diff --git a/multi_actris/channel/channel.v b/multi_actris/channel/channel.v
index 0a1248a74245c07abcf33c1ac2380321efd39aae..11c498bcd9e20d10594e75f0d081d2e0c8376ae0 100644
--- a/multi_actris/channel/channel.v
+++ b/multi_actris/channel/channel.v
@@ -93,23 +93,21 @@ Definition tok `{!chanG Σ} (γ : gname) : iProp Σ := own γ (Excl ()).
 
 Definition chan_inv `{!heapGS Σ, !chanG Σ} γ γE γt i j (l:loc) : iProp Σ :=
   (l ↦ NONEV ∗ tok γt)%I ∨
-  (∃ v m, l ↦ SOMEV v ∗
+  (∃ v m p, l ↦ SOMEV v ∗
             iProto_own γ i (<(Send, j)> m)%proto ∗
-            (∃ p, iMsg_car m v (Next p) ∗ own γE (●E (Next p)))) ∨
+            iMsg_car m v (Next p) ∗ own γE (●E (Next p))) ∨
   (∃ p, l ↦ NONEV ∗
           iProto_own γ i p ∗ own γE (●E (Next p))).
 
 Definition iProto_pointsto_def `{!heapGS Σ, !chanG Σ}
     (c : val) (p : iProto Σ) : iProp Σ :=
-  ∃ γ γE1 (l:loc) (i:nat) (n:nat) p',
+  ∃ γ (γEs : list gname) (l:loc) (i:nat) (n:nat) p',
     ⌜ c = (#l,#n,#i)%V ⌝ ∗
     inv (nroot.@"ctx") (iProto_ctx γ n) ∗
-    ([∗list] j ↦ _ ∈ replicate n (),
-       ∃ γE2 γt1 γt2,
-         inv (nroot.@"p") (chan_inv γ γE1 γt1 i j (l +ₗ (pos n i j))) ∗
-         inv (nroot.@"p") (chan_inv γ γE2 γt2 j i (l +ₗ (pos n j i)))) ∗
+    (∀ i j, ⌜i < n ⌝ -∗ ⌜j < n⌝ -∗
+      ∃ γt, inv (nroot.@"p") (chan_inv γ (γEs !!! i) γt i j (l +ₗ (pos n i j)))) ∗
     ▷ (p' ⊑ p) ∗
-    own γE1 (●E (Next p')) ∗ own γE1 (◯E (Next p')) ∗
+    own (γEs !!! i) (●E (Next p')) ∗ own (γEs !!! i) (◯E (Next p')) ∗
     iProto_own γ i p'.
 Definition iProto_pointsto_aux : seal (@iProto_pointsto_def). by eexists. Qed.
 Definition iProto_pointsto := iProto_pointsto_aux.(unseal).
@@ -125,15 +123,13 @@ Definition chan_pool `{!heapGS Σ, !chanG Σ}
   ∃ γ (γEs : list gname) (n:nat) (l:loc),
     ⌜cs = (#l,#n)%V⌝ ∗ ⌜(i' + length ps = n)%nat⌝ ∗
     inv (nroot.@"ctx") (iProto_ctx γ n) ∗
+    (∀ i j, ⌜i < n ⌝ -∗ ⌜j < n⌝ -∗
+      ∃ γt, inv (nroot.@"p") (chan_inv γ (γEs !!! i) γt i j (l +ₗ (pos n i j)))) ∗
     [∗ list] i ↦ _ ∈ replicate n (),
       (∀ p, ⌜i' <= i⌝ -∗ ⌜ps !! (i - i') = Some p⌝ -∗
             own (γEs !!! i) (●E (Next p)) ∗
             own (γEs !!! i) (◯E (Next p)) ∗
-            iProto_own γ i p) ∗
-      [∗ list] j ↦ _ ∈ replicate n (),
-        ∃ γt1 γt2,
-        inv (nroot.@"p") (chan_inv γ (γEs !!! i) γt1 i j (l +ₗ (pos n i j))) ∗
-        inv (nroot.@"p") (chan_inv γ (γEs !!! j) γt2 j i (l +ₗ (pos n j i))).
+            iProto_own γ i p).
 
 Section channel.
   Context `{!heapGS Σ, !chanG Σ}.
@@ -269,30 +265,17 @@ Section channel.
     iSplit.
     { done. }
     iFrame "IHp".
+    iSplit.
+    { iIntros (i j Hi Hj).
+      rewrite (big_sepL_lookup _ _ i); [|by rewrite lookup_replicate].
+      rewrite (big_sepL_lookup _ _ j); [|by rewrite lookup_replicate].
+      iApply "IH". }
     iApply (big_sepL_impl with "H").
     iIntros "!>" (i ? HSome') "(Hauth & Hfrag & Hown)".
-    iSplitL.
-    { iIntros (p Hle' HSome'').
-      iFrame. rewrite right_id_L in HSome''.
-      rewrite (list_lookup_total_alt ps).
-      rewrite HSome''. simpl. iFrame. }
-    iApply big_sepL_intro.
-    iIntros "!>" (j ? HSome'').
-    assert (i < n) as Hle'.
-    { apply lookup_replicate in HSome' as [_ Hle']. done. }
-    assert (j < n) as Hle''.
-    { apply lookup_replicate in HSome'' as [_ Hle'']. done. }
-    iDestruct (big_sepL_lookup _ _ i () with "IH") as "IH'";
-      [by rewrite lookup_replicate|].
-    iDestruct (big_sepL_lookup _ _ j () with "IH'") as "IH''";
-      [by rewrite lookup_replicate|].
-    iDestruct (big_sepL_lookup _ _ j () with "IH") as "H";
-      [by rewrite lookup_replicate|].
-    iDestruct (big_sepL_lookup _ _ i () with "H") as "H'";
-      [by rewrite lookup_replicate|].
-    iDestruct "IH''" as (γ1) "?".
-    iDestruct "H'" as (γ2) "?".
-    iExists _, _. iFrame "#".
+    iIntros (p Hle' HSome'').
+    iFrame. rewrite right_id_L in HSome''.
+    rewrite (list_lookup_total_alt ps).
+    rewrite HSome''. simpl. iFrame.
   Qed.
 
