diff --git a/theories/channel/channel.v b/theories/channel/channel.v index 2c53a5efd81612ed04999d4c02582563080c988b..52e10620358daa91fa14b5b64f42110d90f56414 100644 --- a/theories/channel/channel.v +++ b/theories/channel/channel.v @@ -75,34 +75,25 @@ Definition chanΣ : gFunctors := #[ spin_lockΣ; protoΣ val ]. Global Instance subG_chanΣ {Σ} : subG chanΣ Σ → chanG Σ. Proof. solve_inG. Qed. -Record chan_name := ChanName { - chan_lock_name : gname; - chan_proto_name : proto_name; -}. -Global Instance chan_name_inhabited : Inhabited chan_name := - populate (ChanName inhabitant inhabitant). -Global Instance chan_name_eq_dec : EqDecision chan_name. -Proof. solve_decision. Qed. -Global Instance chan_name_countable : Countable chan_name. -Proof. - refine (inj_countable (λ '(ChanName γl γr), (γl,γr)) - (λ '(γl, γr), Some (ChanName γl γr)) _); by intros []. -Qed. - (** * Definition of the pointsto connective *) Notation iProto Σ := (iProto Σ val). Notation iMsg Σ := (iMsg Σ val). +Definition iProto_lock_inv `{!heapGS Σ, !chanG Σ} + (l r : loc) (γl γr : gname) : iProp Σ := + ∃ vsl vsr, + llist internal_eq l vsl ∗ + llist internal_eq r vsr ∗ + steps_lb (length vsl) ∗ steps_lb (length vsr) ∗ + iProto_ctx γl γr vsl vsr. + Definition iProto_pointsto_def `{!heapGS Σ, !chanG Σ} (c : val) (p : iProto Σ) : iProp Σ := - ∃ γ s (l r : loc) (lk : val), - ⌜ c = ((#(side_elim s l r), #(side_elim s r l)), lk)%V ⌠∗ - is_lock (chan_lock_name γ) lk (∃ vsl vsr, - llist internal_eq l vsl ∗ - llist internal_eq r vsr ∗ - steps_lb (length vsl) ∗ steps_lb (length vsr) ∗ - iProto_ctx (chan_proto_name γ) vsl vsr) ∗ - iProto_own (chan_proto_name γ) s p. + ∃ γl γr γlk (l r : loc) (lk : val), + ⌜ c = ((#l, #r), lk)%V ⌠∗ + is_lock γlk lk (iProto_lock_inv l r γl γr) ∗ + iProto_own γl p. + Definition iProto_pointsto_aux : seal (@iProto_pointsto_def). by eexists. Qed. Definition iProto_pointsto := iProto_pointsto_aux.(unseal). Definition iProto_pointsto_eq : @@ -143,8 +134,8 @@ Section channel. Lemma iProto_pointsto_le c p1 p2 : c ↣ p1 ⊢ â–· (p1 ⊑ p2) -∗ c ↣ p2. Proof. - rewrite iProto_pointsto_eq. iDestruct 1 as (γ s l r lk ->) "[Hlk H]". - iIntros "Hle'". iExists γ, s, l, r, lk. iSplit; [done|]. iFrame "Hlk". + rewrite iProto_pointsto_eq. iDestruct 1 as (γl γr γlk l r lk ->) "[Hlk H]". + iIntros "Hle'". iExists γl, γr, γlk, l, r, lk. iSplit; [done|]. iFrame "Hlk". by iApply (iProto_own_le with "H"). Qed. @@ -200,6 +191,13 @@ Section channel. iDestruct ("H" with "HP") as "[$ ?]"; by iModIntro. Qed. + Lemma iProto_lock_inv_sym l r γl γr : + iProto_lock_inv l r γl γr ⊢ iProto_lock_inv r l γr γl. + Proof. + iIntros "(%vsl & %vsr & Hlistl & Hlistr & Hstepsl & Hstepsr & Hctx)". + iExists vsr, vsl. iFrame. by iApply iProto_ctx_sym. + Qed. + (** ** Specifications of [send] and [recv] *) Lemma new_chan_spec p : {{{ True }}} @@ -209,16 +207,20 @@ Section channel. iIntros (Φ _) "HΦ". wp_lam. iMod (steps_lb_0) as "#Hlb". wp_smart_apply (lnil_spec internal_eq with "[//]"); iIntros (l) "Hl". wp_smart_apply (lnil_spec internal_eq with "[//]"); iIntros (r) "Hr". - iMod (iProto_init p) as (γp) "(Hctx & Hcl & Hcr)". + iMod (iProto_init p) as (γl γr) "(Hctx & Hcl & Hcr)". wp_smart_apply (newlock_spec (∃ vsl vsr, llist internal_eq l vsl ∗ llist internal_eq r vsr ∗ steps_lb (length vsl) ∗ steps_lb (length vsr) ∗ - iProto_ctx γp vsl vsr) with "[Hl Hr Hctx]"). + iProto_ctx γl γr vsl vsr) with "[Hl Hr Hctx]"). { iExists [], []. iFrame "#∗". } iIntros (lk γlk) "#Hlk". wp_pures. iApply "HΦ". - set (γ := ChanName γlk γp). iSplitL "Hcl". - - rewrite iProto_pointsto_eq. iExists γ, Left, l, r, lk. by iFrame "Hcl #". - - rewrite iProto_pointsto_eq. iExists γ, Right, l, r, lk. by iFrame "Hcr #". + iSplitL "Hcl". + - rewrite iProto_pointsto_eq. + iExists γl, γr, γlk, l, r, lk. by iFrame "Hcl #". + - rewrite iProto_pointsto_eq. + iExists γr, γl, γlk, r, l, lk. iFrame "Hcr #". + iModIntro. iSplit; first done. iApply (is_lock_iff with "Hlk"). + iIntros "!> !>". iSplit; iIntros; by iApply iProto_lock_inv_sym. Qed. Lemma fork_chan_spec p Φ (f : val) : @@ -239,50 +241,29 @@ Section channel. {{{ RET #(); c ↣ p }}}. Proof. rewrite iProto_pointsto_eq. iIntros (Φ) "Hc HΦ". wp_lam; wp_pures. - iDestruct "Hc" as (γ s l r lk ->) "[#Hlk H]"; wp_pures. + iDestruct "Hc" as (γl γr γlk l r lk ->) "[#Hlk H]"; wp_pures. wp_smart_apply (acquire_spec with "Hlk"); iIntros "[Hlkd Hinv]". iDestruct "Hinv" as (vsl vsr) "(Hl & Hr & #Hlbl & #Hlbr & Hctx)". - destruct s; simpl. - - wp_pures. wp_bind (lsnoc _ _). - iApply (wp_step_fupdN_lb with "Hlbr [Hctx H]"); [done| |]. - { iApply fupd_mask_intro; [set_solver|]. simpl. - iIntros "Hclose !>!>". - iMod (iProto_send_l with "Hctx H []") as "[Hctx H]". - { rewrite iMsg_base_eq /=; auto. } - iModIntro. - iApply step_fupdN_intro; [done|]. - iIntros "!>". iMod "Hclose". - iCombine ("Hctx H") as "H". - iExact "H". } - iApply (wp_lb_update with "Hlbl"). - wp_smart_apply (lsnoc_spec with "[$Hl //]"); iIntros "Hl". - iIntros "#Hlbl' [Hctx H] !>". - wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"). - { iExists (vsl ++ [v]), vsr. - rewrite app_length /=. - replace (length vsl + 1) with (S (length vsl)) by lia. - iFrame "#∗". } - iIntros "_". iApply "HΦ". iExists γ, Left, l, r, lk. eauto 10 with iFrame. - - wp_pures. wp_bind (lsnoc _ _). - iApply (wp_step_fupdN_lb with "Hlbl [Hctx H]"); [done| |]. - { iApply fupd_mask_intro; [set_solver|]. simpl. - iIntros "Hclose !>!>". - iMod (iProto_send_r with "Hctx H []") as "[Hctx H]". - { rewrite iMsg_base_eq /=; auto. } - iModIntro. - iApply step_fupdN_intro; [done|]. - iIntros "!>". iMod "Hclose". - iCombine ("Hctx H") as "H". - iExact "H". } - iApply (wp_lb_update with "Hlbr"). - wp_smart_apply (lsnoc_spec with "[$Hr //]"); iIntros "Hr". - iIntros "#Hlbr' [Hctx H] !>". - wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"). - { iExists vsl, (vsr ++ [v]). - rewrite app_length /=. - replace (length vsr + 1) with (S (length vsr)) by lia. - iFrame "#∗". } - iIntros "_". iApply "HΦ". iExists γ, Right, l, r, lk. eauto 10 with iFrame. + wp_pures. wp_bind (lsnoc _ _). + iApply (wp_step_fupdN_lb with "Hlbr [Hctx H]"); [done| |]. + { iApply fupd_mask_intro; [set_solver|]. simpl. + iIntros "Hclose !>!>". + iMod (iProto_send with "Hctx H []") as "[Hctx H]". + { rewrite iMsg_base_eq /=; auto. } + iModIntro. + iApply step_fupdN_intro; [done|]. + iIntros "!>". iMod "Hclose". + iCombine ("Hctx H") as "H". + iExact "H". } + iApply (wp_lb_update with "Hlbl"). + wp_smart_apply (lsnoc_spec with "[$Hl //]"); iIntros "Hl". + iIntros "#Hlbl' [Hctx H] !>". + wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"). + { iExists (vsl ++ [v]), vsr. + rewrite app_length /=. + replace (length vsl + 1) with (S (length vsl)) by lia. + iFrame "#∗". } + iIntros "_". iApply "HΦ". iExists γl, γr, γlk. eauto 10 with iFrame. Qed. Lemma send_spec_tele {TT} c (tt : TT) @@ -308,36 +289,25 @@ Section channel. (∃.. x, ⌜w = SOMEV (v x)⌠∗ c ↣ p x ∗ P x) }}}. Proof. rewrite iProto_pointsto_eq. iIntros (Φ) "Hc HΦ". wp_lam; wp_pures. - iDestruct "Hc" as (γ s l r lk ->) "[#Hlk H]"; wp_pures. + iDestruct "Hc" as (γl γr γlk l r lk ->) "[#Hlk H]"; wp_pures. wp_smart_apply (acquire_spec with "Hlk"); iIntros "[Hlkd Hinv]". - iDestruct "Hinv" as (vsl vsr) "(Hl & Hr & #Hlbl & #Hlbr & Hctx)". destruct s; simpl. - - wp_smart_apply (lisnil_spec with "Hr"); iIntros "Hr". - destruct vsr as [|vr vsr]; wp_pures. - { wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. - iIntros "_". wp_pures. iModIntro. iApply "HΦ". iLeft. iSplit; [done|]. - iExists γ, Left, l, r, lk. eauto 10 with iFrame. } - wp_smart_apply (lpop_spec with "Hr"); iIntros (v') "[% Hr]"; simplify_eq/=. - iMod (iProto_recv_l with "Hctx H") as (q) "(Hctx & H & Hm)". wp_pures. + iDestruct "Hinv" as (vsl vsr) "(Hl & Hr & #Hlbl & #Hlbr & Hctx)". + wp_smart_apply (lisnil_spec with "Hr"); iIntros "Hr". + destruct vsr as [|vr vsr]; wp_pures. + - wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"). + { unfold iProto_lock_inv; by eauto with iFrame. } + iIntros "_". wp_pures. iModIntro. iApply "HΦ". iLeft. iSplit; [done|]. + iExists γl, γr, γlk. eauto 10 with iFrame. + - wp_smart_apply (lpop_spec with "Hr"); iIntros (v') "[% Hr]"; simplify_eq/=. + iMod (iProto_recv with "Hctx H") as (q) "(Hctx & H & Hm)". wp_pures. rewrite iMsg_base_eq. iDestruct (iMsg_texist_exist with "Hm") as (x <-) "[Hp HP]". iDestruct (steps_lb_le _ (length vsr) with "Hlbr") as "#Hlbr'"; [lia|]. - wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. - iIntros "_". wp_pures. iModIntro. iApply "HΦ". iRight. iExists x. iSplit; [done|]. - iFrame "HP". iExists γ, Left, l, r, lk. iSplit; [done|]. iFrame "Hlk". - by iRewrite "Hp". - - wp_smart_apply (lisnil_spec with "Hl"); iIntros "Hl". - destruct vsl as [|vl vsl]; wp_pures. - { wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. - iIntros "_". wp_pures. iModIntro. iApply "HΦ". iLeft. iSplit; [done|]. - iExists γ, Right, l, r, lk. eauto 10 with iFrame. } - wp_smart_apply (lpop_spec with "Hl"); iIntros (v') "[% Hl]"; simplify_eq/=. - iMod (iProto_recv_r with "Hctx H") as (q) "(Hctx & H & Hm)". wp_pures. - rewrite iMsg_base_eq. - iDestruct (iMsg_texist_exist with "Hm") as (x <-) "[Hp HP]". - iDestruct (steps_lb_le _ (length vsl) with "Hlbl") as "#Hlbl'"; [lia|]. - wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. - iIntros "_". wp_pures. iModIntro. iApply "HΦ". iRight. iExists x. iSplit; [done|]. - iFrame "HP". iExists γ, Right, l, r, lk. iSplit; [done|]. iFrame "Hlk". + wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"). + { unfold iProto_lock_inv; by eauto with iFrame. } + iIntros "_". wp_pures. iModIntro. iApply "HΦ". + iRight. iExists x. iSplit; [done|]. + iFrame "HP". iExists γl, γr, γlk, l, r, lk. iSplit; [done|]. iFrame "Hlk". by iRewrite "Hp". Qed. diff --git a/theories/channel/proto.v b/theories/channel/proto.v index 9e9dfcfbfc71854310044ceafa0e101b9ac1849d..e91572234343b4de84df7964e4da76bb562fb5a0 100644 --- a/theories/channel/proto.v +++ b/theories/channel/proto.v @@ -294,52 +294,33 @@ Fixpoint iProto_app_recvs {Σ V} (vs : list V) (p : iProto Σ V) : iProto Σ V : Definition iProto_interp {Σ V} (vsl vsr : list V) (pl pr : iProto Σ V) : iProp Σ := ∃ p, iProto_app_recvs vsr p ⊑ pl ∗ iProto_app_recvs vsl (iProto_dual p) ⊑ pr. -Record proto_name := ProtName { proto_l_name : gname; proto_r_name : gname }. -Global Instance proto_name_inhabited : Inhabited proto_name := - populate (ProtName inhabitant inhabitant). -Global Instance proto_name_eq_dec : EqDecision proto_name. -Proof. solve_decision. Qed. -Global Instance proto_name_countable : Countable proto_name. -Proof. - refine (inj_countable (λ '(ProtName γl γr), (γl,γr)) - (λ '(γl, γr), Some (ProtName γl γr)) _); by intros []. -Qed. - -Inductive side := Left | Right. -Global Instance side_inhabited : Inhabited side := populate Left. -Global Instance side_eq_dec : EqDecision side. -Proof. solve_decision. Qed. -Global Instance side_countable : Countable side. -Proof. - refine (inj_countable (λ s, if s is Left then true else false) - (λ b, Some (if b then Left else Right)) _); by intros []. -Qed. -Definition side_elim {A} (s : side) (l r : A) : A := - match s with Left => l | Right => r end. - -Definition iProto_own_frag `{!protoG Σ V} (γ : proto_name) (s : side) +Definition iProto_own_frag `{!protoG Σ V} (γ : gname) (p : iProto Σ V) : iProp Σ := - own (side_elim s proto_l_name proto_r_name γ) (â—¯E (Next p)). -Definition iProto_own_auth `{!protoG Σ V} (γ : proto_name) (s : side) + own γ (â—¯E (Next p)). +Definition iProto_own_auth `{!protoG Σ V} (γ : gname) (p : iProto Σ V) : iProp Σ := - own (side_elim s proto_l_name proto_r_name γ) (â—E (Next p)). + own γ (â—E (Next p)). +(** In the original Actris papers we a single ghost name for [iProto_ctx] and +[iProto_own]. To distinguish the two [iProto_own]s for both sides, we used +an enum [Left]/[Right]. This turned out to be cumbersome because at various +places we need to case at this