diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 6ff8c238b7c0b962002cef90e48aaa8f70927b98..33ac6a46a968c70e639d060fd8516bab94ac10fe 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -28,10 +28,10 @@ variables: ## Build jobs -build-coq.8.18.0: +build-coq.8.20.0: <<: *template variables: - OPAM_PINS: "coq version 8.18.0" + OPAM_PINS: "coq version 8.20.0" DENY_WARNINGS: "1" OPAM_PKG: "1" tags: diff --git a/_CoqProject b/_CoqProject index f25af835c52ada3a6b091f2d1fc14087b93513a0..77a40ad54ffbdfb45cac34eb2883775a341f0c4b 100644 --- a/_CoqProject +++ b/_CoqProject @@ -5,8 +5,6 @@ # Cannot use non-canonical projections as it causes massive unification failures # (https://github.com/coq/coq/issues/6294). -arg -w -arg -redundant-canonical-projection -# Fixing this one requires Coq 8.19 --arg -w -arg -argument-scope-delimiter theories/utils/llist.v theories/utils/compare.v diff --git a/coq-actris.opam b/coq-actris.opam index 08e7857a9583c960e63b6fccd5c0ee71275340ee..0f0153afb1d1c9ef7fc76cdd2870f19ced3da274 100644 --- a/coq-actris.opam +++ b/coq-actris.opam @@ -8,7 +8,7 @@ bug-reports: "https://gitlab.mpi-sws.org/iris/actris/issues" dev-repo: "git+https://gitlab.mpi-sws.org/iris/actris.git" depends: [ - "coq-iris-heap-lang" { (= "dev.2024-03-12.0.c1e15cdc") | (= "dev") } + "coq-iris-heap-lang" { (= "dev.2024-10-30.0.27f837c1") | (= "dev") } ] build: [make "-j%{jobs}%"] diff --git a/theories/channel/channel.v b/theories/channel/channel.v index 2c53a5efd81612ed04999d4c02582563080c988b..d6f23c512836246666e07610be06241b186e9fdf 100644 --- a/theories/channel/channel.v +++ b/theories/channel/channel.v @@ -68,46 +68,37 @@ Definition recv : val := (** * Setup of Iris's cameras *) Class chanG Σ := { - chanG_lockG :: lockG Σ; - chanG_protoG :: protoG Σ val; + #[local] chanG_lockG :: lockG Σ; + #[local] chanG_protoG :: protoG Σ val; }. Definition chanΣ : gFunctors := #[ spin_lockΣ; protoΣ val ]. Global Instance subG_chanΣ {Σ} : subG chanΣ Σ → chanG Σ. Proof. solve_inG. Qed. -Record chan_name := ChanName { - chan_lock_name : gname; - chan_proto_name : proto_name; -}. -Global Instance chan_name_inhabited : Inhabited chan_name := - populate (ChanName inhabitant inhabitant). -Global Instance chan_name_eq_dec : EqDecision chan_name. -Proof. solve_decision. Qed. -Global Instance chan_name_countable : Countable chan_name. -Proof. - refine (inj_countable (λ '(ChanName γl γr), (γl,γr)) - (λ '(γl, γr), Some (ChanName γl γr)) _); by intros []. -Qed. - (** * Definition of the pointsto connective *) Notation iProto Σ := (iProto Σ val). Notation iMsg Σ := (iMsg Σ val). +Definition iProto_lock_inv `{!heapGS Σ, !chanG Σ} + (l r : loc) (γl γr : gname) : iProp Σ := + ∃ vsl vsr, + llist internal_eq l vsl ∗ + llist internal_eq r vsr ∗ + steps_lb (length vsl) ∗ steps_lb (length vsr) ∗ + iProto_ctx γl γr vsl vsr. + Definition iProto_pointsto_def `{!heapGS Σ, !chanG Σ} (c : val) (p : iProto Σ) : iProp Σ := - ∃ γ s (l r : loc) (lk : val), - ⌜ c = ((#(side_elim s l r), #(side_elim s r l)), lk)%V ⌠∗ - is_lock (chan_lock_name γ) lk (∃ vsl vsr, - llist internal_eq l vsl ∗ - llist internal_eq r vsr ∗ - steps_lb (length vsl) ∗ steps_lb (length vsr) ∗ - iProto_ctx (chan_proto_name γ) vsl vsr) ∗ - iProto_own (chan_proto_name γ) s p. + ∃ γl γr γlk (l r : loc) (lk : val), + ⌜ c = ((#l, #r), lk)%V ⌠∗ + is_lock γlk lk (iProto_lock_inv l r γl γr) ∗ + iProto_own γl p. + Definition iProto_pointsto_aux : seal (@iProto_pointsto_def). by eexists. Qed. Definition iProto_pointsto := iProto_pointsto_aux.(unseal). Definition iProto_pointsto_eq : @iProto_pointsto = @iProto_pointsto_def := iProto_pointsto_aux.(seal_eq). -Arguments iProto_pointsto {_ _ _} _ _%proto. +Arguments iProto_pointsto {_ _ _} _ _%_proto. Global Instance: Params (@iProto_pointsto) 4 := {}. Notation "c ↣ p" := (iProto_pointsto c p) (at level 20, format "c ↣ p"). @@ -120,7 +111,7 @@ Definition iProto_choice {Σ} (a : action) (P1 P2 : iProp Σ) (p1 p2 : iProto Σ) : iProto Σ := (<a @ (b : bool)> MSG #b {{ if b then P1 else P2 }}; if b then p1 else p2)%proto. Global Typeclasses Opaque iProto_choice. -Arguments iProto_choice {_} _ _%I _%I _%proto _%proto. +Arguments iProto_choice {_} _ _%_I _%_I _%_proto _%_proto. Global Instance: Params (@iProto_choice) 2 := {}. Infix "<{ P1 }+{ P2 }>" := (iProto_choice Send P1 P2) (at level 85) : proto_scope. Infix "<{ P1 }&{ P2 }>" := (iProto_choice Recv P1 P2) (at level 85) : proto_scope. @@ -143,8 +134,8 @@ Section channel. Lemma iProto_pointsto_le c p1 p2 : c ↣ p1 ⊢ â–· (p1 ⊑ p2) -∗ c ↣ p2. Proof. - rewrite iProto_pointsto_eq. iDestruct 1 as (γ s l r lk ->) "[Hlk H]". - iIntros "Hle'". iExists γ, s, l, r, lk. iSplit; [done|]. iFrame "Hlk". + rewrite iProto_pointsto_eq. iDestruct 1 as (γl γr γlk l r lk ->) "[Hlk H]". + iIntros "Hle'". iExists γl, γr, γlk, l, r, lk. iSplit; [done|]. iFrame "Hlk". by iApply (iProto_own_le with "H"). Qed. @@ -200,6 +191,13 @@ Section channel. iDestruct ("H" with "HP") as "[$ ?]"; by iModIntro. Qed. + Lemma iProto_lock_inv_sym l r γl γr : + iProto_lock_inv l r γl γr ⊢ iProto_lock_inv r l γr γl. + Proof. + iIntros "(%vsl & %vsr & Hlistl & Hlistr & Hstepsl & Hstepsr & Hctx)". + iExists vsr, vsl. iFrame. by iApply iProto_ctx_sym. + Qed. + (** ** Specifications of [send] and [recv] *) Lemma new_chan_spec p : {{{ True }}} @@ -209,16 +207,20 @@ Section channel. iIntros (Φ _) "HΦ". wp_lam. iMod (steps_lb_0) as "#Hlb". wp_smart_apply (lnil_spec internal_eq with "[//]"); iIntros (l) "Hl". wp_smart_apply (lnil_spec internal_eq with "[//]"); iIntros (r) "Hr". - iMod (iProto_init p) as (γp) "(Hctx & Hcl & Hcr)". + iMod (iProto_init p) as (γl γr) "(Hctx & Hcl & Hcr)". wp_smart_apply (newlock_spec (∃ vsl vsr, llist internal_eq l vsl ∗ llist internal_eq r vsr ∗ steps_lb (length vsl) ∗ steps_lb (length vsr) ∗ - iProto_ctx γp vsl vsr) with "[Hl Hr Hctx]"). + iProto_ctx γl γr vsl vsr) with "[Hl Hr Hctx]"). { iExists [], []. iFrame "#∗". } iIntros (lk γlk) "#Hlk". wp_pures. iApply "HΦ". - set (γ := ChanName γlk γp). iSplitL "Hcl". - - rewrite iProto_pointsto_eq. iExists γ, Left, l, r, lk. by iFrame "Hcl #". - - rewrite iProto_pointsto_eq. iExists γ, Right, l, r, lk. by iFrame "Hcr #". + iSplitL "Hcl". + - rewrite iProto_pointsto_eq. + iExists γl, γr, γlk, l, r, lk. by iFrame "Hcl #". + - rewrite iProto_pointsto_eq. + iExists γr, γl, γlk, r, l, lk. iFrame "Hcr #". + iModIntro. iSplit; first done. iApply (is_lock_iff with "Hlk"). + iIntros "!> !>". iSplit; iIntros; by iApply iProto_lock_inv_sym. Qed. Lemma fork_chan_spec p Φ (f : val) : @@ -239,50 +241,29 @@ Section channel. {{{ RET #(); c ↣ p }}}. Proof. rewrite iProto_pointsto_eq. iIntros (Φ) "Hc HΦ". wp_lam; wp_pures. - iDestruct "Hc" as (γ s l r lk ->) "[#Hlk H]"; wp_pures. + iDestruct "Hc" as (γl γr γlk l r lk ->) "[#Hlk H]"; wp_pures. wp_smart_apply (acquire_spec with "Hlk"); iIntros "[Hlkd Hinv]". iDestruct "Hinv" as (vsl vsr) "(Hl & Hr & #Hlbl & #Hlbr & Hctx)". - destruct s; simpl. - - wp_pures. wp_bind (lsnoc _ _). - iApply (wp_step_fupdN_lb with "Hlbr [Hctx H]"); [done| |]. - { iApply fupd_mask_intro; [set_solver|]. simpl. - iIntros "Hclose !>!>". - iMod (iProto_send_l with "Hctx H []") as "[Hctx H]". - { rewrite iMsg_base_eq /=; auto. } - iModIntro. - iApply step_fupdN_intro; [done|]. - iIntros "!>". iMod "Hclose". - iCombine ("Hctx H") as "H". - iExact "H". } - iApply (wp_lb_update with "Hlbl"). - wp_smart_apply (lsnoc_spec with "[$Hl //]"); iIntros "Hl". - iIntros "#Hlbl' [Hctx H] !>". - wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"). - { iExists (vsl ++ [v]), vsr. - rewrite app_length /=. - replace (length vsl + 1) with (S (length vsl)) by lia. - iFrame "#∗". } - iIntros "_". iApply "HΦ". iExists γ, Left, l, r, lk. eauto 10 with iFrame. - - wp_pures. wp_bind (lsnoc _ _). - iApply (wp_step_fupdN_lb with "Hlbl [Hctx H]"); [done| |]. - { iApply fupd_mask_intro; [set_solver|]. simpl. - iIntros "Hclose !>!>". - iMod (iProto_send_r with "Hctx H []") as "[Hctx H]". - { rewrite iMsg_base_eq /=; auto. } - iModIntro. - iApply step_fupdN_intro; [done|]. - iIntros "!>". iMod "Hclose". - iCombine ("Hctx H") as "H". - iExact "H". } - iApply (wp_lb_update with "Hlbr"). - wp_smart_apply (lsnoc_spec with "[$Hr //]"); iIntros "Hr". - iIntros "#Hlbr' [Hctx H] !>". - wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"). - { iExists vsl, (vsr ++ [v]). - rewrite app_length /=. - replace (length vsr + 1) with (S (length vsr)) by lia. - iFrame "#∗". } - iIntros "_". iApply "HΦ". iExists γ, Right, l, r, lk. eauto 10 with iFrame. + wp_pures. wp_bind (lsnoc _ _). + iApply (wp_step_fupdN_lb with "Hlbr [Hctx H]"); [done| |]. + { iApply fupd_mask_intro; [set_solver|]. simpl. + iIntros "Hclose !>!>". + iMod (iProto_send with "Hctx H []") as "[Hctx H]". + { rewrite iMsg_base_eq /=; auto. } + iModIntro. + iApply step_fupdN_intro; [done|]. + iIntros "!>". iMod "Hclose". + iCombine ("Hctx H") as "H". + iExact "H". } + iApply (wp_lb_update with "Hlbl"). + wp_smart_apply (lsnoc_spec with "[$Hl //]"); iIntros "Hl". + iIntros "#Hlbl' [Hctx H] !>". + wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"). + { iExists (vsl ++ [v]), vsr. + rewrite length_app /=. + replace (length vsl + 1) with (S (length vsl)) by lia. + iFrame "#∗". } + iIntros "_". iApply "HΦ". iExists γl, γr, γlk. eauto 10 with iFrame. Qed. Lemma send_spec_tele {TT} c (tt : TT) @@ -308,36 +289,25 @@ Section channel. (∃.. x, ⌜w = SOMEV (v x)⌠∗ c ↣ p x ∗ P x) }}}. Proof. rewrite iProto_pointsto_eq. iIntros (Φ) "Hc HΦ". wp_lam; wp_pures. - iDestruct "Hc" as (γ s l r lk ->) "[#Hlk H]"; wp_pures. + iDestruct "Hc" as (γl γr γlk l r lk ->) "[#Hlk H]"; wp_pures. wp_smart_apply (acquire_spec with "Hlk"); iIntros "[Hlkd Hinv]". - iDestruct "Hinv" as (vsl vsr) "(Hl & Hr & #Hlbl & #Hlbr & Hctx)". destruct s; simpl. - - wp_smart_apply (lisnil_spec with "Hr"); iIntros "Hr". - destruct vsr as [|vr vsr]; wp_pures. - { wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. - iIntros "_". wp_pures. iModIntro. iApply "HΦ". iLeft. iSplit; [done|]. - iExists γ, Left, l, r, lk. eauto 10 with iFrame. } - wp_smart_apply (lpop_spec with "Hr"); iIntros (v') "[% Hr]"; simplify_eq/=. - iMod (iProto_recv_l with "Hctx H") as (q) "(Hctx & H & Hm)". wp_pures. + iDestruct "Hinv" as (vsl vsr) "(Hl & Hr & #Hlbl & #Hlbr & Hctx)". + wp_smart_apply (lisnil_spec with "Hr"); iIntros "Hr". + destruct vsr as [|vr vsr]; wp_pures. + - wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"). + { unfold iProto_lock_inv; by eauto with iFrame. } + iIntros "_". wp_pures. iModIntro. iApply "HΦ". iLeft. iSplit; [done|]. + iExists γl, γr, γlk. eauto 10 with iFrame. + - wp_smart_apply (lpop_spec with "Hr"); iIntros (v') "[% Hr]"; simplify_eq/=. + iMod (iProto_recv with "Hctx H") as (q) "(Hctx & H & Hm)". wp_pures. rewrite iMsg_base_eq. iDestruct (iMsg_texist_exist with "Hm") as (x <-) "[Hp HP]". iDestruct (steps_lb_le _ (length vsr) with "Hlbr") as "#Hlbr'"; [lia|]. - wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. - iIntros "_". wp_pures. iModIntro. iApply "HΦ". iRight. iExists x. iSplit; [done|]. - iFrame "HP". iExists γ, Left, l, r, lk. iSplit; [done|]. iFrame "Hlk". - by iRewrite "Hp". - - wp_smart_apply (lisnil_spec with "Hl"); iIntros "Hl". - destruct vsl as [|vl vsl]; wp_pures. - { wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. - iIntros "_". wp_pures. iModIntro. iApply "HΦ". iLeft. iSplit; [done|]. - iExists γ, Right, l, r, lk. eauto 10 with iFrame. } - wp_smart_apply (lpop_spec with "Hl"); iIntros (v') "[% Hl]"; simplify_eq/=. - iMod (iProto_recv_r with "Hctx H") as (q) "(Hctx & H & Hm)". wp_pures. - rewrite iMsg_base_eq. - iDestruct (iMsg_texist_exist with "Hm") as (x <-) "[Hp HP]". - iDestruct (steps_lb_le _ (length vsl) with "Hlbl") as "#Hlbl'"; [lia|]. - wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. - iIntros "_". wp_pures. iModIntro. iApply "HΦ". iRight. iExists x. iSplit; [done|]. - iFrame "HP". iExists γ, Right, l, r, lk. iSplit; [done|]. iFrame "Hlk". + wp_smart_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"). + { unfold iProto_lock_inv; by eauto with iFrame. } + iIntros "_". wp_pures. iModIntro. iApply "HΦ". + iRight. iExists x. iSplit; [done|]. + iFrame "HP". iExists γl, γr, γlk, l, r, lk. iSplit; [done|]. iFrame "Hlk". by iRewrite "Hp". Qed. diff --git a/theories/channel/proofmode.v b/theories/channel/proofmode.v index 4fb801a61101c199ca72dcbe747add97094a838d..c8e5f414ec9fb28113e73bff947714d1c1362eff 100644 --- a/theories/channel/proofmode.v +++ b/theories/channel/proofmode.v @@ -36,7 +36,7 @@ Class ProtoNormalize {Σ} (d : bool) (p : iProto Σ) ⊢ iProto_dual_if d p <++> foldr (iProto_app ∘ uncurry iProto_dual_if) END%proto pas ⊑ q. Global Hint Mode ProtoNormalize ! ! ! ! - : typeclass_instances. -Arguments ProtoNormalize {_} _ _%proto _%proto _%proto. +Arguments ProtoNormalize {_} _ _%_proto _%_proto _%_proto. Notation ProtoUnfold p1 p2 := (∀ d pas q, ProtoNormalize d p2 pas q → ProtoNormalize d p1 pas q). @@ -46,7 +46,7 @@ Class MsgNormalize {Σ} (d : bool) (m1 : iMsg Σ) msg_normalize a : ProtoNormalize d (<a> m1) pas (<(if d then action_dual a else a)> m2). Global Hint Mode MsgNormalize ! ! ! ! - : typeclass_instances. -Arguments MsgNormalize {_} _ _%msg _%msg _%msg. +Arguments MsgNormalize {_} _ _%_msg _%_msg _%_msg. Section classes. Context `{!chanG Σ, !heapGS Σ}. @@ -241,37 +241,9 @@ Tactic Notation "wp_recv" "as" constr(pat) := Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" constr(pat) := wp_recv_core (intros xs) as (fun H => iDestructHyp H as