   Lemma get_chan_spec cs i ps p :
@@ -301,11 +284,10 @@ Section channel.
     {{{ c, RET c; c ↣ p ∗ chan_pool cs (i+1) ps }}}.
   Proof.
     iIntros (Φ) "Hcs HΦ".
-    iDestruct "Hcs" as (γp γEs n l -> <-) "[#IHp Hl]".
-    wp_lam. wp_pures.
-    simpl.
+    iDestruct "Hcs" as (γp γEs n l -> <-) "(#IHp & #IHl & Hl)".
+    wp_lam. wp_pures. 
     rewrite replicate_add. simpl.
-    iDestruct "Hl" as "[Hl1 [[Hi #IHs] Hl3]]". simpl.
+    iDestruct "Hl" as "[Hl1 [Hi Hl3]]". 
     iDestruct ("Hi" with "[] []") as "(Hauth & Hown & Hp)".
     { rewrite right_id_L. rewrite replicate_length. iPureIntro. lia. }
     { rewrite right_id_L. rewrite replicate_length.
@@ -316,16 +298,11 @@ Section channel.
     { rewrite iProto_pointsto_eq. iExists _, _, _, _, _, _.
       iSplit; [done|].
       rewrite replicate_length. rewrite right_id_L.
-      iFrame "#∗".
-      iSplit; [|iNext; done].
-      rewrite replicate_add.
-      iApply (big_sepL_impl with "IHs").
-      iIntros "!>" (???). iDestruct 1 as (γt1 γt2) "[??]".
-      iExists _,_,_. iFrame. }
-    iExists _, _, _, _. iSplit; [done|].
+      iFrame. iFrame "#∗". iNext. done. }
+    iExists γp, γEs, _, _. iSplit; [done|].
     iSplit.
     { iPureIntro. lia. }
-    iFrame "#∗".
+    iFrame. iFrame "#∗".
     rewrite replicate_add.
     simpl.
     iSplitL "Hl1".
@@ -333,7 +310,7 @@ Section channel.
       iIntros "!>" (i' ? HSome'').
       assert (i' < i).
       { rewrite lookup_replicate in HSome''. lia. }
-      iIntros "[H $]" (p' Hle'). lia. }
+      iIntros "H" (p' Hle'). lia. }
     simpl.
     iFrame "#∗".
     iSplitR.
@@ -343,7 +320,7 @@ Section channel.
     iIntros "!>" (i' ? HSome'').
     assert (i' < length ps).
     { rewrite lookup_replicate in HSome''. lia. }
-    iIntros "[H $]" (p' Hle' HSome).
+    iIntros "H" (p' Hle' HSome).
     iApply "H".
     { iPureIntro. lia. }
     iPureIntro.
@@ -373,44 +350,42 @@ Section channel.
     iDestruct "Hc" as
       (γ γE l i n p' ->) "(#IH & #Hls & Hle & H● & H◯ & Hown)".
     wp_bind (Fst _).
-    iInv "IH" as "HI".
+    iInv "IH" as "Hctx".
     iDestruct (iProto_le_msg_inv_r with "Hle") as (m') "#Heq".
     iRewrite "Heq" in "Hown".
+    iAssert (▷ (⌜i < n⌝ ∗ iProto_own γ i (<(Send, j)> m') ∗
+                iProto_ctx γ n))%I with "[Hctx Hown]"
+      as "[Hi [Hown Hctx]]".
+    { iNext. iDestruct (iProto_ctx_agree with "Hctx Hown") as %Hi.
+      iFrame. done. }
     iAssert (▷ (▷ ⌜j < n⌝ ∗ iProto_own γ i (<(Send, j)> m') ∗
-                iProto_ctx γ n))%I with "[HI Hown]"
-      as "[HI [Hown Hctx]]".
-    { iNext. iDestruct (iProto_target with "HI Hown") as "[Hin [$ $]]".
+                iProto_ctx γ n))%I with "[Hctx Hown]"
+      as "[Hj [Hown Hctx]]".
+    { iNext. iDestruct (iProto_target with "Hctx Hown") as "[Hin [$ $]]".
       iFrame. }
     iRewrite -"Heq" in "Hown". wp_pures. iModIntro. iFrame.
     wp_smart_apply (vpos_spec); [done|]; iIntros "_".
-    iDestruct "HI" as %Hle.
-    iDestruct (big_sepL_lookup_acc with "Hls") as "[Hj _]";
-      [by apply lookup_replicate_2|].
-    iDestruct "Hj" as (γE' γt γt') "#[IHl1 IHl2]".
+    iDestruct "Hi" as %Hi.
+    iDestruct "Hj" as %Hj.
+    iDestruct ("Hls" $! i j with "[//] [//]") as (γt) "IHl1". 
     wp_pures. wp_bind (Store _ _).
     iInv "IHl1" as "HIp".
     iDestruct "HIp" as "[HIp|HIp]"; last first.
     { iDestruct "HIp" as "[HIp|HIp]".
-      - iDestruct "HIp" as (? m) "(>Hl & Hown' & HIp)".
+      - iDestruct "HIp" as (? m p'') "(>Hl & Hown' & HIp)".
         wp_store.
-        rewrite /iProto_own.
-        iDestruct "Hown" as (p'') "[Hle' Hown]".
-        iDestruct "Hown'" as (p''') "[Hle'' Hown']".
-        iDestruct (own_prot_excl with "Hown Hown'") as "H". done.
+        iDestruct (iProto_own_excl with "Hown Hown'") as %[].
       - iDestruct "HIp" as (p'') "(>Hl' & Hown' & HIp)".
         wp_store.
-        rewrite /iProto_own.
-        iDestruct "Hown" as (p''') "[Hle' Hown]".
-        iDestruct "Hown'" as (p'''') "[Hle'' Hown']".
-        iDestruct (own_prot_excl with "Hown Hown'") as "H". done. }
+        iDestruct (iProto_own_excl with "Hown Hown'") as %[]. }
     iDestruct "HIp" as "[>Hl' Htok]".
     wp_store.
     iMod (own_update_2 with "H● H◯") as "[H● H◯]"; [by apply excl_auth_update|].
     iModIntro.
     iSplitL "Hl' H● Hown Hle".
-    { iRight. iLeft. iIntros "!>". iExists _, _. iFrame.
+    { iRight. iLeft. iIntros "!>". iExists _, _, _. iFrame.
       iSplitL "Hown Hle"; [by iApply (iProto_own_le with "Hown Hle")|].
-      iExists _. iFrame. by rewrite iMsg_base_eq. }
+      by rewrite iMsg_base_eq. }
     wp_pures.
     iLöb as "HL".
     wp_lam.
@@ -420,10 +395,10 @@ Section channel.
     { iDestruct "HIp" as ">[Hl' Htok']".
       iDestruct (own_valid_2 with "Htok Htok'") as %[]. }
     iDestruct "HIp" as "[HIp|HIp]".
-    - iDestruct "HIp" as (? m) "(>Hl' & Hown & HIp)".
+    - iDestruct "HIp" as (? m p'') "(>Hl' & Hown & HIp)".
       wp_load. iModIntro.
       iSplitL "Hl' Hown HIp".
-      { iRight. iLeft. iExists _, _. iFrame. }
+      { iRight. iLeft. iExists _, _,_. iFrame. }
       wp_pures. iApply ("HL" with "HΦ Htok H◯").
     - iDestruct "HIp" as (p'') "(>Hl' & Hown & H●)".
       wp_load.
@@ -466,19 +441,23 @@ Section channel.
     iDestruct "Hc" as
       (γ γE l i n p' ->) "(#IH & #Hls & Hle & H● & H◯ & Hown)".
     do 6 wp_pure _. wp_bind (Fst _). wp_pure _.
-    iInv "IH" as "HI".
+    iInv "IH" as "Hctx".
     iDestruct (iProto_le_msg_inv_r with "Hle") as (m') "#Heq".
     iRewrite "Heq" in "Hown".
+    iAssert (▷ (⌜i < n⌝ ∗ iProto_own γ i (<(Recv, j)> m') ∗
+                iProto_ctx γ n))%I with "[Hctx Hown]"
+      as "[Hi [Hown Hctx]]".
+    { iNext. iDestruct (iProto_ctx_agree with "Hctx Hown") as %Hi.
+      iFrame. done. }
     iAssert (▷ (▷ ⌜j < n⌝ ∗ iProto_own γ i (<(Recv, j)> m') ∗
-                iProto_ctx γ n))%I with "[HI Hown]" as "[HI [Hown Hctx]]".
-    { iNext. iDestruct (iProto_target with "HI Hown") as "[Hin [$$]]".
+                iProto_ctx γ n))%I with "[Hctx Hown]" as "[Hj [Hown Hctx]]".
+    { iNext. iDestruct (iProto_target with "Hctx Hown") as "[Hin [$$]]".
       iFrame. }
     iRewrite -"Heq" in "Hown". wp_pures. iModIntro. iFrame.
     wp_smart_apply (vpos_spec); [done|]; iIntros "_".
-    iDestruct "HI" as %Hle.
-    iDestruct (big_sepL_lookup_acc with "Hls") as "[Hj _]";
-      [by apply lookup_replicate_2|].
-    iDestruct "Hj" as (γE' γt γt') "#[IHl1 IHl2]".
+    iDestruct "Hi" as %Hi.
+    iDestruct "Hj" as %Hj.
+    iDestruct ("Hls" $! j i with "[//] [//]") as (γt) "IHl2".
     wp_pures.
     wp_bind (Xchg _ _).
     iInv "IHl2" as "HIp".
@@ -497,8 +476,7 @@ Section channel.
       { iRight. iRight. iExists _. iFrame. }
       wp_pures. iApply ("HL" with "[H● H◯ Hown Hle] HΦ").
       iExists _, _, _, _, _, _. iSplit; [done|]. iFrame "#∗". }
-    iDestruct "HIp" as (w m) "(>Hl' & Hown' & HIp)".
-    iDestruct "HIp" as (p'') "[Hm Hp']".
+    iDestruct "HIp" as (w m p'') "(>Hl' & Hown' & Hm & Hp')".
     iInv "IH" as "Hctx".
     wp_xchg.
     iDestruct (iProto_own_le with "Hown Hle") as "Hown".
@@ -519,28 +497,4 @@ Section channel.
     iRewrite "Hp". iFrame "#∗". iApply iProto_le_refl.
   Qed.
 
-  Lemma iProto_le_select_l {TT1 TT2:tele} j
-        (v1 : TT1 → val) (v2 : TT2 → val) P1 P2 (p1 : TT1 → iProto Σ) (p2 : TT2 → iProto Σ) :
-    ⊢ (iProto_choice (Send, j) v1 v2 P1 P2 p1 p2) ⊑
-      (<(Send,j) @.. (tt:TT1)> MSG (InjLV (v1 tt)) {{ P1 tt }} ; p1 tt).
-  Proof.
-    rewrite /iProto_choice.
-    iApply iProto_le_trans; last first.
-    { iApply iProto_le_texist_elim_r. iIntros (x). iExists x.
-      iApply iProto_le_refl. }
-    iIntros (tt). by iExists (inl tt).
-  Qed.
-
-  Lemma iProto_le_select_r {TT1 TT2:tele} j
-        (v1 : TT1 → val) (v2 : TT2 → val) P1 P2 (p1 : TT1 → iProto Σ) (p2 : TT2 → iProto Σ) :
-    ⊢ (iProto_choice (Send, j) v1 v2 P1 P2 p1 p2) ⊑
-      (<(Send,j) @.. (tt:TT2)> MSG (InjRV (v2 tt)) {{ P2 tt }} ; p2 tt).
-  Proof.
-    rewrite /iProto_choice.
-    iApply iProto_le_trans; last first.
-    { iApply iProto_le_texist_elim_r. iIntros (x). iExists x.
-      iApply iProto_le_refl. }
-    iIntros (tt). by iExists (inr tt).
-  Qed.
-
 End channel.
diff --git a/multi_actris/channel/proofmode.v b/multi_actris/channel/proofmode.v
index 07c044920f750bd14e942c5043f7cc2e6ba20891..a125a6f8a15c6820907d0f495eb746a972770a45 100644
--- a/multi_actris/channel/proofmode.v
+++ b/multi_actris/channel/proofmode.v
@@ -344,7 +344,7 @@ Tactic Notation "wp_send" "(" uconstr(x1) uconstr(x2) uconstr(x3) uconstr(x4) ")
   wp_send_core (eexists x1; eexists x2; eexists x3; eexists x4; eexists x5;
                 eexists x6; eexists x7; eexists x8) with pat.
 
-Lemma iProto_consistent_equiv_proof {Σ} (ps : gmap nat (iProto Σ)) :
+Lemma iProto_consistent_equiv_proof {Σ} (ps : list (iProto Σ)) :
   (∀ i j, valid_target ps i j) ∗
   (∀ i j m1 m2,
      (ps !!! i ≡ (<(Send, j)> m1)%proto) -∗
@@ -396,56 +396,32 @@ Tactic Notation "iProto_consistent_take_step_step" :=
   let m1 := fresh in
   let m2 := fresh in
   iIntros (i j m1 m2) "#Hm1 #Hm2";
-  repeat (destruct i as [|i];
-          [repeat (rewrite lookup_total_insert_ne; [|lia]);
-           try (by rewrite lookup_total_empty iProto_end_message_equivI);
-           try (rewrite lookup_total_insert;
-                try (by rewrite iProto_end_message_equivI);
-                iDestruct (iProto_message_equivI with "Hm1")
-                  as "[%Heq1 Hm1']";simplify_eq)|
-            repeat (rewrite lookup_total_insert_ne; [|lia]);
-            try (by rewrite lookup_total_empty iProto_end_message_equivI)]);
-  repeat (rewrite lookup_total_insert_ne; [|lia]);
-  try rewrite lookup_total_empty;
-  try (by iProto_end_message_equivI);
-  rewrite lookup_total_insert;
+  repeat (destruct i as [|i]=> /=;
+          [try (rewrite lookup_total_nil); try (by rewrite iProto_end_message_equivI);
+           iDestruct (iProto_message_equivI with "Hm1")
+                  as "[%Heq1 Hm1']";simplify_eq=> /=|
+            try (rewrite lookup_total_nil); try (by rewrite iProto_end_message_equivI)]);
+  try (rewrite lookup_total_nil);
+  try (by rewrite iProto_end_message_equivI);
   iDestruct (iProto_message_equivI with "Hm2")
-    as "[%Heq2 Hm2']";simplify_eq;
+    as "[%Heq2 Hm2']";simplify_eq=> /=;
   try (iClear "Hm1' Hm2'";
        iExists _,_,_,_,_,_,_,_,_,_;
        iSplitL "Hm1"; [iFrame "#"|];
        iSplitL "Hm2"; [iFrame "#"|];
        iSplit; [iPureIntro; tc_solve|];
        iSplit; [iPureIntro; tc_solve|];
-       simpl; iClear "Hm1 Hm2"; clear m1 m2);
-  try (repeat (rewrite (insert_commute _ _ i); [|done]);
-  rewrite insert_insert;
-  repeat (rewrite (insert_commute _ _ j); [|done]);
-  rewrite insert_insert).
+       simpl; iClear "Hm1 Hm2"; clear m1 m2).
 
