tele_app P1 xs1) -∗ + (<a1> m1) ≡ (<a2> m2). + Proof. + iIntros (Hm1 Hm2 Heq) "#Heq1 #Heq2". + unfold MsgTele in Hm1. rewrite Hm1. clear Hm1. + unfold MsgTele in Hm2. rewrite Hm2. clear Hm2. + rewrite iProto_message_eq proto_message_equivI. + iSplit; [ done | ]. + iIntros (v p'). + do 2 rewrite iMsg_texist_exist. + rewrite iMsg_base_eq /=. + iApply prop_ext. + iIntros "!>". iSplit. + - iDestruct 1 as (xs1 Hveq1) "[Hrec1 HP1]". + iDestruct ("Heq1" with "HP1") as (xs2 Hveq2) "[Hrec2 HP2]". + iExists xs2. rewrite -Hveq1 Hveq2. + iSplitR; [ done | ]. iSplitR "HP2"; [ | done ]. + iRewrite -"Hrec1". iApply later_equivI. iIntros "!>". by iRewrite "Hrec2". + - iDestruct 1 as (xs2 Hveq2) "[Hrec2 HP2]". + iDestruct ("Heq2" with "HP2") as (xs1 Hveq1) "[Hrec1 HP1]". + iExists xs1. rewrite -Hveq2 Hveq1. + iSplitR; [ done | ]. iSplitR "HP1"; [ | done ]. + iRewrite -"Hrec2". iApply later_equivI. iIntros "!>". by iRewrite "Hrec1". + Qed. + + (** Helpers *) + Lemma iMsg_map_base f v P p : + NonExpansive f → + iMsg_map f (MSG v {{ P }}; p) ≡ (MSG v {{ P }}; f p)%msg. + Proof. + rewrite iMsg_base_eq. intros ? v' p'; simpl. iSplit. + - iDestruct 1 as (p'') "[(->&Hp&$) Hp']". iSplit; [done|]. + iRewrite "Hp'". iIntros "!>". by iRewrite "Hp". + - iIntros "(->&Hp'&$)". iExists p. iRewrite -"Hp'". auto. + Qed. + Lemma iMsg_map_exist {A} f (m : A → iMsg Σ V) : + iMsg_map f (∃ x, m x) ≡ (∃ x, iMsg_map f (m x))%msg. + Proof. + rewrite iMsg_exist_eq. intros v' p'; simpl. iSplit. + - iDestruct 1 as (p'') "[H Hp']". iDestruct "H" as (x) "H"; auto. + - iDestruct 1 as (x p'') "[Hm Hp']". auto. + Qed. + + (** ** Dual *) + Global Instance iProto_dual_ne : NonExpansive (@iProto_dual Σ V). + Proof. rewrite iProto_dual_eq. solve_proper. Qed. + Global Instance iProto_dual_proper : Proper ((≡) ==> (≡)) (@iProto_dual Σ V). + Proof. apply (ne_proper _). Qed. + Global Instance iProto_dual_if_ne d : NonExpansive (@iProto_dual_if Σ V d). + Proof. solve_proper. Qed. + Global Instance iProto_dual_if_proper d : + Proper ((≡) ==> (≡)) (@iProto_dual_if Σ V d). + Proof. apply (ne_proper _). Qed. + + Lemma iProto_dual_end : iProto_dual (Σ:=Σ) (V:=V) END ≡ END. + Proof. + rewrite iProto_end_eq iProto_dual_eq /iProto_dual_def /iProto_map_app. + etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. + by rewrite proto_elim_end. + Qed. + Lemma iProto_dual_message a m : + iProto_dual (<a> m) ≡ <action_dual a> iMsg_dual m. + Proof. + rewrite iProto_message_eq iProto_dual_eq /iProto_dual_def /iProto_map_app. + etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. + rewrite /iProto_message_def. rewrite ->proto_elim_message; [done|]. + intros a' m1 m2 Hm; f_equiv; solve_proper. + Qed. + Lemma iMsg_dual_base v P p : + iMsg_dual (MSG v {{ P }}; p) ≡ (MSG v {{ P }}; iProto_dual p)%msg. + Proof. apply iMsg_map_base, _. Qed. + Lemma iMsg_dual_exist {A} (m : A → iMsg Σ V) : + iMsg_dual (∃ x, m x) ≡ (∃ x, iMsg_dual (m x))%msg. + Proof. apply iMsg_map_exist. Qed. + + Global Instance iProto_dual_involutive : Involutive (≡) (@iProto_dual Σ V). + Proof. + intros p. apply (uPred.internal_eq_soundness (M:=iResUR Σ)). + iLöb as "IH" forall (p). destruct (iProto_case p) as [->|(a&n&m&->)]. + { by rewrite !iProto_dual_end. } + rewrite !iProto_dual_message involutive. + iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p') "/=". + iApply prop_ext; iIntros "!>"; iSplit. + - iDestruct 1 as (pd) "[H Hp']". iRewrite "Hp'". + iDestruct "H" as (pdd) "[H #Hpd]". + iApply (internal_eq_rewrite); [|done]; iIntros "!>". + iRewrite "Hpd". by iRewrite ("IH" $! pdd). + - iIntros "H". destruct (Next_uninj p') as [p'' Hp']. iExists _. + rewrite Hp'. iSplitL; [by auto|]. iIntros "!>". by iRewrite ("IH" $! p''). + Qed. + + (** ** Append *) + Global Instance iProto_app_end_l : LeftId (≡) END (@iProto_app Σ V). + Proof. + intros p. rewrite iProto_end_eq iProto_app_eq /iProto_app_def /iProto_map_app. + etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. + by rewrite proto_elim_end. + Qed. + Lemma iProto_app_message a m p2 : (<a> m) <++> p2 ≡ <a> m <++> p2. + Proof. + rewrite iProto_message_eq iProto_app_eq /iProto_app_def /iProto_map_app. + etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. + rewrite /iProto_message_def. rewrite ->proto_elim_message; [done|]. + intros a' m1 m2 Hm. f_equiv; solve_proper. + Qed. + + Global Instance iProto_app_ne : NonExpansive2 (@iProto_app Σ V). + Proof. + assert (∀ n, Proper (dist n ==> (=) ==> dist n) (@iProto_app Σ V)). + { intros n p1 p1' Hp1 p2 p2' <-. by rewrite iProto_app_eq /iProto_app_def Hp1. } + assert (Proper ((≡) ==> (=) ==> (≡)) (@iProto_app Σ V)). + { intros p1 p1' Hp1 p2 p2' <-. by rewrite iProto_app_eq /iProto_app_def Hp1. } + intros n p1 p1' Hp1 p2 p2' Hp2. rewrite Hp1. clear p1 Hp1. + revert p1'. induction (lt_wf n) as [n _ IH]; intros p1. + destruct (iProto_case p1) as [->|(a&i&m&->)]. + { by rewrite !left_id. } + rewrite !iProto_app_message. f_equiv=> v p' /=. do 4 f_equiv. + f_contractive. apply IH; eauto using dist_le with lia. + Qed. + Global Instance iProto_app_proper : Proper ((≡) ==> (≡) ==> (≡)) (@iProto_app Σ V). + Proof. apply (ne_proper_2 _). Qed. + + Lemma iMsg_app_base v P p1 p2 : + ((MSG v {{ P }}; p1) <++> p2)%msg ≡ (MSG v {{ P }}; p1 <++> p2)%msg. + Proof. apply: iMsg_map_base. Qed. + Lemma iMsg_app_exist {A} (m : A → iMsg Σ V) p2 : + ((∃ x, m x) <++> p2)%msg ≡ (∃ x, m x <++> p2)%msg. + Proof. apply iMsg_map_exist. Qed. + + Global Instance iProto_app_end_r : RightId (≡) END (@iProto_app Σ V). + Proof. + intros p. apply (uPred.internal_eq_soundness (M:=iResUR Σ)). + iLöb as "IH" forall (p). destruct (iProto_case p) as [->|(a&i&m&->)]. + { by rewrite left_id. } + rewrite iProto_app_message. + iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p') "/=". + iApply prop_ext; iIntros "!