pat). -Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" "(" simple_intropattern(x1) ")" - constr(pat) := - wp_recv_core (intros xs) as (fun H => iDestructHyp H as ( x1 ) pat). -Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" "(" simple_intropattern(x1) - simple_intropattern(x2) ")" constr(pat) := - wp_recv_core (intros xs) as (fun H => iDestructHyp H as ( x1 x2 ) pat). -Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" "(" simple_intropattern(x1) - simple_intropattern(x2) simple_intropattern(x3) ")" constr(pat) := - wp_recv_core (intros xs) as (fun H => iDestructHyp H as ( x1 x2 x3 ) pat). -Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" "(" simple_intropattern(x1) - simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")" - constr(pat) := - wp_recv_core (intros xs) as (fun H => iDestructHyp H as ( x1 x2 x3 x4 ) pat). -Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" "(" simple_intropattern(x1) - simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) - simple_intropattern(x5) ")" constr(pat) := - wp_recv_core (intros xs) as (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 ) pat). -Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" "(" simple_intropattern(x1) - simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) - simple_intropattern(x5) simple_intropattern(x6) ")" constr(pat) := - wp_recv_core (intros xs) as (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 ) pat). -Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" "(" simple_intropattern(x1) - simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) - simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) ")" - constr(pat) := - wp_recv_core (intros xs) as (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 ) pat). -Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" "(" simple_intropattern(x1) - simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) - simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) - simple_intropattern(x8) ")" constr(pat) := - wp_recv_core (intros xs) as (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 x8 ) pat). +Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" + "(" ne_simple_intropattern_list(ys) ")" constr(pat) := + wp_recv_core (intros xs) as (fun H => _iDestructHyp H ys pat). Lemma tac_wp_send `{!chanG Σ, !heapGS Σ} {TT : tele} Δ neg i js K c v p m tv tP tp Φ : envs_lookup i Δ = Some (false, c ↣ p)%I → @@ -347,31 +319,8 @@ Tactic Notation "wp_send_core" tactic3(tac_exist) "with" constr(pat) := Tactic Notation "wp_send" "with" constr(pat) := wp_send_core (idtac) with pat. -Tactic Notation "wp_send" "(" uconstr(x1) ")" "with" constr(pat) := - wp_send_core (eexists x1) with pat. -Tactic Notation "wp_send" "(" uconstr(x1) uconstr(x2) ")" "with" constr(pat) := - wp_send_core (eexists x1; eexists x2) with pat. -Tactic Notation "wp_send" "(" uconstr(x1) uconstr(x2) uconstr(x3) ")" - "with" constr(pat) := - wp_send_core (eexists x1; eexists x2; eexists x3) with pat. -Tactic Notation "wp_send" "(" uconstr(x1) uconstr(x2) uconstr(x3) uconstr(x4) ")" - "with" constr(pat) := - wp_send_core (eexists x1; eexists x2; eexists x3; eexists x4) with pat. -Tactic Notation "wp_send" "(" uconstr(x1) uconstr(x2) uconstr(x3) uconstr(x4) - uconstr(x5) ")" "with" constr(pat) := - wp_send_core (eexists x1; eexists x2; eexists x3; eexists x4; eexists x5) with pat. -Tactic Notation "wp_send" "(" uconstr(x1) uconstr(x2) uconstr(x3) uconstr(x4) ")" - uconstr(x5) uconstr(x6) ")" "with" constr(pat) := - wp_send_core (eexists x1; eexists x2; eexists x3; eexists x4; eexists x5; - eexists x6) with pat. -Tactic Notation "wp_send" "(" uconstr(x1) uconstr(x2) uconstr(x3) uconstr(x4) ")" - uconstr(x5) uconstr(x6) uconstr(x7) ")" "with" constr(pat) := - wp_send_core (eexists x1; eexists x2; eexists x3; eexists x4; eexists x5; - eexists x6; eexists x7) with pat. -Tactic Notation "wp_send" "(" uconstr(x1) uconstr(x2) uconstr(x3) uconstr(x4) ")" - uconstr(x5) uconstr(x6) uconstr(x7) uconstr(x8) ")" "with" constr(pat) := - wp_send_core (eexists x1; eexists x2; eexists x3; eexists x4; eexists x5; - eexists x6; eexists x7; eexists x8) with pat. +Tactic Notation "wp_send" "(" ne_uconstr_list(xs) ")" "with" constr(pat) := + wp_send_core (ltac1_list_iter ltac:(fun x => eexists x) xs) with pat. Lemma tac_wp_branch `{!chanG Σ, !heapGS Σ} Δ i j K c p P1 P2 (p1 p2 : iProto Σ) Φ : @@ -501,5 +450,4 @@ Tactic Notation "wp_fork_chan" constr(prot) "as" wp_fork_chan prot as c pat and c pat. Tactic Notation "wp_fork_chan" constr(prot) := - let iNew := iFresh in - wp_fork_chan prot as ? iNew. + wp_fork_chan prot as ? "?". diff --git a/theories/channel/proto.v b/theories/channel/proto.v index 9e9dfcfbfc71854310044ceafa0e101b9ac1849d..531c87151c572faeaa87200f05f0e159520f0ab3 100644 --- a/theories/channel/proto.v +++ b/theories/channel/proto.v @@ -108,7 +108,7 @@ Next Obligation. solve_proper. Qed. Definition iMsg_base_aux : seal (@iMsg_base_def). by eexists. Qed. Definition iMsg_base := iMsg_base_aux.