 Tactic Notation "iProto_consistent_take_step_target" :=
   let i := fresh in
   iIntros (i j a m); rewrite /valid_target;
-            iIntros "#Hm";
-  repeat (destruct i as [|i];
-          [repeat (rewrite lookup_total_insert_ne; [|lia]);
-           try (by rewrite lookup_total_empty iProto_end_message_equivI);
-           try (rewrite lookup_total_insert;
-                try (by rewrite iProto_end_message_equivI);
-                iDestruct (iProto_message_equivI with "Hm1")
-                  as "[%Heq1 Hm1']";simplify_eq)|
-            repeat (rewrite lookup_total_insert_ne; [|lia]);
-            try (by rewrite lookup_total_empty iProto_end_message_equivI)]);
-  repeat (rewrite lookup_total_insert_ne; [|lia]);
-  try rewrite lookup_total_empty;
-  try (by iProto_end_message_equivI);
-  rewrite lookup_total_insert;
-  iDestruct (iProto_message_equivI with "Hm")
-    as "[%Heq Hm']";simplify_eq;
-  repeat (try rewrite lookup_empty;
-          try rewrite lookup_insert;
-          rewrite lookup_insert_ne; [|lia]);
-    try rewrite lookup_insert; try done.
+            iIntros "#Hm1";
+  repeat (destruct i as [|i]=> /=;
+          [try (rewrite lookup_total_nil); try (by rewrite iProto_end_message_equivI);
+           by iDestruct (iProto_message_equivI with "Hm1")
+                    as "[%Heq1 Hm1']" ; simplify_eq=> /=|
+           try (rewrite lookup_total_nil); try (by rewrite iProto_end_message_equivI)]).
 
 Tactic Notation "iProto_consistent_take_step" :=
   try iNext;
@@ -463,3 +439,6 @@ Tactic Notation "iProto_consistent_resolve_step" :=
 
 Tactic Notation "iProto_consistent_take_steps" :=
   repeat (iProto_consistent_take_step; iProto_consistent_resolve_step).
+
+Tactic Notation "wp_get_chan" "(" simple_intropattern(c) ")" constr(pat) :=
+  wp_smart_apply (get_chan_spec with "[$]"); iIntros (c); iIntros pat.
diff --git a/multi_actris/channel/proto.v b/multi_actris/channel/proto.v
index e5a2b781b7c649a66ea6594969299667b21f4f3a..aa0826a901447c221041396c7a8b895ac871a5e1 100644
--- a/multi_actris/channel/proto.v
+++ b/multi_actris/channel/proto.v
@@ -499,14 +499,14 @@ Global Instance iProto_inhabited {Σ V} : Inhabited (iProto Σ V) := populate EN
 Definition can_step {Σ V} (rec : list (iProto Σ V) → iProp Σ)
            (ps : list (iProto Σ V)) (i j : nat) : iProp Σ :=
   ∀ m1 m2,
-    (ps !!! i ≡ <(Send, j)> m1) -∗
-    (ps !!! j ≡ <(Recv, i)> m2) -∗
+    (ps !!! i ≡ (<(Send, j)> m1)) -∗
+    (ps !!! j ≡ (<(Recv, i)> m2)) -∗
     ∀ v p1, iMsg_car m1 v (Next p1) -∗
             ∃ p2, iMsg_car m2 v (Next p2) ∗
                   â–· (rec (<[i:=p1]>(<[j:=p2]>ps))).
 
 Definition valid_target {Σ V} (ps : list (iProto Σ V)) (i j : nat) : iProp Σ :=
-  ∀ a m, (ps !!! i ≡ <(a, j)> m) -∗ ⌜is_Some (ps !! j)⌝.
+  ∀ a m, (ps !!! i ≡ (<(a, j)> m)) -∗ ⌜is_Some (ps !! j)⌝.
 
 Definition iProto_consistent_pre {Σ V} (rec : list (iProto Σ V) → iProp Σ)
   (ps : list (iProto Σ V)) : iProp Σ :=
@@ -600,8 +600,7 @@ Definition iProto_own_frag `{!protoG Σ V} (γ : gname)
 
 Definition iProto_own_auth `{!protoG Σ V} (γ : gname)
     (ps : list (iProto Σ V)) : iProp Σ :=
-  own γ (gmap_view_auth (DfracOwn 1) (((λ p, Excl' (Next p)) <$>
-    (list_to_map (zip (seq 0 (length ps)) ps))) : gmap _ _)).
+  own γ (gmap_view_auth (DfracOwn 1) ((λ p, Excl' (Next p)) <$> map_seq 0 ps)).
 
 Definition iProto_ctx `{protoG Σ V}
     (γ : gname) (ps_len : nat) : iProp Σ :=
@@ -781,44 +780,191 @@ Section proto.
       iDestruct "Hp2" as (Heq) "Hp2". simplify_eq.
       iDestruct "H" as (->) "H". by iExists _.
   Qed.
+  
+  Lemma iProto_le_send i m1 m2 :
+    (∀ v p2', iMsg_car m2 v (Next p2') -∗ ∃ p1',
+      ▷ (p1' ⊑ p2') ∗ iMsg_car m1 v (Next p1')) -∗
+    (<(Send,i)> m1) ⊑ (<(Send,i)> m2).
+  Proof.
+    iIntros "Hle". rewrite iProto_le_unfold.
+    iRight. iExists (Send, i), (Send, i), m1, m2. by eauto.
+  Qed.
+
+  Lemma iProto_le_recv i m1 m2 :
+    (∀ v p1', iMsg_car m1 v (Next p1') -∗ ∃ p2',
+      ▷ (p1' ⊑ p2') ∗ iMsg_car m2 v (Next p2')) -∗
+    (<(Recv,i)> m1) ⊑ (<(Recv,i)> m2).
+  Proof.
+    iIntros "Hle". rewrite iProto_le_unfold.
+    iRight. iExists (Recv, i), (Recv, i), m1, m2. by eauto.
+  Qed.
+
+  Lemma iProto_le_base a v P p1 p2 :
+    ▷ (p1 ⊑ p2) -∗
+    (<a> MSG v {{ P }}; p1) ⊑ (<a> MSG v {{ P }}; p2).
+  Proof.
+    rewrite iMsg_base_eq. iIntros "H". destruct a as [[]].
+    - iApply iProto_le_send. iIntros (v' p') "(->&Hp&$)".
+      iExists p1. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp".
+    - iApply iProto_le_recv. iIntros (v' p') "(->&Hp&$)".
+      iExists p2. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp".
+  Qed.
+
+  Lemma iProto_le_trans p1 p2 p3 : p1 ⊑ p2 -∗ p2 ⊑ p3 -∗ p1 ⊑ p3.
+  Proof.
+    iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3).
+    destruct (iProto_case p3) as [->|([]&i&m3&->)].
+    - iDestruct (iProto_le_end_inv_r with "H2") as "H2". by iRewrite "H2" in "H1".
+    - iDestruct (iProto_le_send_inv with "H2") as (m2) "[Hp2 H2]".
+      iRewrite "Hp2" in "H1"; clear p2.
+      iDestruct (iProto_le_send_inv with "H1") as (m1) "[Hp1 H1]".
+      iRewrite "Hp1"; clear p1.
+      iApply iProto_le_send. iIntros (v p3') "Hm3".
+      iDestruct ("H2" with "Hm3") as (p2') "[Hle Hm2]".
+      iDestruct ("H1" with "Hm2") as (p1') "[Hle' Hm1]".
+      iExists p1'. iIntros "{$Hm1} !>". by iApply ("IH" with "Hle'").
+    - iDestruct (iProto_le_recv_inv_r with "H2") as (m2) "[Hp2 H3]".
+      iRewrite "Hp2" in "H1".
+      iDestruct (iProto_le_recv_inv_r with "H1") as (m1) "[Hp1 H2]".
+      iRewrite "Hp1". iApply iProto_le_recv. iIntros (v p1') "Hm1".
+      iDestruct ("H2" with "Hm1") as (p2') "[Hle Hm2]".
+      iDestruct ("H3" with "Hm2") as (p3') "[Hle' Hm3]".
+      iExists p3'. iIntros "{$Hm3} !>". by iApply ("IH" with "Hle").
+  Qed.
+
+  Lemma iProto_le_refl p : ⊢ p ⊑ p.
+  Proof.
+    iLöb as "IH" forall (p). destruct (iProto_case p) as [->|([]&i&m&->)].
+    - iApply iProto_le_end.
+    - iApply iProto_le_send. auto 10 with iFrame.
+    - iApply iProto_le_recv. auto 10 with iFrame.
+  Qed.
+
+
+  Global Instance iProto_own_frag_ne γ s : NonExpansive (iProto_own_frag γ s).
+  Proof. solve_proper. Qed.
+
+  Lemma iProto_own_auth_agree γ ps i p :
+    iProto_own_auth γ ps -∗ iProto_own_frag γ i p -∗ ▷ (ps !! i ≡ Some p).
+  Proof.    
+    iIntros "H● H◯".
+    iDestruct (own_valid_2 with "H● H◯") as "H✓".
+    rewrite gmap_view_both_validI.
+    iDestruct "H✓" as "[_ [H1 H2]]".
+    rewrite lookup_fmap.
+    simpl.
+    rewrite lookup_map_seq_0.    
+    destruct (ps !! i) eqn:Heqn; last first.
+    { rewrite Heqn. rewrite !option_equivI. done. }
+    rewrite Heqn.
+    simpl. rewrite !option_equivI excl_equivI. by iNext.
+  Qed.
+
+  Lemma iProto_own_auth_agree_Some γ ps i p :
+    iProto_own_auth γ ps -∗ iProto_own_frag γ i p -∗ ⌜is_Some (ps !! i)⌝.
+  Proof.
+    iIntros "H● H◯".
+    iDestruct (own_valid_2 with "H● H◯") as "H✓".
+    rewrite gmap_view_both_validI.
+    iDestruct "H✓" as "[_ [H1 H2]]".
+    rewrite lookup_fmap.
+    simpl.
+    rewrite lookup_map_seq_0.    
+    destruct (ps !! i) eqn:Heqn; last first.
+    { rewrite Heqn. rewrite !option_equivI. done. }
+    rewrite Heqn.
+    simpl. rewrite !option_equivI excl_equivI. done. 
+  Qed.
+
+  Lemma iProto_own_auth_update γ ps i p p' :
+    iProto_own_auth γ ps -∗ iProto_own_frag γ i p ==∗
+    iProto_own_auth γ (<[i := p']>ps) ∗ iProto_own_frag γ i p'.
+  Proof.
+    iIntros "H● H◯".
+    iDestruct (iProto_own_auth_agree_Some with "H● H◯") as %HSome.
+    iMod (own_update_2 with "H● H◯") as "[H1 H2]"; [|iModIntro].
+    { eapply (gmap_view_replace _ _ _ (Excl' (Next p'))). done. }
+    iFrame. rewrite -fmap_insert.
+    rewrite /iProto_own_auth. 
+    rewrite insert_map_seq_0; [done|].
+    by apply lookup_lt_is_Some_1.
+  Qed.
+  
+  Lemma iProto_own_auth_alloc ps :
+    ⊢ |==> ∃ γ, iProto_own_auth γ ps ∗ [∗ list] i ↦p ∈ ps, iProto_own γ i p.
+  Proof.
+    iMod (own_alloc (gmap_view_auth (DfracOwn 1) ∅)) as (γ) "Hauth".
+    { apply gmap_view_auth_valid. }
+    iExists γ.
+    iInduction ps as [|p ps] "IH" using rev_ind.
+    { iModIntro. iFrame. done. }
+    iMod ("IH" with "Hauth") as "[Hauth Hfrags]".
+    iFrame "Hfrags".
+    iMod (own_update with "Hauth") as "[Hauth Hfrag]".
+    { apply (gmap_view_alloc _ (length ps) (DfracOwn 1) (Excl' (Next p))); [|done|done].
+      rewrite fmap_map_seq.
+      rewrite lookup_map_seq_0.
+      apply lookup_ge_None_2. rewrite fmap_length. done. }
+    simpl.
+    iModIntro. 
+    rewrite right_id_L. 
+    rewrite -fmap_insert. iFrame.
+    iSplitL "Hauth".
+    - rewrite /iProto_own_auth.
+      rewrite map_seq_snoc. simpl. done.
+    - iSplit; [|done].
+      iExists _. iFrame. by iApply iProto_le_refl.
+  Qed.
+
+  Lemma list_lookup_Some_le (ps : list $ iProto Σ V) (i : nat) (p1 : iProto Σ V) :
+    ⊢@{iProp Σ} ps !! i ≡ Some p1 -∗ ⌜i < length ps⌝.
+  Proof.
+    iIntros "HSome".
+    rewrite option_equivI.
+    destruct (ps !! i) eqn:Heqn; [|done].
+    iPureIntro.
+    by apply lookup_lt_is_Some_1.
+  Qed.
 