>". iSplit. + - iDestruct 1 as (p1') "[H Hp']". iRewrite "Hp'". + iApply (internal_eq_rewrite); [|done]; iIntros "!>". + by iRewrite ("IH" $! p1'). + - iIntros "H". destruct (Next_uninj p') as [p'' Hp']. iExists p''. + rewrite Hp'. iSplitL; [by auto|]. iIntros "!>". by iRewrite ("IH" $! p''). + Qed. + Global Instance iProto_app_assoc : Assoc (≡) (@iProto_app Σ V). + Proof. + intros p1 p2 p3. apply (uPred.internal_eq_soundness (M:=iResUR Σ)). + iLöb as "IH" forall (p1). destruct (iProto_case p1) as [->|(a&i&m&->)]. + { by rewrite !left_id. } + rewrite !iProto_app_message. + iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p123) "/=". + iApply prop_ext; iIntros "!>". iSplit. + - iDestruct 1 as (p1') "[H #Hp']". + iExists (p1' <++> p2). iSplitL; [by auto|]. + iRewrite "Hp'". iIntros "!>". iApply "IH". + - iDestruct 1 as (p12) "[H #Hp123]". iDestruct "H" as (p1') "[H #Hp12]". + iExists p1'. iFrame "H". iRewrite "Hp123". + iIntros "!>". iRewrite "Hp12". by iRewrite ("IH" $! p1'). + Qed. + + Lemma iProto_dual_app p1 p2 : + iProto_dual (p1 <++> p2) ≡ iProto_dual p1 <++> iProto_dual p2. + Proof. + apply (uPred.internal_eq_soundness (M:=iResUR Σ)). + iLöb as "IH" forall (p1 p2). destruct (iProto_case p1) as [->|(a&i&m&->)]. + { by rewrite iProto_dual_end !left_id. } + rewrite iProto_dual_message !iProto_app_message iProto_dual_message /=. + iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p12) "/=". + iApply prop_ext; iIntros "!>". iSplit. + - iDestruct 1 as (p12d) "[H #Hp12]". iDestruct "H" as (p1') "[H #Hp12d]". + iExists (iProto_dual p1'). iSplitL; [by auto|]. + iRewrite "Hp12". iIntros "!>". iRewrite "Hp12d". iApply "IH". + - iDestruct 1 as (p1') "[H #Hp12]". iDestruct "H" as (p1d) "[H #Hp1']". + iExists (p1d <++> p2). iSplitL; [by auto|]. + iRewrite "Hp12". iIntros "!>". iRewrite "Hp1'". by iRewrite ("IH" $! p1d p2). + Qed. + +End proto. + +Global Instance iProto_inhabited {Σ V} : Inhabited (iProto Σ V) := populate END. + +Program Definition iProto_elim {Σ V A} + (x : A) (f : action → iMsg Σ V -> A) (p : iProto Σ V) : A := + proto_elim x (λ a m, f a (IMsg (λ v, λne p, m v p)))%I p. +Next Obligation. solve_proper. Qed. + +Lemma iProto_elim_message {Σ V} {A:ofe} + (x : A) (f : action → iMsg Σ V -> A) a m + (* `{Hf : ∀ a, Proper ((≡) ==> (≡)) (f a)} : *) + : + iProto_elim x f (iProto_message a m) ≡ f a m. +Proof. + rewrite /iProto_elim. + rewrite iProto_message_eq /iProto_message_def. simpl. + setoid_rewrite proto_elim_message. + { f_equiv. destruct m. f_equiv. simpl. + admit. } + intros a'. + intros f1 f2 Hf'. f_equiv. f_equiv. +Admitted. + +Definition nat_beq := Eval compute in Nat.eqb. + +Definition find_recv {Σ V} (i:nat) (j:nat) (ps : list (iProto Σ V)) : + option $ iMsg Σ V := + iProto_elim None (λ a m, + match a with + | (Recv, i') => if nat_beq i i' then Some m else None + | (Send, _) => None + end) (ps !!! j). + +Fixpoint sync_pairs_aux {Σ V} (i : nat) (ps_full ps : list (iProto Σ V)) : + list (nat * nat * iMsg Σ V * iMsg Σ V) := + match ps with + | [] => [] + | p :: ps => + iProto_elim (sync_pairs_aux (S i) ps_full ps) + (λ a mi, match a with + | (Recv,_) => sync_pairs_aux (S i) ps_full ps + | (Send,j) => match find_recv i j ps_full with + | None => sync_pairs_aux (S i) ps_full ps + | Some mj => (i,j,mi,mj) :: + sync_pairs_aux (S i) ps_full ps + end + end) p + end. + +Notation sync_pairs ps := (sync_pairs_aux 0 ps ps). + +Definition can_step {Σ V} (rec : list (iProto Σ V) → iProp Σ) + (ps : list (iProto Σ V)) : iProp Σ := + [∧ list] '(i,j,m1,m2) ∈ sync_pairs ps, + ∀ v p1, iMsg_car m1 v (Next p1) -∗ + ∃ p2, iMsg_car m2 v (Next p2) ∗ + â–· (rec (<[i:=p1]>(<[j:=p2]>ps))). + +From iris.heap_lang Require Import notation. + +Definition iProto_binary `{!heapGS Σ} : list (iProto Σ val) := + [(<(Send, 1) @ (x:Z)> MSG #x ; END)%proto; + (<(Recv, 0) @ (x:Z)> MSG #x ; END)%proto]. + +Lemma iProto_binary_consistent `{!heapGS Σ} : + ⊢ can_step (λ _, True) (@iProto_binary _ Σ heapGS). +Proof. rewrite /iProto_binary /can_step /iProto_elim. simpl. + rewrite /find_recv. simpl. + Fail rewrite iProto_elim_message. + (* OBS: Break here *) + + +Definition valid_target {Σ V} (ps : list (iProto Σ V)) (i j : nat) : iProp Σ := + ∀ a m, (ps !!! i ≡ <(a, j)> m) -∗ ⌜is_Some (ps !! j)âŒ. + +Definition iProto_consistent_pre {Σ V} (rec : list (iProto Σ V) → iProp Σ) + (ps : list (iProto Σ V)) : iProp Σ := + (∀ i j, valid_target ps i j) ∗ (can_step rec ps). + +Global Instance iProto_consistent_pre_ne {Σ V} + (rec : listO (iProto Σ V) -n> iPropO Σ) : + NonExpansive (iProto_consistent_pre rec). +Proof. rewrite /iProto_consistent_pre /can_step /valid_target. solve_proper. Qed. + +Program Definition iProto_consistent_pre' {Σ V} + (rec : listO (iProto Σ V) -n> iPropO Σ) : + listO (iProto Σ V) -n> iPropO Σ := + λne ps, iProto_consistent_pre (λ ps, rec ps) ps. + +Local Instance iProto_consistent_pre_contractive {Σ V} : Contractive (@iProto_consistent_pre' Σ V). +Proof. + rewrite /iProto_consistent_pre' /iProto_consistent_pre /can_step. + solve_contractive. +Qed. + +Definition iProto_consistent {Σ V} (ps : list (iProto Σ V)) : iProp Σ := + fixpoint iProto_consistent_pre' ps. + +Arguments iProto_consistent {_ _} _%proto. +Global Instance: Params (@iProto_consistent) 1 := {}. + +Global Instance iProto_consistent_ne {Σ V} : NonExpansive (@iProto_consistent Σ V). +Proof. solve_proper. Qed. +Global Instance iProto_consistent_proper {Σ V} : Proper ((≡) ==> (⊣⊢)) (@iProto_consistent Σ V). +Proof. solve_proper. Qed. + +Lemma iProto_consistent_unfold {Σ V} (ps : list (iProto Σ V)) : + iProto_consistent ps ≡ (iProto_consistent_pre iProto_consistent) ps. +Proof. + apply: (fixpoint_unfold iProto_consistent_pre'). +Qed. + +(** * Protocol entailment *) +Definition iProto_le_pre {Σ V} + (rec : iProto Σ V → iProto Σ V → iProp Σ) (p1 p2 : iProto Σ V) : iProp Σ := + (p1 ≡ END ∗ p2 ≡ END) ∨ + ∃ a1 a2 m1 m2, + (p1 ≡ <a1> m1) ∗ (p2 ≡ <a2> m2) ∗ + match a1, a2 with + | (Recv,i), (Recv,j) => ⌜i = j⌠∗ ∀ v p1', + iMsg_car m1 v (Next p1') -∗ ∃ p2', â–· rec p1' p2' ∗ iMsg_car m2 v (Next p2') + | (Send,i), (Send,j) => ⌜i = j⌠∗ ∀ v p2', + iMsg_car m2 v (Next p2') -∗ ∃ p1', â–· rec p1' p2' ∗ iMsg_car m1 v (Next p1') + | _, _ => False + end. +Global Instance iProto_le_pre_ne {Σ V} (rec : iProto Σ V → iProto Σ V → iProp Σ) : + NonExpansive2 (iProto_le_pre rec). +Proof. solve_proper. Qed. + +Program Definition iProto_le_pre' {Σ V} + (rec : iProto Σ V -n> iProto Σ V -n> iPropO Σ) : + iProto Σ V -n> iProto Σ V -n> iPropO Σ := λne p1 p2, + iProto_le_pre (λ p1' p2', rec p1' p2') p1 p2. +Solve Obligations with solve_proper. +Local Instance iProto_le_pre_contractive {Σ V} : Contractive (@iProto_le_pre' Σ V). +Proof. + intros n rec1 rec2 Hrec p1 p2. rewrite /iProto_le_pre' /iProto_le_pre /=. + by repeat (f_contractive || f_equiv). +Qed. +Definition iProto_le {Σ V} (p1 p2 : iProto Σ V) : iProp Σ := + fixpoint iProto_le_pre' p1 p2. +Arguments iProto_le {_ _} _%proto _%proto. +Global Instance: Params (@iProto_le) 2 := {}. +Notation "p ⊑ q" := (iProto_le p q) : bi_scope. + +Global Instance iProto_le_ne {Σ V} : NonExpansive2 (@iProto_le Σ V). +Proof. solve_proper. Qed. +Global Instance iProto_le_proper {Σ V} : Proper ((≡) ==> (≡) ==> (⊣⊢)) (@iProto_le Σ V). +Proof. solve_proper. Qed. + +Record proto_name := ProtName { proto_names : gmap nat gname }. +Global Instance proto_name_inhabited : Inhabited proto_name := + populate (ProtName inhabitant). +Global Instance proto_name_eq_dec : EqDecision proto_name. +Proof. solve_decision. Qed. +Global Instance proto_name_countable : Countable proto_name. +Proof. + refine (inj_countable (λ '(ProtName γs), (γs)) + (λ '(γs), Some (ProtName γs)) _); by intros []. +Qed. + +Definition iProto_own_frag `{!protoG Σ V} (γ : gname) + (i : nat) (p : iProto Σ V) : iProp Σ := + own γ (gmap_view_frag i (DfracOwn 1) (Excl' (Next p))). + +Definition iProto_own_auth `{!protoG Σ V} (γ : gname) + (ps : list (iProto Σ V)) : iProp Σ := + own γ (gmap_view_auth (DfracOwn 1) (((λ p, Excl' (Next p)) <$> + (list_to_map (zip (seq 0 (length ps)) ps))) : gmap _ _)). + +Definition iProto_ctx `{protoG Σ V} + (γ : gname) (ps_len : nat) : iProp Σ := + ∃ ps, ⌜length ps = ps_len⌠∗ iProto_own_auth γ ps ∗ â–· iProto_consistent ps. + +(** * The connective for ownership of channel ends *) +Definition iProto_own `{!protoG Σ V} + (γ : gname) (i : nat) (p : iProto Σ V) : iProp Σ := + ∃ p', â–· (p' ⊑ p) ∗ iProto_own_frag γ i p'. +Arguments iProto_own {_ _ _} _ _ _%proto. +Global Instance: Params (@iProto_own) 3 := {}. + +Global Instance iProto_own_frag_contractive `{protoG Σ V} γ i : + Contractive (iProto_own_frag γ i). +Proof. solve_contractive. Qed. + +Global Instance iProto_own_contractive `{protoG Σ V} γ i : + Contractive (iProto_own γ i). +Proof. solve_contractive. Qed. +Global Instance iProto_own_ne `{protoG Σ V} γ s : NonExpansive (iProto_own γ s). +Proof. solve_proper. Qed. +Global Instance iProto_own_proper `{protoG Σ V} γ s : + Proper ((≡) ==> (≡)) (iProto_own γ s). +Proof. apply (ne_proper _). Qed. + +(** * Proofs *) +Section proto. + Context `{!protoG Σ V}. + Implicit Types v : V. + Implicit Types p pl pr : iProto Σ V. + Implicit Types m : iMsg Σ V. + + Lemma own_prot_idx γ i j (p1 p2 : iProto Σ V) : + own γ (gmap_view_frag i (DfracOwn 1) (Excl' (Next p1))) -∗ + own γ (gmap_view_frag j (DfracOwn 1) (Excl' (Next p2))) -∗ + ⌜i ≠jâŒ. + Proof. + iIntros "Hown Hown'" (->). + iDestruct (own_valid_2 with "Hown Hown'") as "H". + rewrite uPred.cmra_valid_elim. + by iDestruct "H" as %[]%gmap_view_frag_op_validN. + Qed. + + Lemma own_prot_excl γ i (p1 p2 : iProto Σ V) : + own γ (gmap_view_frag i (DfracOwn 1) (Excl' (Next p1))) -∗ + own γ (gmap_view_frag i (DfracOwn 1) (Excl' (Next p2))) -∗ + False. + Proof. iIntros "Hi Hj". by iDestruct (own_prot_idx with "Hi Hj") as %?. Qed. + + (** ** Protocol entailment **) + Lemma iProto_le_unfold p1 p2 : iProto_le p1 p2 ≡ iProto_le_pre iProto_le p1 p2. + Proof. apply: (fixpoint_unfold iProto_le_pre'). Qed. + + Lemma iProto_le_end : ⊢ END ⊑ (END : iProto Σ V). + Proof. rewrite iProto_le_unfold. iLeft. auto 10. Qed. + + Lemma iProto_le_end_inv_r p : p ⊑ END -∗ (p ≡ END). + Proof. + rewrite iProto_le_unfold. iIntros "[[Hp _]|H] //". + iDestruct "H" as (a1 a2 m1 m2) "(_ & Heq & _)". + by iDestruct (iProto_end_message_equivI with "Heq") as %[]. + Qed. + + Lemma iProto_le_end_inv_l p : END ⊑ p -∗ (p ≡ END). + Proof. + rewrite iProto_le_unfold. iIntros "[[_ Hp]|H] //". + iDestruct "H" as (a1 a2 m1 m2) "(Heq & _ & _)". + iDestruct (iProto_end_message_equivI with "Heq") as %[]. + Qed. + + Lemma