(unseal). Definition iMsg_base_eq : @iMsg_base = @iMsg_base_def := iMsg_base_aux.(seal_eq). -Arguments iMsg_base {_ _} _%V _%I _%proto. +Arguments iMsg_base {_ _} _%_V _%_I _%_proto. Global Instance: Params (@iMsg_base) 3 := {}. Program Definition iMsg_exist_def {Σ V A} (m : A → iMsg Σ V) : iMsg Σ V := @@ -117,12 +117,12 @@ Next Obligation. solve_proper. Qed. Definition iMsg_exist_aux : seal (@iMsg_exist_def). by eexists. Qed. Definition iMsg_exist := iMsg_exist_aux.(unseal). Definition iMsg_exist_eq : @iMsg_exist = @iMsg_exist_def := iMsg_exist_aux.(seal_eq). -Arguments iMsg_exist {_ _ _} _%msg. +Arguments iMsg_exist {_ _ _} _%_msg. Global Instance: Params (@iMsg_exist) 3 := {}. Definition iMsg_texist {Σ V} {TT : tele} (m : TT → iMsg Σ V) : iMsg Σ V := tele_fold (@iMsg_exist Σ V) (λ x, x) (tele_bind m). -Arguments iMsg_texist {_ _ !_} _%msg /. +Arguments iMsg_texist {_ _ !_} _%_msg /. Notation "'MSG' v {{ P } } ; p" := (iMsg_base v P p) (at level 200, v at level 20, right associativity, @@ -157,7 +157,7 @@ Definition iProto_message_aux : seal (@iProto_message_def). by eexists. Qed. Definition iProto_message := iProto_message_aux.(unseal). Definition iProto_message_eq : @iProto_message = @iProto_message_def := iProto_message_aux.(seal_eq). -Arguments iProto_message {_ _} _ _%msg. +Arguments iProto_message {_ _} _ _%_msg. Global Instance: Params (@iProto_message) 3 := {}. Notation "'END'" := iProto_end : proto_scope. @@ -225,7 +225,7 @@ Definition iProto_app_def {Σ V} (p1 p2 : iProto Σ V) : iProto Σ V := Definition iProto_app_aux : seal (@iProto_app_def). Proof. by eexists. Qed. Definition iProto_app := iProto_app_aux.(unseal). Definition iProto_app_eq : @iProto_app = @iProto_app_def := iProto_app_aux.(seal_eq). -Arguments iProto_app {_ _} _%proto _%proto. +Arguments iProto_app {_ _} _%_proto _%_proto. Global Instance: Params (@iProto_app) 2 := {}. Infix "<++>" := iProto_app (at level 60) : proto_scope. Notation "m <++> p" := (iMsg_map (flip iProto_app p) m) : msg_scope. @@ -236,13 +236,13 @@ Definition iProto_dual_aux : seal (@iProto_dual_def). Proof. by eexists. Qed. Definition iProto_dual := iProto_dual_aux.(unseal). Definition iProto_dual_eq : @iProto_dual = @iProto_dual_def := iProto_dual_aux.(seal_eq). -Arguments iProto_dual {_ _} _%proto. +Arguments iProto_dual {_ _} _%_proto. Global Instance: Params (@iProto_dual) 2 := {}. Notation iMsg_dual := (iMsg_map iProto_dual). Definition iProto_dual_if {Σ V} (d : bool) (p : iProto Σ V) : iProto Σ V := if d then iProto_dual p else p. -Arguments iProto_dual_if {_ _} _ _%proto. +Arguments iProto_dual_if {_ _} _ _%_proto. Global Instance: Params (@iProto_dual_if) 3 := {}. (** * Protocol entailment *) @@ -277,7 +277,7 @@ Proof. Qed. Definition iProto_le {Σ V} (p1 p2 : iProto Σ V) : iProp Σ := fixpoint iProto_le_pre' p1 p2. -Arguments iProto_le {_ _} _%proto _%proto. +Arguments iProto_le {_ _} _%_proto _%_proto. Global Instance: Params (@iProto_le) 2 := {}. Notation "p ⊑ q" := (iProto_le p q) : bi_scope. @@ -294,52 +294,33 @@ Fixpoint iProto_app_recvs {Σ V} (vs : list V) (p : iProto Σ V) : iProto Σ V : Definition iProto_interp {Σ V} (vsl vsr : list V) (pl pr : iProto Σ V) : iProp Σ := ∃ p, iProto_app_recvs vsr p ⊑ pl ∗ iProto_app_recvs vsl (iProto_dual p) ⊑ pr. -Record proto_name := ProtName { proto_l_name : gname; proto_r_name : gname }. -Global Instance proto_name_inhabited : Inhabited proto_name := - populate (ProtName inhabitant inhabitant). -Global Instance proto_name_eq_dec : EqDecision proto_name. -Proof. solve_decision. Qed. -Global Instance proto_name_countable : Countable proto_name. -Proof. - refine (inj_countable (λ '(ProtName γl γr), (γl,γr)) - (λ '(γl, γr), Some (ProtName γl γr)) _); by intros []. -Qed. - -Inductive side := Left | Right. -Global Instance side_inhabited : Inhabited side := populate Left. -Global Instance side_eq_dec : EqDecision side. -Proof. solve_decision. Qed. -Global Instance side_countable : Countable side. -Proof. - refine (inj_countable (λ s, if s is Left then true else