   Lemma valid_target_le ps i p1 p2 :
     (∀ i' j', valid_target ps i' j') -∗
-    ps !!! i ≡ p1 -∗
+    ps !! i ≡ Some p1 -∗
     p1 ⊑ p2 -∗
     (∀ i' j', valid_target (<[i := p2]>ps) i' j') ∗ p1 ⊑ p2.
-  Proof. Admitted.
-  (*   iIntros "Hprot #HSome Hle". *)
-  (*   pose proof (iProto_case p1) as [Hend|Hmsg]. *)
-  (*   { rewrite Hend. iDestruct (iProto_le_end_inv_l with "Hle") as "#H". *)
-  (*     iFrame "Hle". *)
-  (*     iIntros (i' j' a m) "Hm". *)
-  (*     destruct (decide (i = j')) as [->|Hneqj]. *)
-  (*     { Search list_lookup_total insert. rewrite list_lookup_total_insert. ; [done|]. lia. done. } *)
-  (*     rewrite lookup_insert_ne; [|done]. *)
-  (*     destruct (decide (i = i')) as [->|Hneqi]. *)
-  (*     { rewrite lookup_total_insert. iRewrite "H" in "Hm". *)
-  (*       by iDestruct (iProto_end_message_equivI with "Hm") as "Hm". } *)
-  (*     rewrite lookup_total_insert_ne; [|done]. *)
-  (*     by iApply "Hprot". } *)
-  (*   destruct Hmsg as (t & n & m & Hmsg). *)
-  (*   setoid_rewrite Hmsg. *)
-  (*   iDestruct (iProto_le_msg_inv_l with "Hle") as (m2) "#Heq". iFrame "Hle". *)
-  (*   iIntros (i' j' a m') "Hm". *)
-  (*   destruct (decide (i = j')) as [->|Hneqj]. *)
-  (*   { rewrite lookup_insert. done. } *)
-  (*   rewrite lookup_insert_ne; [|done]. *)
-  (*   destruct (decide (i = i')) as [->|Hneqi]. *)
-  (*   { rewrite lookup_total_insert. iRewrite "Heq" in "Hm". *)
-  (*     iDestruct (iProto_message_equivI with "Hm") as (Heq) "Hm". *)
-  (*     simplify_eq. by iApply "Hprot". } *)
-  (*   rewrite lookup_total_insert_ne; [|done]. *)
-  (*   by iApply "Hprot". *)
-  (* Qed. *)
+  Proof.
+    iIntros "Hprot #HSome Hle".
+    iDestruct (list_lookup_Some_le with "HSome") as %Hi.
+    pose proof (iProto_case p1) as [Hend|Hmsg].
+    { rewrite Hend. iDestruct (iProto_le_end_inv_l with "Hle") as "#H".
+      iFrame "Hle".
+      iIntros (i' j' a m) "Hm".
+      destruct (decide (i = j')) as [->|Hneqj].
+      { rewrite list_lookup_insert; [done|]. done. }
+      rewrite (list_lookup_insert_ne _ i j'); [|done].
+      destruct (decide (i = i')) as [->|Hneqi].
+      { rewrite list_lookup_total_insert; [|done]. iRewrite "H" in "Hm".
+        by iDestruct (iProto_end_message_equivI with "Hm") as "Hm". }
+      rewrite list_lookup_total_insert_ne; [|done].
+      by iApply "Hprot". }
+    destruct Hmsg as (t & n & m & Hmsg).
+    setoid_rewrite Hmsg.
+    iDestruct (iProto_le_msg_inv_l with "Hle") as (m2) "#Heq". iFrame "Hle".
+    iIntros (i' j' a m') "Hm".
+    destruct (decide (i = j')) as [->|Hneqj].
+    { by rewrite list_lookup_insert. }
+    rewrite (list_lookup_insert_ne _ i j'); [|done].
+    destruct (decide (i = i')) as [->|Hneqi].
+    { rewrite list_lookup_total_insert; [|done]. iRewrite "Heq" in "Hm".
+      iDestruct (iProto_message_equivI with "Hm") as (Heq) "Hm".
+      simplify_eq. iApply ("Hprot" $! i'). 
+      rewrite list_lookup_total_alt. iRewrite "HSome". done. }
+    rewrite list_lookup_total_insert_ne; [|done].
+    by iApply "Hprot".
+  Qed.
 
   Lemma iProto_consistent_le ps i p1 p2 :
     iProto_consistent ps -∗
-    ps !!! i ≡ p1 -∗
+    ps !! i ≡ Some p1 -∗
     p1 ⊑ p2 -∗
     iProto_consistent (<[i := p2]>ps).
   Proof.
@@ -826,19 +972,21 @@ Section proto.
     iRevert "HSome".
     iLöb as "IH" forall (p1 p2 ps).
     iIntros "#HSome".
+    iDestruct (list_lookup_Some_le with "HSome") as %Hi.
     rewrite !iProto_consistent_unfold.
     iDestruct "Hprot" as "(Htar & Hprot)".
     iDestruct (valid_target_le with "Htar HSome Hle") as "[Htar Hle]".
     iFrame.
     iIntros (i' j' m1 m2) "#Hm1 #Hm2".
     destruct (decide (i = i')) as [<-|Hneq].
-    { rewrite list_lookup_total_insert; [|admit].
+    { rewrite list_lookup_total_insert; [|done].
       pose proof (iProto_case p2) as [Hend|Hmsg].
-      { setoid_rewrite Hend. rewrite iProto_end_message_equivI. done. }
+      { setoid_rewrite Hend.
+        rewrite !option_equivI. rewrite iProto_end_message_equivI. done. }
       destruct Hmsg as (a&?&m&Hmsg).
       setoid_rewrite Hmsg.
       destruct a; last first.
-      { rewrite iProto_message_equivI.
+      { rewrite !option_equivI. rewrite iProto_message_equivI.
         iDestruct "Hm1" as "[%Htag Hm1]". done. }
       rewrite iProto_message_equivI.
       iDestruct "Hm1" as "[%Htag Hm1]".
@@ -850,29 +998,35 @@ Section proto.
       iDestruct "Hle" as (m') "[#Heq H]".
       iDestruct ("H" with "Hm1'") as (p') "[Hle H]".
       destruct (decide (i = j')) as [<-|Hneq].
-      { rewrite list_lookup_total_insert. rewrite iProto_message_equivI.
-        iDestruct "Hm2" as "[%Heq _]". done. admit. }
+      { rewrite list_lookup_total_insert; [|done].
+        rewrite iProto_message_equivI.
+        iDestruct "Hm2" as "[%Heq _]". done. }
       iDestruct ("Hprot" $!i j' with "[] [] H") as "Hprot".
-      { iRewrite -"Heq". rewrite !list_lookup_total_alt. iRewrite "HSome". done. }
+      { iRewrite -"Heq". iEval (rewrite list_lookup_total_alt). 
+        iRewrite "HSome". done. }
       { rewrite list_lookup_total_insert_ne; [|done]. done. }
       iDestruct "Hprot" as (p'') "[Hm Hprot]".
       iExists p''. iFrame.
       iNext.
       iDestruct ("IH" with "Hprot Hle [HSome]") as "HI".
-      { rewrite list_lookup_total_insert; [done|]. admit. }
+      { rewrite list_lookup_insert; [done|].
+        by rewrite insert_length. }
       iClear "IH Hm1 Hm2 Heq".
       rewrite list_insert_insert.
       rewrite (list_insert_commute _ j' i); [|done].
       rewrite list_insert_insert. done. }
     rewrite list_lookup_total_insert_ne; [|done].
     destruct (decide (i = j')) as [<-|Hneq'].
-    { rewrite list_lookup_total_insert.
+    { rewrite list_lookup_total_insert; [|done].
       pose proof (iProto_case p2) as [Hend|Hmsg].
-      { setoid_rewrite Hend. rewrite iProto_end_message_equivI. done. }
+      { setoid_rewrite Hend.
+        rewrite !option_equivI.
+        rewrite iProto_end_message_equivI. done. }
       destruct Hmsg as (a&?&m&Hmsg).
       setoid_rewrite Hmsg.
       destruct a.
-      { rewrite iProto_message_equivI.
+      { rewrite !option_equivI.
+        rewrite iProto_message_equivI.
         iDestruct "Hm2" as "[%Htag Hm2]". done. }
       rewrite iProto_message_equivI.
       iDestruct "Hm2" as "[%Htag Hm2]".
@@ -882,17 +1036,17 @@ Section proto.
       iDestruct "Hle" as (m') "[#Heq Hle]".
       iDestruct ("Hprot" $!i' with "[] [] Hm1'") as "Hprot".
       { done. }
-      { rewrite !list_lookup_total_alt. iRewrite "HSome". done. }
+      { iEval (rewrite list_lookup_total_alt). iRewrite "HSome". done. }
       iDestruct ("Hprot") as (p') "[Hm1' Hprot]".
       iDestruct ("Hle" with "Hm1'") as (p2') "[Hle Hm']".
       iSpecialize ("Hm2" $! v (Next p2')).
       iExists p2'.
       iRewrite -"Hm2". iFrame.
       iDestruct ("IH" with "Hprot Hle []") as "HI".
-      { iPureIntro. rewrite list_lookup_total_insert_ne; [|done].
-        rewrite list_lookup_total_insert. done. admit. }
+      { iPureIntro. rewrite list_lookup_insert_ne; [|done].
+        by rewrite list_lookup_insert. }
       rewrite list_insert_commute; [|done].
-      rewrite !list_insert_insert. done. admit. }
+      rewrite !list_insert_insert. done. }
     rewrite list_lookup_total_insert_ne; [|done].
     iIntros (v p) "Hm1'".
     iDestruct ("Hprot" $!i' j' with "[//] [//] Hm1'") as "Hprot".
@@ -902,68 +1056,9 @@ Section proto.
     rewrite (list_insert_commute _ j' i); [|done].
     rewrite (list_insert_commute _ i' i); [|done].
     iApply ("IH" with "Hprot Hle []").
-    rewrite list_lookup_total_insert_ne; [|done].
-    rewrite list_lookup_total_insert_ne; [|done].
+    rewrite list_lookup_insert_ne; [|done].
+    rewrite list_lookup_insert_ne; [|done].
     done.
-  Admitted.
-  
-  Lemma iProto_le_send i m1 m2 :
-    (∀ v p2', iMsg_car m2 v (Next p2') -∗ ∃ p1',
-      ▷ (p1' ⊑ p2') ∗ iMsg_car m1 v (Next p1')) -∗
-    (<(Send,i)> m1) ⊑ (<(Send,i)> m2).
-  Proof.
-    iIntros "Hle". rewrite iProto_le_unfold.
-    iRight. iExists (Send, i), (Send, i), m1, m2. by eauto.
-  Qed.
-
-  Lemma iProto_le_recv i m1 m2 :
-    (∀ v p1', iMsg_car m1 v (Next p1') -∗ ∃ p2',
-      ▷ (p1' ⊑ p2') ∗ iMsg_car m2 v (Next p2')) -∗
-    (<(Recv,i)> m1) ⊑ (<(Recv,i)> m2).
-  Proof.
-    iIntros "Hle". rewrite iProto_le_unfold.
-    iRight. iExists (Recv, i), (Recv, i), m1, m2. by eauto.
-  Qed.
-
-  Lemma iProto_le_base a v P p1 p2 :
-    ▷ (p1 ⊑ p2) -∗
-    (<a> MSG v {{ P }}; p1) ⊑ (<a> MSG v {{ P }}; p2).
-  Proof.
-    rewrite iMsg_base_eq. iIntros "H". destruct a as [[]].
-    - iApply iProto_le_send. iIntros (v' p') "(->&Hp&$)".
-      iExists p1. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp".
-    - iApply iProto_le_recv. iIntros (v' p') "(->&Hp&$)".
-      iExists p2. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp".
-  Qed.
-
-  Lemma iProto_le_trans p1 p2 p3 : p1 ⊑ p2 -∗ p2 ⊑ p3 -∗ p1 ⊑ p3.
-  Proof.
-    iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3).
-    destruct (iProto_case p3) as [->|([]&i&m3&->)].
-    - iDestruct (iProto_le_end_inv_r with "H2") as "H2". by iRewrite "H2" in "H1".
-    - iDestruct (iProto_le_send_inv with "H2") as (m2) "[Hp2 H2]".
-      iRewrite "Hp2" in "H1"; clear p2.
-      iDestruct (iProto_le_send_inv with "H1") as (m1) "[Hp1 H1]".
-      iRewrite "Hp1"; clear p1.
-      iApply iProto_le_send. iIntros (v p3') "Hm3".
-      iDestruct ("H2" with "Hm3") as (p2') "[Hle Hm2]".
-      iDestruct ("H1" with "Hm2") as (p1') "[Hle' Hm1]".
-      iExists p1'. iIntros "{$Hm1} !>". by iApply ("IH" with "Hle'").
-    - iDestruct (iProto_le_recv_inv_r with "H2") as (m2) "[Hp2 H3]".
-      iRewrite "Hp2" in "H1".
-      iDestruct (iProto_le_recv_inv_r with "H1") as (m1) "[Hp1 H2]".
-      iRewrite "Hp1". iApply iProto_le_recv. iIntros (v p1') "Hm1".
-      iDestruct ("H2" with "Hm1") as (p2') "[Hle Hm2]".
-      iDestruct ("H3" with "Hm2") as (p3') "[Hle' Hm3]".
-      iExists p3'. iIntros "{$Hm3} !>". by iApply ("IH" with "Hle").
-  Qed.
-
-  Lemma iProto_le_refl p : ⊢ p ⊑ p.
-  Proof.
-    iLöb as "IH" forall (p). destruct (iProto_case p) as [->|([]&i&m&->)].
-    - iApply iProto_le_end.
-    - iApply iProto_le_send. auto 10 with iFrame.
-    - iApply iProto_le_recv. auto 10 with iFrame.
   Qed.
 