iProto_le_send_inv i p1 m2 : + p1 ⊑ (<(Send,i)> m2) -∗ ∃ m1, + (p1 ≡ <(Send,i)> m1) ∗ + ∀ v p2', iMsg_car m2 v (Next p2') -∗ + ∃ p1', â–· (p1' ⊑ p2') ∗ iMsg_car m1 v (Next p1'). + Proof. + rewrite iProto_le_unfold. + iIntros "[[_ Heq]|H]". + { by iDestruct (iProto_message_end_equivI with "Heq") as %[]. } + iDestruct "H" as (a1 a2 m1 m2') "(Hp1 & Hp2 & H)". + rewrite iProto_message_equivI. iDestruct "Hp2" as "[%Heq Hm2]". + simplify_eq. + destruct a1 as [[]]; [|done]. + iDestruct "H" as (->) "H". iExists m1. iFrame "Hp1". + iIntros (v p2). iSpecialize ("Hm2" $! v (Next p2)). by iRewrite "Hm2". + Qed. + + Lemma iProto_le_send_send_inv i m1 m2 v p2' : + (<(Send,i)> m1) ⊑ (<(Send,i)> m2) -∗ + iMsg_car m2 v (Next p2') -∗ ∃ p1', â–· (p1' ⊑ p2') ∗ iMsg_car m1 v (Next p1'). + Proof. + iIntros "H Hm2". iDestruct (iProto_le_send_inv with "H") as (m1') "[Hm1 H]". + iDestruct (iProto_message_equivI with "Hm1") as (Heq) "Hm1". + iDestruct ("H" with "Hm2") as (p1') "[Hle Hm]". + iRewrite -("Hm1" $! v (Next p1')) in "Hm". auto with iFrame. + Qed. + + Lemma iProto_le_recv_inv_l i m1 p2 : + (<(Recv,i)> m1) ⊑ p2 -∗ ∃ m2, + (p2 ≡ <(Recv,i)> m2) ∗ + ∀ v p1', iMsg_car m1 v (Next p1') -∗ + ∃ p2', â–· (p1' ⊑ p2') ∗ iMsg_car m2 v (Next p2'). + Proof. + rewrite iProto_le_unfold. + iIntros "[[Heq _]|H]". + { iDestruct (iProto_message_end_equivI with "Heq") as %[]. } + iDestruct "H" as (a1 a2 m1' m2) "(Hp1 & Hp2 & H)". + rewrite iProto_message_equivI. iDestruct "Hp1" as "[%Heq Hm1]". + simplify_eq. + destruct a2 as [[]]; [done|]. + iDestruct "H" as (->) "H". iExists m2. iFrame "Hp2". + iIntros (v p1). iSpecialize ("Hm1" $! v (Next p1)). by iRewrite "Hm1". + Qed. + + Lemma iProto_le_recv_inv_r i p1 m2 : + (p1 ⊑ <(Recv,i)> m2) -∗ ∃ m1, + (p1 ≡ <(Recv,i)> m1) ∗ + ∀ v p1', iMsg_car m1 v (Next p1') -∗ + ∃ p2', â–· (p1' ⊑ p2') ∗ iMsg_car m2 v (Next p2'). + Proof. + rewrite iProto_le_unfold. + iIntros "[[_ Heq]|H]". + { iDestruct (iProto_message_end_equivI with "Heq") as %[]. } + iDestruct "H" as (a1 a2 m1 m2') "(Hp1 & Hp2 & H)". + rewrite iProto_message_equivI. + iDestruct "Hp2" as "[%Heq Hm2]". + simplify_eq. + destruct a1 as [[]]; [done|]. + iDestruct "H" as (->) "H". + iExists m1. iFrame. + iIntros (v p2). + iIntros "Hm1". iDestruct ("H" with "Hm1") as (p2') "[Hle H]". + iSpecialize ("Hm2" $! v (Next p2')). + iExists p2'. iFrame. + iRewrite "Hm2". iApply "H". + Qed. + + Lemma iProto_le_recv_recv_inv i m1 m2 v p1' : + (<(Recv, i)> m1) ⊑ (<(Recv, i)> m2) -∗ + iMsg_car m1 v (Next p1') -∗ ∃ p2', â–· (p1' ⊑ p2') ∗ iMsg_car m2 v (Next p2'). + Proof. + iIntros "H Hm2". iDestruct (iProto_le_recv_inv_r with "H") as (m1') "[Hm1 H]". + iApply "H". iDestruct (iProto_message_equivI with "Hm1") as (_) "Hm1". + by iRewrite -("Hm1" $! v (Next p1')). + Qed. + + Lemma iProto_le_msg_inv_l i a m1 p2 : + (<(a,i)> m1) ⊑ p2 -∗ ∃ m2, p2 ≡ <(a,i)> m2. + Proof. + rewrite iProto_le_unfold /iProto_le_pre. + iIntros "[[Heq _]|H]". + { iDestruct (iProto_message_end_equivI with "Heq") as %[]. } + iDestruct "H" as (a1 a2 m1' m2) "(Hp1 & Hp2 & H)". + destruct a1 as [t1 ?], a2 as [t2 ?]. + destruct t1,t2; [|done|done|]. + - rewrite iProto_message_equivI. + iDestruct "Hp1" as (Heq) "Hp1". simplify_eq. + iDestruct "H" as (->) "H". by iExists _. + - rewrite iProto_message_equivI. + iDestruct "Hp1" as (Heq) "Hp1". simplify_eq. + iDestruct "H" as (->) "H". by iExists _. + Qed. + + Lemma iProto_le_msg_inv_r j a p1 m2 : + (p1 ⊑ <(a,j)> m2) -∗ ∃ m1, p1 ≡ <(a,j)> m1. + Proof. + rewrite iProto_le_unfold /iProto_le_pre. + iIntros "[[_ Heq]|H]". + { iDestruct (iProto_message_end_equivI with "Heq") as %[]. } + iDestruct "H" as (a1 a2 m1 m2') "(Hp1 & Hp2 & H)". + destruct a1 as [t1 ?], a2 as [t2 ?]. + destruct t1,t2; [|done|done|]. + - rewrite iProto_message_equivI. + iDestruct "Hp2" as (Heq) "Hp2". simplify_eq. + iDestruct "H" as (->) "H". by iExists _. + - rewrite iProto_message_equivI. + iDestruct "Hp2" as (Heq) "Hp2". simplify_eq. + iDestruct "H" as (->) "H". by iExists _. + Qed. + + Lemma valid_target_le ps i p1 p2 : + (∀ i' j', valid_target ps i' j') -∗ + ps !!! i ≡ p1 -∗ + p1 ⊑ p2 -∗ + (∀ i' j', valid_target (<[i := p2]>ps) i' j') ∗ p1 ⊑ p2. + Proof. Admitted. + (* iIntros "Hprot #HSome Hle". *) + (* pose proof (iProto_case p1) as [Hend|Hmsg]. *) + (* { rewrite Hend. iDestruct (iProto_le_end_inv_l with "Hle") as "#H". *) + (* iFrame "Hle". *) + (* iIntros (i' j' a m) "Hm". *) + (* destruct (decide (i = j')) as [->|Hneqj]. *) + (* { Search list_lookup_total insert. rewrite list_lookup_total_insert. ; [done|]. lia. done. } *) + (* rewrite lookup_insert_ne; [|done]. *) + (* destruct (decide (i = i')) as [->|Hneqi]. *) + (* { rewrite lookup_total_insert. iRewrite "H" in "Hm". *) + (* by iDestruct (iProto_end_message_equivI with "Hm") as "Hm". } *) + (* rewrite lookup_total_insert_ne; [|done]. *) + (* by iApply "Hprot". } *) + (* destruct Hmsg as (t & n & m & Hmsg). *) + (* setoid_rewrite Hmsg. *) + (* iDestruct (iProto_le_msg_inv_l with "Hle") as (m2) "#Heq". iFrame "Hle". *) + (* iIntros (i' j' a m') "Hm". *) + (* destruct (decide (i = j')) as [->|Hneqj]. *) + (* { rewrite lookup_insert. done. } *) + (* rewrite lookup_insert_ne; [|done]. *) + (* destruct (decide (i = i')) as [->|Hneqi]. *) + (* { rewrite lookup_total_insert. iRewrite "Heq" in "Hm". *) + (* iDestruct (iProto_message_equivI with "Hm") as (Heq) "Hm". *) + (* simplify_eq. by iApply "Hprot". } *) + (* rewrite lookup_total_insert_ne; [|done]. *) + (* by iApply "Hprot". *) + (* Qed. *) + + Lemma iProto_consistent_le ps i p1 p2 : + iProto_consistent ps -∗ + ps !!! i ≡ p1 -∗ + p1 ⊑ p2 -∗ + iProto_consistent (<[i := p2]>ps). + Proof. + iIntros "Hprot #HSome Hle". + iRevert "HSome". + iLöb as "IH" forall (p1 p2 ps). + iIntros "#HSome". + rewrite !iProto_consistent_unfold. + iDestruct "Hprot" as "(Htar & Hprot)". + iDestruct (valid_target_le with "Htar HSome Hle") as "[Htar Hle]". + iFrame. + iIntros (i' j' m1 m2) "#Hm1 #Hm2". + destruct (decide (i = i')) as [<-|Hneq]. + { rewrite list_lookup_total_insert; [|admit]. + pose proof (iProto_case p2) as [Hend|Hmsg]. + { setoid_rewrite Hend. rewrite iProto_end_message_equivI. done. } + destruct Hmsg as (a&?