enum. The current version of [iProto_ctx] has two +ghost names, one for each [iProto_own], enabling more uniform definitions. *) Definition iProto_ctx `{protoG Σ V} - (γ : proto_name) (vsl vsr : list V) : iProp Σ := + (γl γr : gname) (vsl vsr : list V) : iProp Σ := ∃ pl pr, - iProto_own_auth γ Left pl ∗ - iProto_own_auth γ Right pr ∗ + iProto_own_auth γl pl ∗ + iProto_own_auth γr pr ∗ â–· iProto_interp vsl vsr pl pr. (** * The connective for ownership of channel ends *) -Definition iProto_own `{!protoG Σ V} - (γ : proto_name) (s : side) (p : iProto Σ V) : iProp Σ := - ∃ p', â–· (p' ⊑ p) ∗ iProto_own_frag γ s p'. +Definition iProto_own `{!protoG Σ V} (γ : gname) (p : iProto Σ V) : iProp Σ := + ∃ p', â–· (p' ⊑ p) ∗ iProto_own_frag γ p'. Arguments iProto_own {_ _ _} _ _%proto. -Global Instance: Params (@iProto_own) 3 := {}. +Global Instance: Params (@iProto_own) 4 := {}. -Global Instance iProto_own_contractive `{protoG Σ V} γ s : - Contractive (iProto_own γ s). +Global Instance iProto_own_contractive `{protoG Σ V} γ : + Contractive (iProto_own γ). Proof. solve_contractive. Qed. (** * Proofs *) @@ -1026,20 +1007,20 @@ Section proto. Proper ((≡) ==> (≡) ==> (≡)) (iProto_interp (Σ:=Σ) (V:=V) vsl vsr). Proof. apply (ne_proper_2 _). Qed. - Global Instance iProto_own_frag_ne γ s : NonExpansive (iProto_own_frag γ s). + Global Instance iProto_own_frag_ne γ : NonExpansive (iProto_own_frag γ). Proof. solve_proper. Qed. - Lemma iProto_own_auth_agree γ s p p' : - iProto_own_auth γ s p -∗ iProto_own_frag γ s p' -∗ â–· (p ≡ p'). + Lemma iProto_own_auth_agree γ p p' : + iProto_own_auth γ p -∗ iProto_own_frag γ p' -∗ â–· (p ≡ p'). Proof. iIntros "Hâ— Hâ—¯". iCombine "Hâ— Hâ—¯" gives "H✓". iDestruct (excl_auth_agreeI with "H✓") as "{H✓} H✓". iApply (later_equivI_1 with "H✓"). Qed. - Lemma iProto_own_auth_update γ s p p' p'' : - iProto_own_auth γ s p -∗ iProto_own_frag γ s p' ==∗ - iProto_own_auth γ s p'' ∗ iProto_own_frag γ s p''. + Lemma iProto_own_auth_update γ p p' p'' : + iProto_own_auth γ p -∗ iProto_own_frag γ p' ==∗ + iProto_own_auth γ p'' ∗ iProto_own_frag γ p''. Proof. iIntros "Hâ— Hâ—¯". iDestruct (own_update_2 with "Hâ— Hâ—¯") as "H". { eapply (excl_auth_update _ _ (Next p'')). } @@ -1049,8 +1030,8 @@ Section proto. Lemma iProto_interp_nil p : ⊢ iProto_interp [] [] p (iProto_dual p). Proof. iExists p; simpl. iSplitL; iApply iProto_le_refl. Qed. - Lemma iProto_interp_flip vsl vsr pl pr : - iProto_interp vsl vsr pl pr -∗ iProto_interp vsr vsl pr pl. + Lemma iProto_interp_sym vsl vsr pl pr : + iProto_interp vsl vsr pl pr ⊢ iProto_interp vsr vsl pr pl. Proof. iDestruct 1 as (p) "[Hp Hdp]". iExists (iProto_dual p). rewrite (involutive iProto_dual). iFrame. @@ -1065,8 +1046,8 @@ Section proto. Lemma iProto_interp_le_r vsl vsr pl pr pr' : iProto_interp vsl vsr pl pr -∗ pr ⊑ pr' -∗ iProto_interp vsl vsr pl pr'. Proof. - iIntros "H Hle". iApply iProto_interp_flip. - iApply (iProto_interp_le_l with "[H] Hle"). by iApply iProto_interp_flip. + iIntros "H Hle". iApply iProto_interp_sym. + iApply (iProto_interp_le_l with "[H] Hle"). by iApply iProto_interp_sym. Qed. Lemma iProto_interp_send vl ml vsl vsr pr pl' : @@ -1107,39 +1088,47 @@ Section proto. iExists pr''. iIntros "{$Hpr} !