false) - (λ b, Some (if b then Left else Right)) _); by intros []. -Qed. -Definition side_elim {A} (s : side) (l r : A) : A := - match s with Left => l | Right => r end. - -Definition iProto_own_frag `{!protoG Σ V} (γ : proto_name) (s : side) +Definition iProto_own_frag `{!protoG Σ V} (γ : gname) (p : iProto Σ V) : iProp Σ := - own (side_elim s proto_l_name proto_r_name γ) (â—¯E (Next p)). -Definition iProto_own_auth `{!protoG Σ V} (γ : proto_name) (s : side) + own γ (â—¯E (Next p)). +Definition iProto_own_auth `{!protoG Σ V} (γ : gname) (p : iProto Σ V) : iProp Σ := - own (side_elim s proto_l_name proto_r_name γ) (â—E (Next p)). + own γ (â—E (Next p)). +(** In the original Actris papers we a single ghost name for [iProto_ctx] and +[iProto_own]. To distinguish the two [iProto_own]s for both sides, we used +an enum [Left]/[Right]. This turned out to be cumbersome because at various +places we need to case at this enum. The current version of [iProto_ctx] has two +ghost names, one for each [iProto_own], enabling more uniform definitions. *) Definition iProto_ctx `{protoG Σ V} - (γ : proto_name) (vsl vsr : list V) : iProp Σ := + (γl γr : gname) (vsl vsr : list V) : iProp Σ := ∃ pl pr, - iProto_own_auth γ Left pl ∗ - iProto_own_auth γ Right pr ∗ + iProto_own_auth γl pl ∗ + iProto_own_auth γr pr ∗ â–· iProto_interp vsl vsr pl pr. (** * The connective for ownership of channel ends *) -Definition iProto_own `{!protoG Σ V} - (γ : proto_name) (s : side) (p : iProto Σ V) : iProp Σ := - ∃ p', â–· (p' ⊑ p) ∗ iProto_own_frag γ s p'. -Arguments iProto_own {_ _ _} _ _%proto. -Global Instance: Params (@iProto_own) 3 := {}. - -Global Instance iProto_own_contractive `{protoG Σ V} γ s : - Contractive (iProto_own γ s). +Definition iProto_own `{!protoG Σ V} (γ : gname) (p : iProto Σ V) : iProp Σ := + ∃ p', â–· (p' ⊑ p) ∗ iProto_own_frag γ p'. +Arguments iProto_own {_ _ _} _ _%_proto. +Global Instance: Params (@iProto_own) 4 := {}. + +Global Instance iProto_own_contractive `{protoG Σ V} γ : + Contractive (iProto_own γ). Proof. solve_contractive. Qed. (** * Proofs *) @@ -1026,20 +1007,20 @@ Section proto. Proper ((≡) ==> (≡) ==> (≡)) (iProto_interp (Σ:=Σ) (V:=V) vsl vsr). Proof. apply (ne_proper_2 _). Qed. - Global Instance iProto_own_frag_ne γ s : NonExpansive (iProto_own_frag γ s). + Global Instance iProto_own_frag_ne γ : NonExpansive (iProto_own_frag γ). Proof. solve_proper. Qed. - Lemma iProto_own_auth_agree γ s p p' : - iProto_own_auth γ s p -∗ iProto_own_frag γ s p' -∗ â–· (p ≡ p'). + Lemma iProto_own_auth_agree γ p p' : + iProto_own_auth γ p -∗ iProto_own_frag γ p' -∗ â–· (p ≡ p'). Proof. iIntros "Hâ— Hâ—¯". iCombine "Hâ— Hâ—¯" gives "H✓". iDestruct (excl_auth_agreeI with "H✓") as "{H✓} H✓". iApply (later_equivI_1 with "H✓"). Qed. - Lemma iProto_own_auth_update γ s p p' p'' : - iProto_own_auth γ s p -∗ iProto_own_frag γ s p' ==∗ - iProto_own_auth γ s p'' ∗ iProto_own_frag γ s p''. + Lemma iProto_own_auth_update γ p p' p'' : + iProto_own_auth γ p -∗ iProto_own_frag γ p' ==∗ + iProto_own_auth γ p'' ∗ iProto_own_frag γ p''. Proof. iIntros "Hâ— Hâ—¯". iDestruct (own_update_2 with "Hâ— Hâ—¯") as "H". { eapply (excl_auth_update _ _ (Next p'')). } @@ -1049,8 +1030,8 @@ Section proto. Lemma iProto_interp_nil p : ⊢ iProto_interp [] [] p (iProto_dual p). Proof. iExists p; simpl. iSplitL; iApply iProto_le_refl. Qed. - Lemma iProto_interp_flip vsl vsr pl pr : - iProto_interp vsl vsr pl pr -∗ iProto_interp vsr vsl pr pl. + Lemma iProto_interp_sym vsl vsr pl pr : + iProto_interp vsl vsr pl pr ⊢ iProto_interp vsr vsl pr pl. Proof. iDestruct 1 as (p) "[Hp Hdp]". iExists (iProto_dual p). rewrite (involutive iProto_dual). iFrame. @@ -1065,8 +1046,8 @@ Section proto. Lemma iProto_interp_le_r vsl vsr pl pr pr' : iProto_interp vsl vsr pl pr -∗ pr ⊑ pr' -∗ iProto_interp vsl vsr pl pr'. Proof. - iIntros "H Hle". iApply iProto_interp_flip. - iApply (iProto_interp_le_l with "[H] Hle"). by iApply iProto_interp_flip. + iIntros "H Hle". iApply iProto_interp_sym. + iApply (iProto_interp_le_l with "[H] Hle"). by iApply iProto_interp_sym. Qed. Lemma iProto_interp_send vl ml vsl vsr pr pl' : @@ -1107,39 +1088,47 @@ Section proto. iExists pr''. iIntros "{$Hpr} !