   Lemma iProto_le_dual p1 p2 : p2 ⊑ p1 -∗ iProto_dual p1 ⊑ iProto_dual p2.
@@ -1115,16 +1210,18 @@ Section proto.
 
   Lemma iProto_consistent_target ps m a i j :
     iProto_consistent ps -∗
-    ps !!! i ≡ (<(a, j)> m) -∗
+    ps !! i ≡ Some (<(a, j)> m) -∗
     ⌜is_Some (ps !! j)⌝.
   Proof.
-    rewrite iProto_consistent_unfold. iDestruct 1 as "[Htar _]". iApply "Htar".
+    rewrite iProto_consistent_unfold. iDestruct 1 as "[Htar _]".
+    iIntros "H". iApply ("Htar" $! i).
+    rewrite list_lookup_total_alt. iRewrite "H". done.
   Qed.
 
   Lemma iProto_consistent_step ps m1 m2 i j v p1 :
     iProto_consistent ps -∗
-    ps !!! i ≡ (<(Send, j)> m1) -∗
-    ps !!! j ≡ (<(Recv, i)> m2) -∗
+    ps !! i ≡ Some (<(Send, j)> m1) -∗
+    ps !! j ≡ Some (<(Recv, i)> m2) -∗
     iMsg_car m1 v (Next p1) -∗
     ∃ p2, iMsg_car m2 v (Next p2) ∗
           â–· iProto_consistent (<[i := p1]>(<[j := p2]>ps)).
@@ -1132,52 +1229,12 @@ Section proto.
     iIntros "Hprot #Hi #Hj Hm1".
     rewrite iProto_consistent_unfold /iProto_consistent_pre.
     iDestruct "Hprot" as "[_ Hprot]".
-    iDestruct ("Hprot" with "Hi Hj Hm1") as (p2) "[Hm2 Hprot]".
+    iDestruct ("Hprot" $! i j with "[Hi] [Hj] Hm1") as (p2) "[Hm2 Hprot]".
+    { rewrite list_lookup_total_alt. iRewrite "Hi". done. }
+    { rewrite list_lookup_total_alt. iRewrite "Hj". done. }
     iExists p2. iFrame.
   Qed.
 
-  Global Instance iProto_own_frag_ne γ s : NonExpansive (iProto_own_frag γ s).
-  Proof. solve_proper. Qed.
-
-  Lemma iProto_own_auth_agree γ ps i p :
-    iProto_own_auth γ ps -∗ iProto_own_frag γ i p -∗ ▷ (ps !!! i ≡ p).
-  Proof. Admitted.
-  (*   iIntros "H● H◯". *)
-  (*   iDestruct (own_valid_2 with "H● H◯") as "H✓". *)
-  (*   rewrite gmap_view_both_validI. *)
-  (*   iDestruct "H✓" as "[_ [H1 H2]]". *)
-  (*   rewrite list_lookup_total_alt lookup_fmap. *)
-  (*   destruct (ps !! i); last first. *)
-  (*   { rewrite !option_equivI. } *)
-  (*   simpl. rewrite !option_equivI excl_equivI. by iNext. *)
-  (* Qed. *)
-
-  Lemma iProto_own_auth_update γ ps i p p' :
-    iProto_own_auth γ ps -∗ iProto_own_frag γ i p ==∗
-    iProto_own_auth γ (<[i := p']>ps) ∗ iProto_own_frag γ i p'.
-  Proof.
-    iIntros "H● H◯".
-    iMod (own_update_2 with "H● H◯") as "[H1 H2]"; [|iModIntro].
-    { eapply (gmap_view_replace _ _ _ (Excl' (Next p'))). done. }
-    iFrame. rewrite -fmap_insert. Admitted.
-  
-  Lemma iProto_own_auth_alloc ps :
-    ⊢ |==> ∃ γ, iProto_own_auth γ ps ∗ [∗ list] i ↦p ∈ ps, iProto_own γ i p.
-  Proof. Admitted.
-  (*   iMod (own_alloc (gmap_view_auth (DfracOwn 1) ∅)) as (γ) "Hauth". *)
-  (*   { apply gmap_view_auth_valid. } *)
-  (*   iExists γ. *)
-  (*   iInduction ps as [|i p ps Hin] "IH" using map_ind. *)
-  (*   { iModIntro. iFrame. by iApply big_sepM_empty. } *)
-  (*   iMod ("IH" with "Hauth") as "[Hauth Hfrags]". *)
-  (*   rewrite big_sepM_insert; [|done]. iFrame "Hfrags". *)
-  (*   iMod (own_update with "Hauth") as "[Hauth Hfrag]". *)
-  (*   { apply (gmap_view_alloc _ i (DfracOwn 1) (Excl' (Next p))); [|done|done]. *)
-  (*     by rewrite lookup_fmap Hin. } *)
-  (*   iModIntro. rewrite -fmap_insert. iFrame. *)
-  (*   iExists _. iFrame. iApply iProto_le_refl. *)
-  (* Qed. *)
-
   Lemma iProto_own_le γ s p1 p2 :
     iProto_own γ s p1 -∗ ▷ (p1 ⊑ p2) -∗ iProto_own γ s p2.
   Proof.
@@ -1185,6 +1242,29 @@ Section proto.
     iExists p1'. iFrame "H". by iApply (iProto_le_trans with "Hle").
   Qed.
 
+  Lemma iProto_own_excl γ i (p1 p2 : iProto Σ V) :
+    iProto_own γ i p1 -∗ iProto_own γ i p2 -∗ False.
+  Proof.
+    rewrite /iProto_own.
+    iDestruct 1 as (p1') "[_ Hp1]".
+    iDestruct 1 as (p2') "[_ Hp2]".
+    iDestruct (own_prot_excl with "Hp1 Hp2") as %[].
+  Qed.
+
+  Lemma iProto_ctx_agree γ n i p :
+    iProto_ctx γ n -∗
+    iProto_own γ i p -∗
+    ⌜i < n⌝.
+  Proof. 
+      iIntros "Hctx Hown".
+      rewrite /iProto_ctx /iProto_own.
+      iDestruct "Hctx" as (ps <-) "[Hauth Hps]".
+      iDestruct "Hown" as (p') "[Hle Hown]".
+      iDestruct (iProto_own_auth_agree_Some with "Hauth Hown") as %HSome.
+      iPureIntro.
+      by apply lookup_lt_is_Some_1.
+  Qed.
+
   Lemma iProto_init ps :
     ▷ iProto_consistent ps -∗
     |==> ∃ γ, iProto_ctx γ (length ps) ∗ [∗ list] i ↦p ∈ ps, iProto_own γ i p.
@@ -1194,7 +1274,6 @@ Section proto.
     iExists γ. iFrame. iExists _. by iFrame.
   Qed.
 