&m&Hmsg). + setoid_rewrite Hmsg. + destruct a; last first. + { rewrite iProto_message_equivI. + iDestruct "Hm1" as "[%Htag Hm1]". done. } + rewrite iProto_message_equivI. + iDestruct "Hm1" as "[%Htag Hm1]". + inversion Htag. simplify_eq. + iIntros (v p) "Hm1'". + iSpecialize ("Hm1" $! v (Next p)). + iDestruct (iProto_le_send_inv with "Hle") as "Hle". + iRewrite -"Hm1" in "Hm1'". + iDestruct "Hle" as (m') "[#Heq H]". + iDestruct ("H" with "Hm1'") as (p') "[Hle H]". + destruct (decide (i = j')) as [<-|Hneq]. + { rewrite list_lookup_total_insert. rewrite iProto_message_equivI. + iDestruct "Hm2" as "[%Heq _]". done. admit. } + iDestruct ("Hprot" $!i j' with "[] [] H") as "Hprot". + { iRewrite -"Heq". rewrite !list_lookup_total_alt. iRewrite "HSome". done. } + { rewrite list_lookup_total_insert_ne; [|done]. done. } + iDestruct "Hprot" as (p'') "[Hm Hprot]". + iExists p''. iFrame. + iNext. + iDestruct ("IH" with "Hprot Hle [HSome]") as "HI". + { rewrite list_lookup_total_insert; [done|]. admit. } + iClear "IH Hm1 Hm2 Heq". + rewrite list_insert_insert. + rewrite (list_insert_commute _ j' i); [|done]. + rewrite list_insert_insert. done. } + rewrite list_lookup_total_insert_ne; [|done]. + destruct (decide (i = j')) as [<-|Hneq']. + { rewrite list_lookup_total_insert. + pose proof (iProto_case p2) as [Hend|Hmsg]. + { setoid_rewrite Hend. rewrite iProto_end_message_equivI. done. } + destruct Hmsg as (a&?&m&Hmsg). + setoid_rewrite Hmsg. + destruct a. + { rewrite iProto_message_equivI. + iDestruct "Hm2" as "[%Htag Hm2]". done. } + rewrite iProto_message_equivI. + iDestruct "Hm2" as "[%Htag Hm2]". + inversion Htag. simplify_eq. + iIntros (v p) "Hm1'". + iDestruct (iProto_le_recv_inv_r with "Hle") as "Hle". + iDestruct "Hle" as (m') "[#Heq Hle]". + iDestruct ("Hprot" $!i' with "[] [] Hm1'") as "Hprot". + { done. } + { rewrite !list_lookup_total_alt. iRewrite "HSome". done. } + iDestruct ("Hprot") as (p') "[Hm1' Hprot]". + iDestruct ("Hle" with "Hm1'") as (p2') "[Hle Hm']". + iSpecialize ("Hm2" $! v (Next p2')). + iExists p2'. + iRewrite -"Hm2". iFrame. + iDestruct ("IH" with "Hprot Hle []") as "HI". + { iPureIntro. rewrite list_lookup_total_insert_ne; [|done]. + rewrite list_lookup_total_insert. done. admit. } + rewrite list_insert_commute; [|done]. + rewrite !list_insert_insert. done. admit. } + rewrite list_lookup_total_insert_ne; [|done]. + iIntros (v p) "Hm1'". + iDestruct ("Hprot" $!i' j' with "[//] [//] Hm1'") as "Hprot". + iDestruct "Hprot" as (p') "[Hm2' Hprot]". + iExists p'. iFrame. + iNext. + rewrite (list_insert_commute _ j' i); [|done]. + rewrite (list_insert_commute _ i' i); [|done]. + iApply ("IH" with "Hprot Hle []"). + rewrite list_lookup_total_insert_ne; [|done]. + rewrite list_lookup_total_insert_ne; [|done]. + done. + Admitted. + + Lemma iProto_le_send i m1 m2 : + (∀ v p2', iMsg_car m2 v (Next p2') -∗ ∃ p1', + â–· (p1' ⊑ p2') ∗ iMsg_car m1 v (Next p1')) -∗ + (<(Send,i)> m1) ⊑ (<(Send,i)> m2). + Proof. + iIntros "Hle". rewrite iProto_le_unfold. + iRight. iExists (Send, i), (Send, i), m1, m2. by eauto. + Qed. + + Lemma iProto_le_recv i m1 m2 : + (∀ v p1', iMsg_car m1 v (Next p1') -∗ ∃ p2', + â–· (p1' ⊑ p2') ∗ iMsg_car m2 v (Next p2')) -∗ + (<(Recv,i)> m1) ⊑ (<(Recv,i)> m2). + Proof. + iIntros "Hle". rewrite iProto_le_unfold. + iRight. iExists (Recv, i), (Recv, i), m1, m2. by eauto. + Qed. + + Lemma iProto_le_base a v P p1 p2 : + â–· (p1 ⊑ p2) -∗ + (<a> MSG v {{ P }}; p1) ⊑ (<a> MSG v {{ P }}; p2). + Proof. + rewrite iMsg_base_eq. iIntros "H". destruct a as [[]]. + - iApply iProto_le_send. iIntros (v' p') "(->&Hp&$)". + iExists p1. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp". + - iApply iProto_le_recv. iIntros (v' p') "(->&Hp&$)". + iExists p2. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp". + Qed. + + Lemma iProto_le_trans p1 p2 p3 : p1 ⊑ p2 -∗ p2 ⊑ p3 -∗ p1 ⊑ p3. + Proof. + iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3). + destruct (iProto_case p3) as [->|([]&i&m3&->)]. + - iDestruct (iProto_le_end_inv_r with "H2") as "H2". by iRewrite "H2" in "H1". + - iDestruct (iProto_le_send_inv with "H2") as (m2) "[Hp2 H2]". + iRewrite "Hp2" in "H1"; clear p2. + iDestruct (iProto_le_send_inv with "H1") as (m1) "[Hp1 H1]". + iRewrite "Hp1"; clear p1. + iApply iProto_le_send. iIntros (v p3') "Hm3". + iDestruct ("H2" with "Hm3") as (p2') "[Hle Hm2]". + iDestruct ("H1" with "Hm2") as (p1') "[Hle' Hm1]". + iExists p1'. iIntros "{$Hm1} !>". by iApply ("IH" with "Hle'"). + - iDestruct (iProto_le_recv_inv_r with "H2") as (m2) "[Hp2 H3]". + iRewrite "Hp2" in "H1". + iDestruct (iProto_le_recv_inv_r with "H1") as (m1) "[Hp1 H2]". + iRewrite "Hp1". iApply iProto_le_recv. iIntros (v p1') "Hm1". + iDestruct ("H2" with "Hm1") as (p2') "[Hle Hm2]". + iDestruct ("H3" with "Hm2") as (p3') "[Hle' Hm3]". + iExists p3'. iIntros "{$Hm3} !