diff --git a/theories/logrel/session_types.v b/theories/logrel/session_types.v
index 2fbb794aabd44b3234ceac07a5bb91f67667899a..4264ba584307aa8ec47b7b14eefeb9073aeb7d81 100644
--- a/theories/logrel/session_types.v
+++ b/theories/logrel/session_types.v
@@ -10,7 +10,7 @@ Section protocols.
 
   Definition lsty_end : lsty Σ := Lsty END.
 
-  Definition lsty_message (a : action ) (A : lty Σ) (P : lsty Σ) : lsty Σ :=
+  Definition lsty_message (a : action) (A : lty Σ) (P : lsty Σ) : lsty Σ :=
     Lsty (<a> v, MSG v {{ A v }}; lsty_car P).
 
   Definition lsty_send (A : lty Σ) (P : lsty Σ) : lsty Σ :=
@@ -86,8 +86,7 @@ Section Propers.
   Proof.
     intros n Ps1 Ps2 Pseq.
     apply Lsty_ne.
-    apply iProto_message_ne; simpl; try done;
-    solve_proper.
+    apply iProto_message_ne; simpl; try done; solve_proper.
   Qed.
 
   Global Instance lsty_choice_contractive n a :
@@ -96,7 +95,7 @@ Section Propers.
     intros Ps1 Ps2 Pseq.
     apply Lsty_ne.
     apply iProto_message_contractive; simpl; try done;
-    destruct n=> //=; solve_proper.
+      destruct n=> //=; solve_proper.
   Qed.
 
   Global Instance lsty_select_ne : NonExpansive (@lsty_select Σ).
diff --git a/theories/logrel/subtyping.v b/theories/logrel/subtyping.v
index 6f7c4f4447da41ade16afc15eb3d78812e421c25..bb7c314e344c5870d8656af0bb3546b92e0ca778 100644
--- a/theories/logrel/subtyping.v
+++ b/theories/logrel/subtyping.v
@@ -240,7 +240,7 @@ Section subtype.
 
   Lemma lsty_select_le_insert i P (Ps : gmap Z (lsty Σ)) :
     Ps !! i = None →
-    ⊢ (lsty_select (<[i:=P]>Ps)) <p: (lsty_select Ps).
+    ⊢ lsty_select (<[i:=P]>Ps) <p: lsty_select Ps.
   Proof.
     iIntros (Hnone) "!>".
     iApply iProto_le_send.
@@ -262,7 +262,7 @@ Section subtype.
 
   Lemma lsty_select_le (Ps1 Ps2 : gmap Z (lsty Σ)) :
     (▷ [∗ map] i ↦ P1;P2 ∈ Ps1; Ps2, P1 <p: P2) -∗
-    (lsty_select Ps1) <p: (lsty_select Ps2).
+    lsty_select Ps1 <p: lsty_select Ps2.
   Proof.
     iIntros "#H1 !>".
     iApply iProto_le_send=> /=.
@@ -280,7 +280,7 @@ Section subtype.
 
   Lemma lsty_branch_le_insert i P (Ps : gmap Z (lsty Σ)) :
     Ps !! i = None →
-    ⊢ (lsty_branch Ps) <p: (lsty_branch (<[i:=P]>Ps)).
+    ⊢ lsty_branch Ps <p: lsty_branch (<[i:=P]>Ps).
   Proof.
     iIntros (Hnone) "!>".
     iApply iProto_le_recv.
@@ -301,7 +301,7 @@ Section subtype.
 
   Lemma lsty_branch_le (Ps1 Ps2 : gmap Z (lsty Σ)) :
     (▷ [∗ map] i ↦ P1;P2 ∈ Ps1; Ps2, P1 <p: P2) -∗
-    (lsty_branch Ps1) <p: (lsty_branch Ps2).
+    lsty_branch Ps1 <p: lsty_branch Ps2.
   Proof.
     iIntros "#H1 !>".
     iApply iProto_le_recv=> /=.