>". iExists p. iFrame. Qed. - Global Instance iProto_own_ne γ s : NonExpansive (iProto_own γ s). + Lemma iProto_ctx_sym γl γr vsl vsr : + iProto_ctx γl γr vsl vsr ⊢ iProto_ctx γr γl vsr vsl. + Proof. + iIntros "(%pl & %pr & Hauthl & Hauthr & Hinterp)". + iDestruct (iProto_interp_sym with "Hinterp") as "Hinterp". + iExists pr, pl; iFrame. + Qed. + + Global Instance iProto_own_ne γ : NonExpansive (iProto_own γ). Proof. solve_proper. Qed. - Global Instance iProto_own_proper γ s : Proper ((≡) ==> (≡)) (iProto_own γ s). + Global Instance iProto_own_proper γ : Proper ((≡) ==> (≡)) (iProto_own γ). Proof. apply (ne_proper _). Qed. - Lemma iProto_own_le γ s p1 p2 : - iProto_own γ s p1 -∗ â–· (p1 ⊑ p2) -∗ iProto_own γ s p2. + Lemma iProto_own_le γ p1 p2 : + iProto_own γ p1 -∗ â–· (p1 ⊑ p2) -∗ iProto_own γ p2. Proof. iDestruct 1 as (p1') "[Hle H]". iIntros "Hle'". iExists p1'. iFrame "H". by iApply (iProto_le_trans with "Hle"). Qed. Lemma iProto_init p : - ⊢ |==> ∃ γ, - iProto_ctx γ [] [] ∗ - iProto_own γ Left p ∗ iProto_own γ Right (iProto_dual p). + ⊢ |==> ∃ γl γr, + iProto_ctx γl γr [] [] ∗ + iProto_own γl p ∗ iProto_own γr (iProto_dual p). Proof. - iMod (own_alloc (â—E (Next p) â‹… â—¯E (Next p))) as (lγ) "[Hâ—l Hâ—¯l]". + iMod (own_alloc (â—E (Next p) â‹… â—¯E (Next p))) as (γl) "[Hâ—l Hâ—¯l]". { by apply excl_auth_valid. } iMod (own_alloc (â—E (Next (iProto_dual p)) â‹… - â—¯E (Next (iProto_dual p)))) as (rγ) "[Hâ—r Hâ—¯r]". + â—¯E (Next (iProto_dual p)))) as (γr) "[Hâ—r Hâ—¯r]". { by apply excl_auth_valid. } - pose (ProtName lγ rγ) as γ. iModIntro. iExists γ. iSplitL "Hâ—l Hâ—r". + iModIntro. iExists γl, γr. iSplitL "Hâ—l Hâ—r". { iExists p, (iProto_dual p). iFrame. iApply iProto_interp_nil. } iSplitL "Hâ—¯l"; iExists _; iFrame; iApply iProto_le_refl. Qed. - Lemma iProto_send_l γ m vsr vsl vl p : - iProto_ctx γ vsl vsr -∗ - iProto_own γ Left (<!> m) -∗ + Lemma iProto_send γl γr m vsr vsl vl p : + iProto_ctx γl γr vsl vsr -∗ + iProto_own γl (<!> m) -∗ iMsg_car m vl (Next p) ==∗ - â–·^(length vsr) iProto_ctx γ (vsl ++ [vl]) vsr ∗ - iProto_own γ Left p. + â–·^(length vsr) iProto_ctx γl γr (vsl ++ [vl]) vsr ∗ + iProto_own γl p. Proof. iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". iDestruct 1 as (pl') "[Hle Hâ—¯]". iIntros "Hm". @@ -1148,39 +1137,18 @@ Section proto. with "[Hle]" as "{Hp} Hle"; first (iNext; by iRewrite "Hp"). iDestruct (iProto_interp_le_l with "Hinterp Hle") as "Hinterp". iDestruct (iProto_interp_send with "Hinterp [Hm //]") as "Hinterp". - iMod (iProto_own_auth_update _ _ _ _ p with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". + iMod (iProto_own_auth_update _ _ _ p with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". iIntros "!>". iSplitR "Hâ—¯". - iIntros "!>". iExists p, pr. iFrame. - iExists p. iFrame. iApply iProto_le_refl. Qed. - Lemma iProto_send_r γ m vsr vsl vr p : - iProto_ctx γ vsl vsr -∗ - iProto_own γ Right (<!> m) -∗ - iMsg_car m vr (Next p) ==∗ - â–·^(length vsl) iProto_ctx γ vsl (vsr ++ [vr]) ∗ - iProto_own γ Right p. - Proof. - iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". - iDestruct 1 as (pr') "[Hle Hâ—¯]". iIntros "Hm". - iDestruct (iProto_own_auth_agree with "Hâ—r Hâ—¯") as "#Hp". - iAssert (â–· (pr ⊑ <!> m))%I - with "[Hle]" as "{Hp} Hle"; first (iNext; by iRewrite "Hp"). - iDestruct (iProto_interp_flip with "Hinterp") as "Hinterp". - iDestruct (iProto_interp_le_l with "Hinterp Hle") as "Hinterp". - iDestruct (iProto_interp_send with "Hinterp [Hm //]") as "Hinterp". - iMod (iProto_own_auth_update _ _ _ _ p with "Hâ—r Hâ—¯") as "[Hâ—r Hâ—¯]". - iIntros "!>". iSplitR "Hâ—¯". - - iIntros "!>". iExists pl, p. iFrame. by iApply iProto_interp_flip. - - iExists p. iFrame. iApply iProto_le_refl. - Qed. - - Lemma iProto_recv_l γ m vr vsr vsl : - iProto_ctx γ vsl (vr :: vsr) -∗ - iProto_own γ Left (<?> m) ==∗ + Lemma iProto_recv γl γr m vr vsr vsl : + iProto_ctx γl γr vsl (vr :: vsr) -∗ + iProto_own γl (<?> m) ==∗ â–· ∃ p, - iProto_ctx γ vsl vsr ∗ - iProto_own γ Left p ∗ + iProto_ctx γl γr vsl vsr ∗ + iProto_own γl p ∗ iMsg_car m vr (Next p). Proof. iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". @@ -1188,31 +1156,11 @@ Section proto. iDestruct (iProto_own_auth_agree with "Hâ—l Hâ—¯") as "#Hp". iDestruct (iProto_interp_le_l with "Hinterp [Hle]") as "Hinterp". { iIntros "!>". by iRewrite "Hp". } - iDestruct (iProto_interp_flip with "Hinterp") as "Hinterp". - iDestruct (iProto_interp_recv with "Hinterp") as (q) "[Hm Hinterp]". - iMod (iProto_own_auth_update _ _ _ _ q with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". - iIntros "!> !> /=". iExists q. iFrame "Hm". iSplitR "Hâ—¯". - - iExists q, pr. iFrame. by iApply iProto_interp_flip. - - iExists q. iIntros "{$Hâ—¯} !>". iApply iProto_le_refl. - Qed. - - Lemma iProto_recv_r γ m vl vsr vsl : - iProto_ctx γ (vl :: vsl) vsr -∗ - iProto_own γ Right (<?