>". by iApply ("IH" with "Hle"). + Qed. + + Lemma iProto_le_refl p : ⊢ p ⊑ p. + Proof. + iLöb as "IH" forall (p). destruct (iProto_case p) as [->|([]&i&m&->)]. + - iApply iProto_le_end. + - iApply iProto_le_send. auto 10 with iFrame. + - iApply iProto_le_recv. auto 10 with iFrame. + Qed. + + Lemma iProto_le_dual p1 p2 : p2 ⊑ p1 -∗ iProto_dual p1 ⊑ iProto_dual p2. + Proof. + iIntros "H". iLöb as "IH" forall (p1 p2). + destruct (iProto_case p1) as [->|([]&i&m1&->)]. + - iDestruct (iProto_le_end_inv_r with "H") as "H". + iRewrite "H". iApply iProto_le_refl. + - iDestruct (iProto_le_send_inv with "H") as (m2) "[Hp2 H]". + iRewrite "Hp2"; clear p2. iEval (rewrite !iProto_dual_message). + iApply iProto_le_recv. iIntros (v p1d). + iDestruct 1 as (p1') "[Hm1 #Hp1d]". + iDestruct ("H" with "Hm1") as (p2') "[H Hm2]". + iDestruct ("IH" with "H") as "H". iExists (iProto_dual p2'). + iSplitL "H"; [iIntros "!>"; by iRewrite "Hp1d"|]. simpl; auto. + - iDestruct (iProto_le_recv_inv_r with "H") as (m2) "[Hp2 H]". + iRewrite "Hp2"; clear p2. iEval (rewrite !iProto_dual_message /=). + iApply iProto_le_send. iIntros (v p2d). + iDestruct 1 as (p2') "[Hm2 #Hp2d]". + iDestruct ("H" with "Hm2") as (p1') "[H Hm1]". + iDestruct ("IH" with "H") as "H". iExists (iProto_dual p1'). + iSplitL "H"; [iIntros "!>"; by iRewrite "Hp2d"|]. simpl; auto. + Qed. + + Lemma iProto_le_dual_l p1 p2 : iProto_dual p2 ⊑ p1 ⊢ iProto_dual p1 ⊑ p2. + Proof. + iIntros "H". iEval (rewrite -(involutive iProto_dual p2)). + by iApply iProto_le_dual. + Qed. + Lemma iProto_le_dual_r p1 p2 : p2 ⊑ iProto_dual p1 ⊢ p1 ⊑ iProto_dual p2. + Proof. + iIntros "H". iEval (rewrite -(involutive iProto_dual p1)). + by iApply iProto_le_dual. + Qed. + + Lemma iProto_le_app p1 p2 p3 p4 : + p1 ⊑ p2 -∗ p3 ⊑ p4 -∗ p1 <++> p3 ⊑ p2 <++> p4. + Proof. + iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3 p4). + destruct (iProto_case p2) as [->|([]&i&m2&->)]. + - iDestruct (iProto_le_end_inv_r with "H1") as "H1". + iRewrite "H1". by rewrite !left_id. + - iDestruct (iProto_le_send_inv with "H1") as (m1) "[Hp1 H1]". + iRewrite "Hp1"; clear p1. rewrite !iProto_app_message. + iApply iProto_le_send. iIntros (v p24). + iDestruct 1 as (p2') "[Hm2 #Hp24]". + iDestruct ("H1" with "Hm2") as (p1') "[H1 Hm1]". + iExists (p1' <++> p3). iSplitR "Hm1"; [|by simpl; eauto]. + iIntros "!>". iRewrite "Hp24". by iApply ("IH" with "H1"). + - iDestruct (iProto_le_recv_inv_r with "H1") as (m1) "[Hp1 H1]". + iRewrite "Hp1"; clear p1. rewrite !iProto_app_message. + iApply iProto_le_recv. + iIntros (v p13). iDestruct 1 as (p1') "[Hm1 #Hp13]". + iDestruct ("H1" with "Hm1") as (p2'') "[H1 Hm2]". + iExists (p2'' <++> p4). iSplitR "Hm2"; [|by simpl; eauto]. + iIntros "!>". iRewrite "Hp13". by iApply ("IH" with "H1"). + Qed. + + Lemma iProto_le_payload_elim_l i m v P p : + (P -∗ (<(Recv,i)> MSG v; p) ⊑ (<(Recv,i)> m)) ⊢ + (<(Recv,i)> MSG v {{ P }}; p) ⊑ <(Recv,i)> m. + Proof. + rewrite iMsg_base_eq. iIntros "H". + iApply iProto_le_recv. iIntros (v' p') "(->&Hp&HP)". + iApply (iProto_le_recv_recv_inv with "(H HP)"); simpl; auto. + Qed. + Lemma iProto_le_payload_elim_r i m v P p : + (P -∗ (<(Send, i)> m) ⊑ (<(Send, i)> MSG v; p)) ⊢ + (<(Send,i)> m) ⊑ (<(Send,i)> MSG v {{ P }}; p). + Proof. + rewrite iMsg_base_eq. iIntros "H". + iApply iProto_le_send. iIntros (v' p') "(->&Hp&HP)". + iApply (iProto_le_send_send_inv with "(H HP)"); simpl; auto. + Qed. + Lemma iProto_le_payload_intro_l i v P p : + P -∗ (<(Send,i)> MSG v {{ P }}; p) ⊑ (<(Send,i)> MSG v; p). + Proof. + rewrite iMsg_base_eq. + iIntros "HP". iApply iProto_le_send. iIntros (v' p') "(->&Hp&_) /=". + iExists p'. iSplitR; [iApply iProto_le_refl|]. auto. + Qed. + Lemma iProto_le_payload_intro_r i v P p : + P -∗ (<(Recv,i)> MSG v; p) ⊑ (<(Recv,i)> MSG v {{ P }}; p). + Proof. + rewrite iMsg_base_eq. + iIntros "HP". iApply iProto_le_recv. iIntros (v' p') "(->&Hp&_) /=". + iExists p'. iSplitR; [iApply iProto_le_refl|]. auto. + Qed. + Lemma iProto_le_exist_elim_l {A} i (m1 : A → iMsg Σ V) m2 : + (∀ x, (<(Recv,i)> m1 x) ⊑ (<(Recv,i)> m2)) ⊢ + (<(Recv,i) @ x> m1 x) ⊑ (<(Recv,i)> m2). + Proof. + rewrite iMsg_exist_eq. iIntros "H". + iApply iProto_le_recv. iIntros (v p1') "/=". iDestruct 1 as (x) "Hm". + by iApply (iProto_le_recv_recv_inv with "H"). + Qed. + Lemma iProto_le_exist_elim_r {A} i m1 (m2 : A → iMsg Σ V) : + (∀ x, (<(Send,i)> m1) ⊑ (<(Send,i)> m2 x)) ⊢ + (<(Send,i)> m1) ⊑ (<(Send,i) @ x> m2 x). + Proof. + rewrite iMsg_exist_eq. iIntros "H". + iApply iProto_le_send. iIntros (v p2'). iDestruct 1 as (x) "Hm". + by iApply (iProto_le_send_send_inv with "H"). + Qed. + Lemma iProto_le_exist_intro_l {A} i (m : A → iMsg Σ V) a : + ⊢ (<(Send,i) @ x> m x) ⊑ (<(Send,i)> m a). + Proof. + rewrite iMsg_exist_eq. iApply iProto_le_send. iIntros (v p') "Hm /=". + iExists p'. iSplitR; last by auto. iApply iProto_le_refl. + Qed. + Lemma iProto_le_exist_intro_r {A} i (m : A → iMsg Σ V) a : + ⊢ (<(Recv,i)> m a) ⊑ (<(Recv,i) @ x> m x). + Proof. + rewrite iMsg_exist_eq. iApply iProto_le_recv. iIntros (v p') "Hm /=". + iExists p'. iSplitR; last by auto. iApply iProto_le_refl. + Qed. + + Lemma iProto_le_texist_elim_l {TT : tele} i (m1 : TT → iMsg Σ V) m2 : + (∀ x, (<(Recv,i)> m1 x) ⊑ (<(Recv,i)> m2)) ⊢ + (<(Recv,i) @.. x> m1 x) ⊑ (<(Recv,i)> m2). + Proof. + iIntros "H". iInduction TT as [|T TT] "IH"; simpl; [done|]. + iApply