>". iExists p. iFrame. Qed. - Global Instance iProto_own_ne γ s : NonExpansive (iProto_own γ s). + Lemma iProto_ctx_sym γl γr vsl vsr : + iProto_ctx γl γr vsl vsr ⊢ iProto_ctx γr γl vsr vsl. + Proof. + iIntros "(%pl & %pr & Hauthl & Hauthr & Hinterp)". + iDestruct (iProto_interp_sym with "Hinterp") as "Hinterp". + iExists pr, pl; iFrame. + Qed. + + Global Instance iProto_own_ne γ : NonExpansive (iProto_own γ). Proof. solve_proper. Qed. - Global Instance iProto_own_proper γ s : Proper ((≡) ==> (≡)) (iProto_own γ s). + Global Instance iProto_own_proper γ : Proper ((≡) ==> (≡)) (iProto_own γ). Proof. apply (ne_proper _). Qed. - Lemma iProto_own_le γ s p1 p2 : - iProto_own γ s p1 -∗ â–· (p1 ⊑ p2) -∗ iProto_own γ s p2. + Lemma iProto_own_le γ p1 p2 : + iProto_own γ p1 -∗ â–· (p1 ⊑ p2) -∗ iProto_own γ p2. Proof. iDestruct 1 as (p1') "[Hle H]". iIntros "Hle'". iExists p1'. iFrame "H". by iApply (iProto_le_trans with "Hle"). Qed. Lemma iProto_init p : - ⊢ |==> ∃ γ, - iProto_ctx γ [] [] ∗ - iProto_own γ Left p ∗ iProto_own γ Right (iProto_dual p). + ⊢ |==> ∃ γl γr, + iProto_ctx γl γr [] [] ∗ + iProto_own γl p ∗ iProto_own γr (iProto_dual p). Proof. - iMod (own_alloc (â—E (Next p) â‹… â—¯E (Next p))) as (lγ) "[Hâ—l Hâ—¯l]". + iMod (own_alloc (â—E (Next p) â‹… â—¯E (Next p))) as (γl) "[Hâ—l Hâ—¯l]". { by apply excl_auth_valid. } iMod (own_alloc (â—E (Next (iProto_dual p)) â‹… - â—¯E (Next (iProto_dual p)))) as (rγ) "[Hâ—r Hâ—¯r]". + â—¯E (Next (iProto_dual p)))) as (γr) "[Hâ—r Hâ—¯r]". { by apply excl_auth_valid. } - pose (ProtName lγ rγ) as γ. iModIntro. iExists γ. iSplitL "Hâ—l Hâ—r". + iModIntro. iExists γl, γr. iSplitL "Hâ—l Hâ—r". { iExists p, (iProto_dual p). iFrame. iApply iProto_interp_nil. } iSplitL "Hâ—¯l"; iExists _; iFrame; iApply iProto_le_refl. Qed. - Lemma iProto_send_l γ m vsr vsl vl p : - iProto_ctx γ vsl vsr -∗ - iProto_own γ Left (<!> m) -∗ + Lemma iProto_send γl γr m vsr vsl vl p : + iProto_ctx γl γr vsl vsr -∗ + iProto_own γl (<!> m) -∗ iMsg_car m vl (Next p) ==∗ - â–·^(length vsr) iProto_ctx γ (vsl ++ [vl]) vsr ∗ - iProto_own γ Left p. + â–·^(length vsr) iProto_ctx γl γr (vsl ++ [vl]) vsr ∗ + iProto_own γl p. Proof. iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". iDestruct 1 as (pl') "[Hle Hâ—¯]". iIntros "Hm". @@ -1148,39 +1137,18 @@ Section proto. with "[Hle]" as "{Hp} Hle"; first (iNext; by iRewrite "Hp"). iDestruct (iProto_interp_le_l with "Hinterp Hle") as "Hinterp". iDestruct (iProto_interp_send with "Hinterp [Hm //]") as "Hinterp". - iMod (iProto_own_auth_update _ _ _ _ p with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". + iMod (iProto_own_auth_update _ _ _ p with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". iIntros "!>". iSplitR "Hâ—¯". - iIntros "!