> m) ==∗ - â–· ∃ p, - iProto_ctx γ vsl vsr ∗ - iProto_own γ Right p ∗ - iMsg_car m vl (Next p). - Proof. - iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". - iDestruct 1 as (p) "[Hle Hâ—¯]". - iDestruct (iProto_own_auth_agree with "Hâ—r Hâ—¯") as "#Hp". - iDestruct (iProto_interp_le_r with "Hinterp [Hle]") as "Hinterp". - { iIntros "!>". by iRewrite "Hp". } + iDestruct (iProto_interp_sym with "Hinterp") as "Hinterp". iDestruct (iProto_interp_recv with "Hinterp") as (q) "[Hm Hinterp]". - iMod (iProto_own_auth_update _ _ _ _ q with "Hâ—r Hâ—¯") as "[Hâ—r Hâ—¯]". + iMod (iProto_own_auth_update _ _ _ q with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". iIntros "!> !> /=". iExists q. iFrame "Hm". iSplitR "Hâ—¯". - - iExists pl, q. iFrame. + - iExists q, pr. iFrame. by iApply iProto_interp_sym. - iExists q. iIntros "{$Hâ—¯} !>". iApply iProto_le_refl. Qed. diff --git a/theories/examples/pizza.v b/theories/examples/pizza.v index b5674883171d4e9738fa22a3f5fedc976e1fe6ac..c0d9a33e63b7977a788b56e7d47d10de7a2626c2 100644 --- a/theories/examples/pizza.v +++ b/theories/examples/pizza.v @@ -129,7 +129,7 @@ Section example. "v2") ). - Lemma lock_example_spec jcc rcc c (x1 y1 : Z) : + Lemma lock_example_spec `{!lockG Σ} jcc rcc c (x1 y1 : Z) : {{{ c ↣ pizza_prot ∗ jcc ↦ #x1 ∗ rcc ↦ #y1 }}} lock_example #jcc #rcc c {{{ (x2 y2 : Z), RET ((#x2, #(x1 - x2)), (#y2, #(y1 - y2)))%V; diff --git a/theories/logrel/examples/par_recv.v b/theories/logrel/examples/par_recv.v index fb9a56d4dcc89f8a098a20347f3c0dea718416de..b512bc099a5743ada8f94abb1ad7ac3c467a1907 100755 --- a/theories/logrel/examples/par_recv.v +++ b/theories/logrel/examples/par_recv.v @@ -35,7 +35,7 @@ Definition prog : val := λ: "c", ). Section double. - Context `{heapGS Σ, chanG Σ, spawnG Σ}. + Context `{!heapGS Σ, !chanG Σ, !spawnG Σ, !lockG Σ}. Context `{!inG Σ fracR}. Definition prog_prot : iProto Σ := @@ -119,7 +119,7 @@ Section double. End double. Section double_fc. - Context `{heapGS Σ, chanG Σ, spawnG Σ}. + Context `{!heapGS Σ, !chanG Σ, !spawnG Σ, !lockG Σ}. Context `{!inG Σ (exclR unitO), inG Σ (prodR fracR (agreeR (optionO valO)))}. Definition prog_prot_fc (P : val → val → iProp Σ) : iProto Σ := diff --git a/theories/logrel/model.v b/theories/logrel/model.v index dad84550896cff0816aace2029cb9062585273ea..10a435909fe17d3b857d67ca0d7b75db686b2bf2 100644 --- a/theories/logrel/model.v +++ b/theories/logrel/model.v @@ -24,8 +24,8 @@ Global Instance kind_inhabited : Inhabited kind := populate tty_kind. Variant lty Σ : kind → Type := | Ltty : (val → iProp Σ) → lty Σ tty_kind | Lsty : iProto Σ → lty Σ sty_kind. -Arguments Ltty {_} _%I. -Arguments Lsty {_} _%proto. +Arguments Ltty {_} _%_I. +Arguments Lsty {_} _%_proto. Declare Scope lty_scope. Bind Scope lty_scope with lty. diff --git a/theories/logrel/session_types.v b/theories/logrel/session_types.v index 95af463ed698183989145ece118c3fa1ca11c0fc..d1a27efcccb4998a7f20049eaab0cbf1f219dae6 100644 --- a/theories/logrel/session_types.v +++ b/theories/logrel/session_types.v @@ -19,7 +19,7 @@ Definition lty_msg_exist {Σ} {k} (M : lty Σ k → lmsg Σ) : lmsg Σ := Definition lty_msg_texist {Σ} {kt : ktele Σ} (M : ltys Σ kt → lmsg Σ) : lmsg Σ := ktele_fold (@lty_msg_exist Σ) (λ x, x) (ktele_bind M). -Arguments lty_msg_texist {_ !_} _%lmsg /. +Arguments lty_msg_texist {_ !_} _%_lmsg /. Definition lty_end {Σ} : lsty Σ := Lsty END. @@ -108,7 +108,7 @@ Section session_types. Global Instance lty_choice_proper a : Proper ((≡) ==> (≡)) (@lty_choice Σ a). Proof. apply ne_proper, _. Qed. Global Instance lty_choice_contractive a n : - Proper (map_relation (dist_later n) (λ _, False) (λ _, False) ==> dist n) + Proper (map_relation (λ _, dist_later n) (λ _ _, False) (λ _ _, False) ==> dist n) (@lty_choice Σ a). Proof. intros Ss Ts Heq. rewrite /lty_choice. diff --git a/theories/logrel/session_typing_rules.v b/theories/logrel/session_typing_rules.v index 5cac0e12a7b5810ddbb42c933cd9bbed5631731f..5dfafee1f3d22af759defdff5d2bc19523cf59e5 100644 --- a/theories/logrel/session_typing_rules.v +++ b/theories/logrel/session_typing_rules.v @@ -181,7 +181,7 @@ Section session_typing_rules. iIntros (Hdom) "!>". iIntros (vs) "$". iApply wp_value. iIntros (c) "Hc". wp_lam. rewrite -subst_map_singleton. - iApply lty_arr_list_spec; [by rewrite fmap_length|]. + iApply lty_arr_list_spec; [by rewrite length_fmap|]. iIntros (ws) "H". rewrite big_sepL2_fmap_l. iDestruct (big_sepL2_length with "H") as %Heq.