iProto_le_exist_elim_l; iIntros (x). + iApply "IH". iIntros (xs). iApply "H". + Qed. + Lemma iProto_le_texist_elim_r {TT : tele} i m1 (m2 : TT → iMsg Σ V) : + (∀ x, (<(Send,i)> m1) ⊑ (<(Send,i)> m2 x)) -∗ + (<(Send,i)> m1) ⊑ (<(Send,i) @.. x> m2 x). + Proof. + iIntros "H". iInduction TT as [|T TT] "IH"; simpl; [done|]. + iApply iProto_le_exist_elim_r; iIntros (x). + iApply "IH". iIntros (xs). iApply "H". + Qed. + + Lemma iProto_le_texist_intro_l {TT : tele} i (m : TT → iMsg Σ V) x : + ⊢ (<(Send,i) @.. x> m x) ⊑ (<(Send,i)> m x). + Proof. + induction x as [|T TT x xs IH] using tele_arg_ind; simpl. + { iApply iProto_le_refl. } + iApply iProto_le_trans; [by iApply iProto_le_exist_intro_l|]. iApply IH. + Qed. + Lemma iProto_le_texist_intro_r {TT : tele} i (m : TT → iMsg Σ V) x : + ⊢ (<(Recv,i)> m x) ⊑ (<(Recv,i) @.. x> m x). + Proof. + induction x as [|T TT x xs IH] using tele_arg_ind; simpl. + { iApply iProto_le_refl. } + iApply iProto_le_trans; [|by iApply iProto_le_exist_intro_r]. iApply IH. + Qed. + + Lemma iProto_consistent_target ps m a i j : + iProto_consistent ps -∗ + ps !!! i ≡ (<(a, j)> m) -∗ + ⌜is_Some (ps !! j)âŒ. + Proof. + rewrite iProto_consistent_unfold. iDestruct 1 as "[Htar _]". iApply "Htar". + Qed. + + Lemma iProto_consistent_step ps m1 m2 i j v p1 : + iProto_consistent ps -∗ + ps !!! i ≡ (<(Send, j)> m1) -∗ + ps !!! j ≡ (<(Recv, i)> m2) -∗ + iMsg_car m1 v (Next p1) -∗ + ∃ p2, iMsg_car m2 v (Next p2) ∗ + â–· iProto_consistent (<[i := p1]>(<[j := p2]>ps)). + Proof. + iIntros "Hprot #Hi #Hj Hm1". + rewrite iProto_consistent_unfold /iProto_consistent_pre. + iDestruct "Hprot" as "[_ Hprot]". + iDestruct ("Hprot" with "Hi Hj Hm1") as (p2) "[Hm2 Hprot]". + iExists p2. iFrame. + Qed. + + Global Instance iProto_own_frag_ne γ s : NonExpansive (iProto_own_frag γ s). + Proof. solve_proper. Qed. + + Lemma iProto_own_auth_agree γ ps i p : + iProto_own_auth γ ps -∗ iProto_own_frag γ i p -∗ â–· (ps !!! i ≡ p). + Proof. Admitted. + (* iIntros "Hâ— Hâ—¯". *) + (* iDestruct (own_valid_2 with "Hâ— Hâ—¯") as "H✓". *) + (* rewrite gmap_view_both_validI. *) + (* iDestruct "H✓" as "[_ [H1 H2]]". *) + (* rewrite list_lookup_total_alt lookup_fmap. *) + (* destruct (ps !! i); last first. *) + (* { rewrite !option_equivI. } *) + (* simpl. rewrite !option_equivI excl_equivI. by iNext. *) + (* Qed. *) + + Lemma iProto_own_auth_update γ ps i p p' : + iProto_own_auth γ ps -∗ iProto_own_frag γ i p ==∗ + iProto_own_auth γ (<[i := p']>ps) ∗ iProto_own_frag γ i p'. + Proof. + iIntros "Hâ— Hâ—¯". + iMod (own_update_2 with "Hâ— Hâ—¯") as "[H1 H2]"; [|iModIntro]. + { eapply (gmap_view_replace _ _ _ (Excl' (Next p'))). done. } + iFrame. rewrite -fmap_insert. Admitted. + + Lemma iProto_own_auth_alloc ps : + ⊢ |==> ∃ γ, iProto_own_auth γ ps ∗ [∗ list] i ↦p ∈ ps, iProto_own γ i p. + Proof. Admitted. + (* iMod (own_alloc (gmap_view_auth (DfracOwn 1) ∅)) as (γ) "Hauth". *) + (* { apply gmap_view_auth_valid. } *) + (* iExists γ. *) + (* iInduction ps as [|i p ps Hin] "IH" using map_ind. *) + (* { iModIntro. iFrame. by iApply big_sepM_empty. } *) + (* iMod ("IH" with "Hauth") as "[Hauth Hfrags]". *) + (* rewrite big_sepM_insert; [|done]. iFrame "Hfrags". *) + (* iMod (own_update with "Hauth") as "[Hauth Hfrag]". *) + (* { apply (gmap_view_alloc _ i (DfracOwn 1) (Excl' (Next p))); [|done|done]. *) + (* by rewrite lookup_fmap Hin. } *) + (* iModIntro. rewrite -fmap_insert. iFrame. *) + (* iExists _. iFrame. iApply iProto_le_refl. *) + (* Qed. *) + + Lemma iProto_own_le γ s p1 p2 : + iProto_own γ s p1 -∗ â–· (p1 ⊑ p2) -∗ iProto_own γ s p2. + Proof. + iDestruct 1 as (p1') "[Hle H]". iIntros "Hle'". + iExists p1'. iFrame "H". by iApply (iProto_le_trans with "Hle"). + Qed. + + Lemma iProto_init ps : + â–· iProto_consistent ps -∗ + |==> ∃ γ, iProto_ctx γ (length ps) ∗ [∗ list] i ↦p ∈ ps, iProto_own γ i p. + Proof. + iIntros "Hconsistent". + iMod iProto_own_auth_alloc as (γ) "[Hauth Hfrags]". + iExists γ. iFrame. iExists _. by iFrame. + Qed. + + + Lemma iProto_step γ ps_dom i j m1 m2 p1 v : + iProto_ctx γ ps_dom -∗ + iProto_own γ i (<(Send, j)> m1) -∗ + iProto_own γ j (<(Recv, i)> m2) -∗ + iMsg_car m1 v (Next p1) ==∗ + â–· ∃ p2, iMsg_car m2 v (Next p2) ∗ iProto_ctx γ ps_dom ∗ + iProto_own γ i p1 ∗ iProto_own γ j p2. + Proof. + iIntros "Hctx Hi Hj Hm". + iDestruct "Hi" as (pi) "[Hile Hi]". + iDestruct "Hj" as (pj) "[Hjle Hj]". + iDestruct "Hctx" as (ps Hdom) "[Hauth Hconsistent]". + iDestruct (iProto_own_auth_agree with "Hauth Hi") as "#Hpi". + iDestruct (iProto_own_auth_agree with "Hauth Hj") as "#Hpj". + iDestruct (own_prot_idx with "Hi Hj") as %Hneq. + iAssert (â–· (<[i:=<(Send, j)> m1]>ps !!! j ≡ pj))%I as "Hpj'". + { by rewrite list_lookup_total_insert_ne. } + iAssert (â–· (⌜is_Some (ps !! i)⌠∗ (pi ⊑ (<(Send, j)> m1))))%I with "[Hile]" + as "[Hi' Hile]". + { iNext. iDestruct (iProto_le_msg_inv_r with "Hile") as (m) "#Heq". + iFrame. iRewrite "Heq" in "Hpi". rewrite list_lookup_total_alt. + destruct (ps !! i); [done|]. + iDestruct (iProto_end_message_equivI with "Hpi") as "[]". } + iAssert (â–· (⌜is_Some (ps !! j)⌠∗ (pj ⊑ (<(Recv, i)> m2))))%I with "[Hjle]" + as "[Hj' Hjle]". + { iNext. iDestruct (iProto_le_msg_inv_r with "Hjle") as (m) "#Heq". + iFrame. iRewrite "Heq" in "Hpj". rewrite !list_lookup_total_alt. + destruct (ps !! j); [done|]. + iDestruct (iProto_end_message_equivI with "Hpj") as "[]". } + iDestruct (iProto_consistent_le with "Hconsistent Hpi Hile") as "Hconsistent". + iDestruct (iProto_consistent_le with "Hconsistent Hpj' Hjle") as "Hconsistent". + iDestruct (iProto_consistent_step _ _ _ i j with "Hconsistent [] [] [Hm //]") as + (p2) "[Hm2 Hconsistent]". + { rewrite list_lookup_total_insert_ne; [|done]. + rewrite list_lookup_total_insert_ne; [|done]. + rewrite list_lookup_total_insert; [done|]. admit. } + { rewrite list_lookup_total_insert_ne; [|done]. + rewrite list_lookup_total_insert; [done|]. admit. } + iMod (iProto_own_auth_update _ _ _ _ p2 with "Hauth Hj") as "[Hauth Hj]". + iMod (iProto_own_auth_update _ _ _ _ p1 with "Hauth Hi") as "[Hauth Hi]". + iIntros "!