-
   Lemma iProto_step γ ps_dom i j m1 m2 p1 v :
     iProto_ctx γ ps_dom -∗
     iProto_own γ i (<(Send, j)> m1) -∗
@@ -1204,49 +1283,48 @@ Section proto.
             iProto_own γ i p1 ∗ iProto_own γ j p2.
   Proof.
     iIntros "Hctx Hi Hj Hm".
+    iDestruct (iProto_ctx_agree with "Hctx Hi") as %Hi.
+    iDestruct (iProto_ctx_agree with "Hctx Hj") as %Hij.
     iDestruct "Hi" as (pi) "[Hile Hi]".
     iDestruct "Hj" as (pj) "[Hjle Hj]".
     iDestruct "Hctx" as (ps Hdom) "[Hauth Hconsistent]".
     iDestruct (iProto_own_auth_agree with "Hauth Hi") as "#Hpi".
     iDestruct (iProto_own_auth_agree with "Hauth Hj") as "#Hpj".
     iDestruct (own_prot_idx with "Hi Hj") as %Hneq.
-    iAssert (▷ (<[i:=<(Send, j)> m1]>ps !!! j ≡ pj))%I as "Hpj'".
-    { by rewrite list_lookup_total_insert_ne. }
+    iAssert (▷ (<[i:=<(Send, j)> m1]>ps !! j ≡ Some pj))%I as "Hpj'".
+    { by rewrite list_lookup_insert_ne. }
     iAssert (▷ (⌜is_Some (ps !! i)⌝ ∗ (pi ⊑ (<(Send, j)> m1))))%I with "[Hile]"
       as "[Hi' Hile]".
     { iNext. iDestruct (iProto_le_msg_inv_r with "Hile") as (m) "#Heq".
-      iFrame. iRewrite "Heq" in "Hpi". rewrite list_lookup_total_alt.
-      destruct (ps !! i); [done|].
-      iDestruct (iProto_end_message_equivI with "Hpi") as "[]". }
+      iFrame. iRewrite "Heq" in "Hpi". destruct (ps !! i); [done|].
+      by rewrite option_equivI. }
     iAssert (▷ (⌜is_Some (ps !! j)⌝ ∗ (pj ⊑ (<(Recv, i)> m2))))%I with "[Hjle]"
       as "[Hj' Hjle]".
     { iNext. iDestruct (iProto_le_msg_inv_r with "Hjle") as (m) "#Heq".
-      iFrame. iRewrite "Heq" in "Hpj". rewrite !list_lookup_total_alt.
-      destruct (ps !! j); [done|].
-      iDestruct (iProto_end_message_equivI with "Hpj") as "[]". }
+      iFrame. iRewrite "Heq" in "Hpj".
+      destruct (ps !! j); [done|]. by rewrite !option_equivI. }
     iDestruct (iProto_consistent_le with "Hconsistent Hpi Hile") as "Hconsistent".
     iDestruct (iProto_consistent_le with "Hconsistent Hpj' Hjle") as "Hconsistent".
     iDestruct (iProto_consistent_step _ _ _ i j with "Hconsistent [] [] [Hm //]") as
       (p2) "[Hm2 Hconsistent]".
-    { rewrite list_lookup_total_insert_ne; [|done].
-      rewrite list_lookup_total_insert_ne; [|done].
-      rewrite list_lookup_total_insert; [done|]. admit. }
-    { rewrite list_lookup_total_insert_ne; [|done].
-      rewrite list_lookup_total_insert; [done|]. admit. }
+    { rewrite list_lookup_insert_ne; [|done].
+      rewrite list_lookup_insert_ne; [|done].
+      rewrite list_lookup_insert; [done|]. lia. }
+    { rewrite list_lookup_insert_ne; [|done].
+      rewrite list_lookup_insert; [done|]. rewrite insert_length. lia. }
     iMod (iProto_own_auth_update _ _ _ _ p2 with "Hauth Hj") as "[Hauth Hj]".
     iMod (iProto_own_auth_update _ _ _ _ p1 with "Hauth Hi") as "[Hauth Hi]".
     iIntros "!>!>". iExists p2. iFrame "Hm2".
-    iDestruct "Hi'" as %Hi. iDestruct "Hj'" as %Hj.
+    iDestruct "Hi'" as %Hi'. iDestruct "Hj'" as %Hj'.
     iSplitL "Hconsistent Hauth".
     { iExists (<[i:=p1]> (<[j:=p2]> ps)).
       iSplit.
-      { admit.
-      (* rewrite !dom_insert_lookup_L; [done..|by rewrite lookup_insert_ne].  *)}
+      { iPureIntro. rewrite !insert_length. done. } 
       iFrame. rewrite list_insert_insert.
       rewrite list_insert_commute; [|done]. rewrite list_insert_insert.
       by rewrite list_insert_commute; [|done]. }
     iSplitL "Hi"; iExists _; iFrame; iApply iProto_le_refl.
-  Admitted.
+  Qed.
 
   Lemma iProto_target γ ps_dom i a j m :
     iProto_ctx γ ps_dom -∗
@@ -1265,9 +1343,9 @@ Section proto.
       iDestruct (iProto_consistent_target with "Hps Hi") as "#$". by iFrame. }
     iSplitL "HSome".
     { iNext. iDestruct "HSome" as %Heq.
-      iPureIntro. simplify_eq. admit. }
+      iPureIntro. simplify_eq. by apply lookup_lt_is_Some_1. }
     iSplitL "Hauth Hps"; iExists _; by iFrame.
-  Admitted.
+  Qed.
 
   (* (** The instances below make it possible to use the tactics [iIntros], *)
   (* [iExist], [iSplitL]/[iSplitR], [iFrame] and [iModIntro] on [iProto_le] goals. *) *)
diff --git a/multi_actris/examples/basics.v b/multi_actris/examples/basics.v
index 9efa72bdd741c8aa00e88c4fc95c0bb39f38d361..e6b46d394fd1e033bcc423411bc64c780df3bb52 100644
--- a/multi_actris/examples/basics.v
+++ b/multi_actris/examples/basics.v
@@ -1,16 +1,15 @@
 From multi_actris.channel Require Import proofmode.
 Set Default Proof Using "Type".
 
-Definition iProto_empty {Σ} : gmap nat (iProto Σ) := ∅.
+Definition iProto_empty {Σ} : list (iProto Σ) := [].
 
 Lemma iProto_consistent_empty {Σ} :
   ⊢ iProto_consistent (@iProto_empty Σ).
-Proof. iProto_consistent_take_step. Qed.
+Proof. iProto_consistent_take_steps. Qed.
 
-Definition iProto_binary `{!heapGS Σ} : gmap nat (iProto Σ) :=
-  <[0 := (<(Send, 1) @ (x:Z)> MSG #x ; END)%proto ]>
-  (<[1 := (<(Recv, 0) @ (x:Z)> MSG #x ; END)%proto ]>
-   ∅).
+Definition iProto_binary `{!heapGS Σ} : list (iProto Σ) :=
+  [(<(Send, 1) @ (x:Z)> MSG #x ; END)%proto;
+   (<(Recv, 0) @ (x:Z)> MSG #x ; END)%proto].
 
 Lemma iProto_binary_consistent `{!heapGS Σ} :
   ⊢ iProto_consistent iProto_binary.
@@ -29,10 +28,10 @@ Definition roundtrip_prog : val :=
 Section channel.
   Context `{!heapGS Σ, !chanG Σ}.
 
-  Definition iProto_roundtrip : gmap nat (iProto Σ) :=
-     <[0 := (<(Send, 1) @ (x:Z)> MSG #x ; <(Recv, 2)> MSG #x; END)%proto ]>
-    (<[1 := (<(Recv, 0) @ (x:Z)> MSG #x ; <(Send, 2)> MSG #x; END)%proto ]>
-    (<[2 := (<(Recv, 1) @ (x:Z)> MSG #x ; <(Send, 0)> MSG #x; END)%proto ]> ∅)).
+  Definition iProto_roundtrip : list (iProto Σ) :=
+     [(<(Send, 1) @ (x:Z)> MSG #x ; <(Recv, 2)> MSG #x; END)%proto;
+      (<(Recv, 0) @ (x:Z)> MSG #x ; <(Send, 2)> MSG #x; END)%proto;
+      (<(Recv, 1) @ (x:Z)> MSG #x ; <(Send, 0)> MSG #x; END)%proto].
 
   Lemma iProto_roundtrip_consistent :
     ⊢ iProto_consistent iProto_roundtrip.
@@ -43,15 +42,12 @@ Section channel.
     {{{ True }}} roundtrip_prog #() {{{ RET #42 ; True }}}.
   Proof using chanG0 heapGS0 Σ.
     iIntros (Φ) "_ HΦ". wp_lam.
-    wp_smart_apply (new_chan_spec 3 iProto_roundtrip);
-      [lia|set_solver|iApply iProto_roundtrip_consistent|].
+    wp_smart_apply (new_chan_spec iProto_roundtrip);
+      [set_solver|iApply iProto_roundtrip_consistent|].
     iIntros (cs) "Hcs".
-    wp_smart_apply (get_chan_spec _ 0 with "Hcs"); [set_solver|].
-    iIntros (c0) "[Hc0 Hcs]".
-    wp_smart_apply (get_chan_spec _ 1 with "Hcs"); [set_solver|].
-    iIntros (c1) "[Hc1 Hcs]".
-    wp_smart_apply (get_chan_spec _ 2 with "Hcs"); [set_solver|].
-    iIntros (c2) "[Hc2 Hcs]".
+    wp_get_chan (c0) "[Hc0 Hcs]".
+    wp_get_chan  (c1) "[Hc1 Hcs]".
+    wp_get_chan  (c2) "[Hc2 Hcs]".
     wp_smart_apply (wp_fork with "[Hc1]").
     { iIntros "!>". wp_recv (x) as "_". wp_send with "[//]". done. }
     wp_smart_apply (wp_fork with "[Hc2]").
@@ -74,13 +70,13 @@ Definition roundtrip_ref_prog : val :=
 Section roundtrip_ref.
   Context `{!heapGS Σ, !chanG Σ}.
 
-  Definition iProto_roundtrip_ref : gmap nat (iProto Σ) :=
-    <[0 := (<(Send, 1) @ (l:loc) (x:Z)> MSG #l {{ (l ↦ #x)%I }} ;
-            <(Recv, 2)> MSG #() {{ l ↦ #(x+2) }} ; END)%proto]>
-   (<[1 := (<(Recv, 0) @ (l:loc) (x:Z)> MSG #l {{ (l ↦ #x)%I }} ;
-            <(Send, 2)> MSG #l {{ l ↦ #(x+1) }}; END)%proto]>
-   (<[2 := (<(Recv, 1) @ (l:loc) (x:Z)> MSG #l {{ (l ↦ #x)%I }} ;
-            <(Send, 0)> MSG #() {{ l ↦ #(x+1) }}; END)%proto]> ∅)).
+  Definition iProto_roundtrip_ref : list (iProto Σ) :=
+    [(<(Send, 1) @ (l:loc) (x:Z)> MSG #l {{ (l ↦ #x)%I }} ;
+            <(Recv, 2)> MSG #() {{ l ↦ #(x+2) }} ; END)%proto;
+     (<(Recv, 0) @ (l:loc) (x:Z)> MSG #l {{ (l ↦ #x)%I }} ;
+            <(Send, 2)> MSG #l {{ l ↦ #(x+1) }}; END)%proto;
+     (<(Recv, 1) @ (l:loc) (x:Z)> MSG #l {{ (l ↦ #x)%I }} ;
+            <(Send, 0)> MSG #() {{ l ↦ #(x+1) }}; END)%proto].
 