>". iExists p, pr. iFrame. - iExists p. iFrame. iApply iProto_le_refl. Qed. - Lemma iProto_send_r γ m vsr vsl vr p : - iProto_ctx γ vsl vsr -∗ - iProto_own γ Right (<!> m) -∗ - iMsg_car m vr (Next p) ==∗ - â–·^(length vsl) iProto_ctx γ vsl (vsr ++ [vr]) ∗ - iProto_own γ Right p. - Proof. - iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". - iDestruct 1 as (pr') "[Hle Hâ—¯]". iIntros "Hm". - iDestruct (iProto_own_auth_agree with "Hâ—r Hâ—¯") as "#Hp". - iAssert (â–· (pr ⊑ <!> m))%I - with "[Hle]" as "{Hp} Hle"; first (iNext; by iRewrite "Hp"). - iDestruct (iProto_interp_flip with "Hinterp") as "Hinterp". - iDestruct (iProto_interp_le_l with "Hinterp Hle") as "Hinterp". - iDestruct (iProto_interp_send with "Hinterp [Hm //]") as "Hinterp". - iMod (iProto_own_auth_update _ _ _ _ p with "Hâ—r Hâ—¯") as "[Hâ—r Hâ—¯]". - iIntros "!>". iSplitR "Hâ—¯". - - iIntros "!>". iExists pl, p. iFrame. by iApply iProto_interp_flip. - - iExists p. iFrame. iApply iProto_le_refl. - Qed. - - Lemma iProto_recv_l γ m vr vsr vsl : - iProto_ctx γ vsl (vr :: vsr) -∗ - iProto_own γ Left (<?> m) ==∗ + Lemma iProto_recv γl γr m vr vsr vsl : + iProto_ctx γl γr vsl (vr :: vsr) -∗ + iProto_own γl (<?> m) ==∗ â–· ∃ p, - iProto_ctx γ vsl vsr ∗ - iProto_own γ Left p ∗ + iProto_ctx γl γr vsl vsr ∗ + iProto_own γl p ∗ iMsg_car m vr (Next p). Proof. iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". @@ -1188,31 +1156,11 @@ Section proto. iDestruct (iProto_own_auth_agree with "Hâ—l Hâ—¯") as "#Hp". iDestruct (iProto_interp_le_l with "Hinterp [Hle]") as "Hinterp". { iIntros "!>". by iRewrite "Hp". } - iDestruct (iProto_interp_flip with "Hinterp") as "Hinterp". - iDestruct (iProto_interp_recv with "Hinterp") as (q) "[Hm Hinterp]". - iMod (iProto_own_auth_update _ _ _ _ q with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". - iIntros "!> !> /=". iExists q. iFrame "Hm". iSplitR "Hâ—¯". - - iExists q, pr. iFrame. by iApply iProto_interp_flip. - - iExists q. iIntros "{$Hâ—¯} !>". iApply iProto_le_refl. - Qed. - - Lemma iProto_recv_r γ m vl vsr vsl : - iProto_ctx γ (vl :: vsl) vsr -∗ - iProto_own γ Right (<?> m) ==∗ - â–· ∃ p, - iProto_ctx γ vsl vsr ∗ - iProto_own γ Right p ∗ - iMsg_car m vl (Next p). - Proof. - iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". - iDestruct 1 as (p) "[Hle Hâ—¯]". - iDestruct (iProto_own_auth_agree with "Hâ—r Hâ—¯") as "#Hp". - iDestruct (iProto_interp_le_r with "Hinterp [Hle]") as "Hinterp". - { iIntros "!>". by iRewrite "Hp". } + iDestruct (iProto_interp_sym with "Hinterp") as "Hinterp". iDestruct (iProto_interp_recv with "Hinterp") as (q) "[Hm Hinterp]". - iMod (iProto_own_auth_update _ _ _ _ q with "Hâ—r Hâ—¯") as "[Hâ—r Hâ—¯]". + iMod (iProto_own_auth_update _ _ _ q with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". iIntros "!> !> /=". iExists q. iFrame "Hm". iSplitR "Hâ—¯". - - iExists pl, q. iFrame. + - iExists q, pr. iFrame. by iApply iProto_interp_sym. - iExists q. iIntros "{$Hâ—¯} !>". iApply iProto_le_refl. Qed.