>!>". iExists p2. iFrame "Hm2". + iDestruct "Hi'" as %Hi. iDestruct "Hj'" as %Hj. + iSplitL "Hconsistent Hauth". + { iExists (<[i:=p1]> (<[j:=p2]> ps)). + iSplit. + { admit. + (* rewrite !dom_insert_lookup_L; [done..|by rewrite lookup_insert_ne]. *)} + iFrame. rewrite list_insert_insert. + rewrite list_insert_commute; [|done]. rewrite list_insert_insert. + by rewrite list_insert_commute; [|done]. } + iSplitL "Hi"; iExists _; iFrame; iApply iProto_le_refl. + Admitted. + + Lemma iProto_target γ ps_dom i a j m : + iProto_ctx γ ps_dom -∗ + iProto_own γ i (<(a, j)> m) -∗ + â–· (⌜j < ps_domâŒ) ∗ iProto_ctx γ ps_dom ∗ iProto_own γ i (<(a, j)> m). + Proof. + iIntros "Hctx Hown". + rewrite /iProto_ctx /iProto_own. + iDestruct "Hctx" as (ps Hdom) "[Hauth Hps]". + iDestruct "Hown" as (p') "[Hle Hown]". + iDestruct (iProto_own_auth_agree with "Hauth Hown") as "#Hi". + iDestruct (iProto_le_msg_inv_r with "Hle") as (m') "#Heq". + iAssert (â–· (⌜is_Some (ps !! j)⌠∗ iProto_consistent ps))%I + with "[Hps]" as "[HSome Hps]". + { iNext. iRewrite "Heq" in "Hi". + iDestruct (iProto_consistent_target with "Hps Hi") as "#$". by iFrame. } + iSplitL "HSome". + { iNext. iDestruct "HSome" as %Heq. + iPureIntro. simplify_eq. admit. } + iSplitL "Hauth Hps"; iExists _; by iFrame. + Admitted. + + (* (** The instances below make it possible to use the tactics [iIntros], *) + (* [iExist], [iSplitL]/[iSplitR], [iFrame] and [iModIntro] on [iProto_le] goals. *) *) + Global Instance iProto_le_from_forall_l {A} i (m1 : A → iMsg Σ V) m2 name : + AsIdentName m1 name → + FromForall (iProto_message (Recv,i) (iMsg_exist m1) ⊑ (<(Recv,i)> m2)) + (λ x, (<(Recv, i)> m1 x) ⊑ (<(Recv, i)> m2))%I name | 10. + Proof. intros _. apply iProto_le_exist_elim_l. Qed. + Global Instance iProto_le_from_forall_r {A} i m1 (m2 : A → iMsg Σ V) name : + AsIdentName m2 name → + FromForall ((<(Send,i)> m1) ⊑ iProto_message (Send,i) (iMsg_exist m2)) + (λ x, (<(Send,i)> m1) ⊑ (<(Send,i)> m2 x))%I name | 11. + Proof. intros _. apply iProto_le_exist_elim_r. Qed. + + Global Instance iProto_le_from_wand_l i m v P p : + TCIf (TCEq P True%I) False TCTrue → + FromWand ((<(Recv,i)> MSG v {{ P }}; p) ⊑ (<(Recv,i)> m)) P ((<(Recv,i)> MSG v; p) ⊑ (<(Recv,i)> m)) | 10. + Proof. intros _. apply iProto_le_payload_elim_l. Qed. + Global Instance iProto_le_from_wand_r i m v P p : + FromWand ((<(Send,i)> m) ⊑ (<(Send,i)> MSG v {{ P }}; p)) P ((<(Send,i)> m) ⊑ (<(Send,i)> MSG v; p)) | 11. + Proof. apply iProto_le_payload_elim_r. Qed. + + Global Instance iProto_le_from_exist_l {A} i (m : A → iMsg Σ V) p : + FromExist ((<(Send,i) @ x> m x) ⊑ p) (λ a, (<(Send,i)> m a) ⊑ p)%I | 10. + Proof. + rewrite /FromExist. iDestruct 1 as (x) "H". + iApply (iProto_le_trans with "[] H"). iApply iProto_le_exist_intro_l. + Qed. + Global Instance iProto_le_from_exist_r {A} i (m : A → iMsg Σ V) p : + FromExist (p ⊑ <(Recv,i) @ x> m x) (λ a, p ⊑ (<(Recv,i)> m a))%I | 11. + Proof. + rewrite /FromExist. iDestruct 1 as (x) "H". + iApply (iProto_le_trans with "H"). iApply iProto_le_exist_intro_r. + Qed. + + Global Instance iProto_le_from_sep_l i m v P p : + FromSep ((<(Send,i)> MSG v {{ P }}; p) ⊑ (<(Send,i)> m)) P ((<(Send,i)> MSG v; p) ⊑ (<(Send,i)> m)) | 10. + Proof. + rewrite /FromSep. iIntros "[HP H]". + iApply (iProto_le_trans with "[HP] H"). by iApply iProto_le_payload_intro_l. + Qed. + Global Instance iProto_le_from_sep_r i m v P p : + FromSep ((<(Recv,i)> m) ⊑ (<(Recv,i)> MSG v {{ P }}; p)) P ((<(Recv,i)> m) ⊑ (<(Recv,i)> MSG v; p)) | 11. + Proof. + rewrite /FromSep. iIntros "[HP H]". + iApply (iProto_le_trans with "H"). by iApply iProto_le_payload_intro_r. + Qed. + + Global Instance iProto_le_frame_l i q m v R P Q p : + Frame q R P Q → + Frame q R ((<(Send,i)> MSG v {{ P }}; p) ⊑ (<(Send,i)> m)) + ((<(Send,i)> MSG v {{ Q }}; p) ⊑ (<(Send,i)> m)) | 10. + Proof. + rewrite /Frame /=. iIntros (HP) "[HR H]". + iApply (iProto_le_trans with "[HR] H"). iApply iProto_le_payload_elim_r. + iIntros "HQ". iApply iProto_le_payload_intro_l. iApply HP; iFrame. + Qed. + Global Instance iProto_le_frame_r i q m v R P Q p : + Frame q R P Q → + Frame q R ((<(Recv,i)> m) ⊑ (<(Recv,i)> MSG v {{ P }}; p)) + ((<(Recv,i)> m) ⊑ (<(Recv,i)> MSG v {{ Q }}; p)) | 11. + Proof. + rewrite /Frame /=. iIntros (HP) "[HR H]". + iApply (iProto_le_trans with "H"). iApply iProto_le_payload_elim_l. + iIntros "HQ". iApply iProto_le_payload_intro_r. iApply HP; iFrame. + Qed. + + Global Instance iProto_le_from_modal a v p1 p2 : + FromModal True (modality_instances.modality_laterN 1) (p1 ⊑ p2) + ((<a> MSG v; p1) ⊑ (<a> MSG v; p2)) (p1 ⊑ p2). + Proof. intros _. iApply iProto_le_base. Qed. + +End proto. + +Typeclasses Opaque iProto_ctx iProto_own. + +Global Hint Extern 0 (environments.envs_entails _ (?x ⊑ ?y)) => + first [is_evar x; fail 1 | is_evar y; fail 1|iApply iProto_le_refl] : core. -- GitLab