   Lemma iProto_roundtrip_ref_consistent :
     ⊢ iProto_consistent iProto_roundtrip_ref.
@@ -95,17 +91,12 @@ Section roundtrip_ref.
     {{{ True }}} roundtrip_ref_prog #() {{{ RET #42 ; True }}}.
   Proof using chanG0.
     iIntros (Φ) "_ HΦ". wp_lam.
-    wp_smart_apply (new_chan_spec 3 iProto_roundtrip_ref with "[]").
-    { lia. }
-    { set_solver. }
-    { iApply iProto_roundtrip_ref_consistent. }
+    wp_smart_apply (new_chan_spec iProto_roundtrip_ref);
+      [set_solver|iApply iProto_roundtrip_ref_consistent|].
     iIntros (cs) "Hcs".
-    wp_smart_apply (get_chan_spec _ 0 with "Hcs"); [set_solver|].
-    iIntros (c0) "[Hc0 Hcs]".
-    wp_smart_apply (get_chan_spec _ 1 with "Hcs"); [set_solver|].
-    iIntros (c1) "[Hc1 Hcs]".
-    wp_smart_apply (get_chan_spec _ 2 with "Hcs"); [set_solver|].
-    iIntros (c2) "[Hc2 Hcs]".
+    wp_get_chan (c0) "[Hc0 Hcs]".
+    wp_get_chan (c1) "[Hc1 Hcs]".
+    wp_get_chan (c2) "[Hc2 Hcs]".
     wp_smart_apply (wp_fork with "[Hc1]").
     { iIntros "!>".
       wp_recv (l x) as "Hl". wp_load. wp_store. by wp_send with "[$Hl]". }
@@ -188,10 +179,10 @@ Section roundtrip_ref_rec.
                 (iProto_roundtrip_ref_rec3_aux iProto_roundtrip_ref_rec3).
   Proof. apply proto_unfold_eq, (fixpoint_unfold _). Qed.
 
-  Definition iProto_roundtrip_ref_rec : gmap nat (iProto Σ) :=
-    <[0 := iProto_roundtrip_ref_rec1]>
-   (<[1 := iProto_roundtrip_ref_rec2]>
-   (<[2 := iProto_roundtrip_ref_rec3]> ∅)).
+  Definition iProto_roundtrip_ref_rec : list (iProto Σ) :=
+    [iProto_roundtrip_ref_rec1;
+     iProto_roundtrip_ref_rec2;
+     iProto_roundtrip_ref_rec3].
 
   Lemma iProto_roundtrip_ref_rec_consistent :
     ⊢ iProto_consistent iProto_roundtrip_ref_rec.
@@ -210,7 +201,6 @@ Section roundtrip_ref_rec.
     iIntros "Hloc". iSplit; [done|].
     replace (x + 1 + 1)%Z with (x+2)%Z by lia. iFrame.
     rewrite -iProto_roundtrip_ref_rec2_unfold.
-    do 2 clean_map 0. do 2 clean_map 1. do 2 clean_map 2.
     iApply "IH".
   Qed.
 
@@ -218,17 +208,12 @@ Section roundtrip_ref_rec.
     {{{ True }}} roundtrip_ref_rec_prog #() {{{ RET #42 ; True }}}.
   Proof using chanG0.
     iIntros (Φ) "_ HΦ". wp_lam.
-    wp_smart_apply (new_chan_spec 3 iProto_roundtrip_ref_rec with "[]").
-    { lia. }
-    { set_solver. }
-    { iApply iProto_roundtrip_ref_rec_consistent. }
+    wp_smart_apply (new_chan_spec iProto_roundtrip_ref_rec);
+      [set_solver|iApply iProto_roundtrip_ref_rec_consistent|].
     iIntros (cs) "Hcs".
-    wp_smart_apply (get_chan_spec _ 0 with "Hcs"); [set_solver|].
-    iIntros (c0) "[Hc0 Hcs]".
-    wp_smart_apply (get_chan_spec _ 1 with "Hcs"); [set_solver|].
-    iIntros (c1) "[Hc1 Hcs]".
-    wp_smart_apply (get_chan_spec _ 2 with "Hcs"); [set_solver|].
-    iIntros (c2) "[Hc2 Hcs]".
+    wp_get_chan (c0) "[Hc0 Hcs]". 
+    wp_get_chan (c1) "[Hc1 Hcs]".
+    wp_get_chan (c2) "[Hc2 Hcs]".
     wp_smart_apply (wp_fork with "[Hc1]").
     { iIntros "!>". wp_pure _. iLöb as "IH".
       wp_recv (l x) as "Hl". wp_load. wp_store. wp_send with "[$Hl]".
@@ -258,13 +243,13 @@ Definition smuggle_ref_prog : val :=
 Section smuggle_ref.
   Context `{!heapGS Σ, !chanG Σ}.
 
-  Definition iProto_smuggle_ref : gmap nat (iProto Σ) :=
-    <[0 := (<(Send, 1) @ (l:loc) (x:Z)> MSG #l {{ l ↦ #x }} ;
-            <(Recv,1)> MSG #() {{ l ↦ #(x+2) }} ; END)%proto]>
-   (<[1 := (<(Recv, 0) @ (v:val)> MSG v ; <(Send,2)> MSG v ;
-            <(Recv, 2)> MSG #(); <(Send,0)> MSG #() ; END)%proto]>
-   (<[2 := (<(Recv, 1) @ (l:loc) (x:Z)> MSG #l {{ l ↦ #x }} ;
-            <(Send,1)> MSG #() {{ l ↦ #(x+2) }} ; END)%proto]> ∅)).
+  Definition iProto_smuggle_ref : list (iProto Σ) :=
+    [(<(Send, 1) @ (l:loc) (x:Z)> MSG #l {{ l ↦ #x }} ;
+            <(Recv,1)> MSG #() {{ l ↦ #(x+2) }} ; END)%proto;
+     (<(Recv, 0) @ (v:val)> MSG v ; <(Send,2)> MSG v ;
+            <(Recv, 2)> MSG #(); <(Send,0)> MSG #() ; END)%proto;
+     (<(Recv, 1) @ (l:loc) (x:Z)> MSG #l {{ l ↦ #x }} ;
+            <(Send,1)> MSG #() {{ l ↦ #(x+2) }} ; END)%proto].
 
   Lemma iProto_smuggle_ref_consistent :
     ⊢ iProto_consistent iProto_smuggle_ref.
@@ -274,18 +259,13 @@ Section smuggle_ref.
     {{{ True }}} smuggle_ref_prog #() {{{ RET #42 ; True }}}.
   Proof using chanG0 heapGS0 Σ.
     iIntros (Φ) "_ HΦ". wp_lam.
-    wp_smart_apply (new_chan_spec 3 iProto_smuggle_ref with "[]").
-    { lia. }
-    { set_solver. }
-    { iApply iProto_smuggle_ref_consistent. }
+    wp_smart_apply (new_chan_spec iProto_smuggle_ref);
+      [set_solver|iApply iProto_smuggle_ref_consistent|].
     iIntros (cs) "Hcs".
     wp_pures.
-    wp_smart_apply (get_chan_spec _ 0 with "Hcs"); [set_solver|].
-    iIntros (c0) "[Hc0 Hcs]".
-    wp_smart_apply (get_chan_spec _ 1 with "Hcs"); [set_solver|].
-    iIntros (c1) "[Hc1 Hcs]".
-    wp_smart_apply (get_chan_spec _ 2 with "Hcs"); [set_solver|].
-    iIntros (c2) "[Hc2 Hcs]".
+    wp_get_chan (c0) "[Hc0 Hcs]".
+    wp_get_chan (c1) "[Hc1 Hcs]".
+    wp_get_chan (c2) "[Hc2 Hcs]".
     wp_smart_apply (wp_fork with "[Hc1]").
     { iIntros "!>". wp_recv (v) as "_". wp_send with "[//]".
       wp_recv as "_". by wp_send with "[//]". }
@@ -311,149 +291,57 @@ Section parallel.
          0
    *)
 
-  Definition iProto_parallel : gmap nat (iProto Σ) :=
-    <[0 := (<(Send, 1) @ (x1:Z)> MSG #x1 ;
+  Definition iProto_parallel : list (iProto Σ) :=
+    [(<(Send, 1) @ (x1:Z)> MSG #x1 ;
             <(Send, 2) @ (x2:Z)> MSG #x2 ;
             <(Recv, 3) @ (y1:Z)> MSG #(x1+y1);
-            <(Recv, 4) @ (y2:Z)> MSG #(x2+y2); END)%proto]>
-   (<[1 := (<(Recv, 0) @ (x:Z)> MSG #x ;
-            <(Send, 3) @ (y:Z)> MSG #(x+y); END)%proto]>
-   (<[2 := (<(Recv, 0) @ (x:Z)> MSG #x ;
-            <(Send, 4) @ (y:Z)> MSG #(x+y) ; END)%proto]>
-   (<[3 := (<(Recv, 1) @ (x:Z)> MSG #x ;
-            <(Send, 0)> MSG #x; END)%proto]>
-   (<[4 := (<(Recv, 2) @ (x:Z)> MSG #x ;
-            <(Send, 0)> MSG #x ; END)%proto]> ∅)))).
+            <(Recv, 4) @ (y2:Z)> MSG #(x2+y2); END)%proto;
+     (<(Recv, 0) @ (x:Z)> MSG #x ;
+            <(Send, 3) @ (y:Z)> MSG #(x+y); END)%proto;
+     (<(Recv, 0) @ (x:Z)> MSG #x ;
+            <(Send, 4) @ (y:Z)> MSG #(x+y) ; END)%proto;
+     (<(Recv, 1) @ (x:Z)> MSG #x ;
+            <(Send, 0)> MSG #x; END)%proto;
+     (<(Recv, 2) @ (x:Z)> MSG #x ;
+            <(Send, 0)> MSG #x ; END)%proto].
 
