diff --git a/theories/logrel/types.v b/theories/logrel/types.v index 37ae72190748f928fb0dfa6b40b2c061fe84c182..9f12f3ba57f0d9f520b9876f514ed314dd24b592 100644 --- a/theories/logrel/types.v +++ b/theories/logrel/types.v @@ -205,13 +205,7 @@ Section properties. Lemma ltyped_let Γ1 Γ2 Γ3 (x : binder) e1 e2 A1 A2 : (Γ1 ⊨ e1 : A1 ⫤ Γ2) -∗ (binder_insert x A1 Γ2 ⊨ e2 : A2 ⫤ Γ3) -∗ Γ1 ⊨ (let: x:=e1 in e2) : A2 ⫤ ∅. - Proof. - iIntros "#He1 #He2". - iApply ltyped_app=> //. - iApply (ltyped_frame _ _ _ _ ∅); last by iApply (ltyped_lam). - - iApply env_split_id_r. - - iApply env_split_empty. - Qed. + Proof. iIntros "#He1 #He2". iApply ltyped_app=> //. iApply ltyped_lam. Qed. Lemma ltyped_rec Γ Γ' f x e A1 A2 : env_copy Γ Γ' -∗