   Lemma iProto_parallel_consistent :
     ⊢ iProto_consistent iProto_parallel.
-  Proof.
-    rewrite /iProto_parallel.
-    iProto_consistent_take_step.
-    iIntros (x1) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-    clean_map 0. clean_map 1.
-    iProto_consistent_take_step.
-    - iIntros (x2) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-      clean_map 0. clean_map 2.
-      iProto_consistent_take_step.
-      + iIntros (y1) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 1. clean_map 3.
-        iProto_consistent_take_step.
-        * iIntros (y2) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-          clean_map 2. clean_map 4.
-          iProto_consistent_take_step.
-          iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-          clean_map 0. clean_map 3.
-          iProto_consistent_take_step.
-          iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-          iProto_consistent_take_step.
-        * iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-          clean_map 3. clean_map 0.
-          iProto_consistent_take_step.
-          iIntros (y2) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-          clean_map 2. clean_map 4.
-          iProto_consistent_take_step.
-          iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-          clean_map 4. clean_map 0.
-          iProto_consistent_take_step.
-      + iIntros (y1) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 2. clean_map 4.
-        iProto_consistent_take_step.
-        iIntros (y2) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 1. clean_map 3.
-        iProto_consistent_take_step.
-        iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 3. clean_map 0.
-        iProto_consistent_take_step.
-        iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 4. clean_map 0.
-        iProto_consistent_take_step.
-    - iIntros (y1) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-      clean_map 1. clean_map 3.
-      iProto_consistent_take_step.
-      iIntros (x2) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-      clean_map 0. clean_map 2.
-      iProto_consistent_take_step.
-      + iIntros (y2) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 2. clean_map 4.
-        iProto_consistent_take_step.
-        iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 3. clean_map 0.
-        iProto_consistent_take_step.
-        iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 4. clean_map 0.
-        iProto_consistent_take_step.
-      + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 3. clean_map 0.
-        iProto_consistent_take_step.
-        iIntros (z) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 2. clean_map 4.
-        iProto_consistent_take_step.
-        iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-        clean_map 4. clean_map 0.
-        iProto_consistent_take_step.
-  Qed.
+  Proof. rewrite /iProto_parallel. iProto_consistent_take_steps. Qed.
 
 End parallel.
 
 Section two_buyer.
   Context `{!heapGS Σ}.
 
-  Definition two_buyer_prot : gmap nat (iProto Σ) :=
-    <[0 := (<(Send, 1) @ (title:Z)> MSG #title ;
+  Definition two_buyer_prot : list (iProto Σ) :=
+    [(<(Send, 1) @ (title:Z)> MSG #title ;
             <(Recv, 1) @ (quote:Z)> MSG #quote ;
-            <(Send, 2) @ (contrib:Z)> MSG #contrib ; END)%proto]>
-   (<[1 := (<(Recv, 0) @ (title:Z)> MSG #title ;
+            <(Send, 2) @ (contrib:Z)> MSG #contrib ; END)%proto;
+     (<(Recv, 0) @ (title:Z)> MSG #title ;
             <(Send, 0) @ (quote:Z)> MSG #quote ;
             <(Send, 2)> MSG #quote ;
             <(Recv, 2) @ (b:bool)> MSG #b ;
             if b then
               <(Recv, 2) @ (address:Z)> MSG #address ;
               <(Send, 2) @ (date:Z)> MSG #date ; END
-            else END)%proto]>
-   (<[2 := (<(Recv, 1) @ (quote:Z)> MSG #quote ;
+            else END)%proto;
+     (<(Recv, 1) @ (quote:Z)> MSG #quote ;
             <(Recv, 0) @ (contrib:Z)> MSG #contrib ;
             if bool_decide (contrib >= quote/2)%Z then
               <(Send, 1)> MSG #true ;
               <(Send, 1) @ (address:Z)> MSG #address ;
               <(Recv, 1) @ (date:Z)> MSG #date ; END
             else
-              <(Send, 1)> MSG #false ; END)%proto]>
-      ∅)).
+              <(Send, 1)> MSG #false ; END)%proto].
 
   Lemma two_buyer_prot_consistent :
     ⊢ iProto_consistent two_buyer_prot.
   Proof.
-    rewrite /two_buyer_prot.
-    iProto_consistent_take_step.
-    iIntros (title) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-    clean_map 0. clean_map 1.
-    iProto_consistent_take_step.
-    iIntros (quote) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-    clean_map 0. clean_map 1.
-    iProto_consistent_take_step.
-    iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-    clean_map 1. clean_map 2.
-    iProto_consistent_take_step.
-    iIntros (contrib) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-    clean_map 0. clean_map 2.
-    case_bool_decide.
-    - iProto_consistent_take_step.
-      iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-      clean_map 2. clean_map 1.
-      iProto_consistent_take_step.
-      iIntros (address) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-      clean_map 2. clean_map 1.
-      iProto_consistent_take_step.
-      iIntros (date) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-      clean_map 2. clean_map 1.
-      iProto_consistent_take_step.
-    - iProto_consistent_take_step.
-      iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-      clean_map 2. clean_map 1.
-      iProto_consistent_take_step.
+    rewrite /two_buyer_prot. iProto_consistent_take_steps. 
+    case_bool_decide; iProto_consistent_take_steps.
   Qed.
-
+  
 End two_buyer.
 
 Section two_buyer_ref.
@@ -493,47 +381,21 @@ Section two_buyer_ref.
        END
      else END)%proto.
 
-  Definition two_buyer_ref_prot : gmap nat (iProto Σ) :=
-    <[0 := two_buyer_ref_b1_prot]>
-   (<[1 := two_buyer_ref_s_prot]>
-   (<[2 := two_buyer_ref_b2_prot]>
-      ∅)).
+  Definition two_buyer_ref_prot : list (iProto Σ) :=
+    [two_buyer_ref_b1_prot;
+     two_buyer_ref_s_prot;
+     two_buyer_ref_b2_prot].
 
+  (* TODO: Anonymous variable in this is unsatisfactory *)
   Lemma two_buyer_ref_prot_consistent :
     ⊢ iProto_consistent two_buyer_ref_prot.
   Proof.
-    rewrite /two_buyer_prot.
-    iProto_consistent_take_step.
-    iIntros (title) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-    clean_map 0. clean_map 1.
-    iProto_consistent_take_step.
-    iIntros (quote) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-    clean_map 0. clean_map 1.
-    iProto_consistent_take_step.
-    iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-    clean_map 1. clean_map 2.
-    iProto_consistent_take_step.
-    iIntros (l1 amount1 contrib) "Hl1". iExists _,_,_. iSplit; [done|]. iFrame.
-    clean_map 0. clean_map 2.
-    iProto_consistent_take_step.
-    iIntros (b) "Hl1". iExists _. iSplit; [done|]. iFrame.
-    clean_map 0. clean_map 2.
-    iProto_consistent_take_step.
-    iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-    clean_map 1. clean_map 2.
-    destruct b.
-    - iProto_consistent_take_step.
-      iIntros (l2 amount2 address) "Hl2". iExists _,_,_. iSplit; [done|]. iFrame.
-      clean_map 2. clean_map 1.
-      iProto_consistent_take_step.
-      iIntros (date) "Hl2". iExists _. iSplit; [done|]. iFrame.
-      iProto_consistent_take_step.
-    - iProto_consistent_take_step.
+    rewrite /two_buyer_prot. iProto_consistent_take_steps.
+    iNext. destruct x4; iProto_consistent_take_steps.
   Qed.
 
 End two_buyer_ref.
 
-
 Section forwarder.
   Context `{!heapGS Σ}.
 
@@ -548,36 +410,25 @@ Section forwarder.
 
    *)
 
-  Definition iProto_forwarder : gmap nat (iProto Σ) :=
-    <[0 := (<(Send, 1) @ (x:Z)> MSG #x ;
+  Definition iProto_forwarder : list (iProto Σ) :=
+    [(<(Send, 1) @ (x:Z)> MSG #x ;
             <(Send, 1) @ (b:bool)> MSG #b ;
-            <(Recv, if b then 2 else 3) > MSG #x ; END)%proto]>
-   (<[1 := (<(Recv, 0) @ (x:Z)> MSG #x ;
+            <(Recv, if b then 2 else 3) > MSG #x ; END)%proto;
+     (<(Recv, 0) @ (x:Z)> MSG #x ;
             <(Recv, 0) @ (b:bool)> MSG #b;
-            <(Send, if b then 2 else 3)> MSG #x ; END)%proto]>
-   (<[2 := (<(Recv, 1) @ (x:Z)> MSG #x ;
-            <(Send, 0)> MSG #x ; END)%proto]>
-   (<[3 := (<(Recv, 1) @ (x:Z)> MSG #x ;
-            <(Send, 0)> MSG #x ; END)%proto]> ∅))).
+            <(Send, if b then 2 else 3)> MSG #x ; END)%proto;
+     (<(Recv, 1) @ (x:Z)> MSG #x ;
+            <(Send, 0)> MSG #x ; END)%proto;
+     (<(Recv, 1) @ (x:Z)> MSG #x ;
+            <(Send, 0)> MSG #x ; END)%proto].
 
+  (* TODO: Anonymous variable in this is unsatisfactory *)
   Lemma iProto_forwarder_consistent :
     ⊢ iProto_consistent iProto_forwarder.
   Proof.
     rewrite /iProto_forwarder.
-    iProto_consistent_take_step.
-    iIntros (x) "_". iExists _. iSplit; [done|]. iSplit; [done|].
-    iProto_consistent_take_step.
-    iIntros ([]) "_".
-    - iExists _. iSplit; [done|]. iSplit; [done|].
-      iProto_consistent_take_step.
-      iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-      repeat clean_map 0. repeat clean_map 1.
-      iProto_consistent_take_steps.
-    - iExists _. iSplit; [done|]. iSplit; [done|].
-      iProto_consistent_take_step.
-      iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|].
-      repeat clean_map 0. repeat clean_map 1.
-      iProto_consistent_take_steps.
+    iProto_consistent_take_steps.
+    destruct x0; iProto_consistent_take_steps.
   Qed.
 
 End forwarder.
@@ -637,11 +488,11 @@ Section forwarder_rec.
                 (iProto_forwarder_rec_n_aux iProto_forwarder_rec_n).
   Proof. apply (fixpoint_unfold _). Qed.
 
-  Definition iProto_forwarder_rec : gmap nat (iProto Σ) :=
-    <[0 := iProto_forwarder_rec_0]>
-   (<[1 := iProto_forwarder_rec_1]>
-   (<[2 := iProto_forwarder_rec_n]>
-   (<[3 := iProto_forwarder_rec_n]>∅))).
+  Definition iProto_forwarder_rec : list (iProto Σ) :=
+    [iProto_forwarder_rec_0;
+     iProto_forwarder_rec_1;
+     iProto_forwarder_rec_n;
+     iProto_forwarder_rec_n].
 
   Lemma iProto_forwarder_rec_consistent :
     ⊢ iProto_consistent iProto_forwarder_rec.
@@ -665,7 +516,6 @@ Section forwarder_rec.
       iProto_consistent_take_step.
       iIntros "_". iSplit; [done|]. iSplit; [done|].
       repeat clean_map 1. repeat clean_map 2. repeat clean_map 0. 
-      rewrite (insert_commute _ 2 1); [|done].
       iEval (rewrite -iProto_forwarder_rec_1_unfold).
       iEval (rewrite -iProto_forwarder_rec_n_unfold).
       iEval (rewrite -iProto_forwarder_rec_n_unfold).
@@ -680,7 +530,6 @@ Section forwarder_rec.
       iProto_consistent_take_step.
       iIntros "_". iSplit; [done|]. iSplit; [done|].
       repeat clean_map 1. repeat clean_map 3. repeat clean_map 0. 
-      rewrite (insert_commute _ 3 1); [|done].
       iEval (rewrite -iProto_forwarder_rec_1_unfold).
       iEval (rewrite -iProto_forwarder_rec_n_unfold).
       iEval (rewrite -iProto_forwarder_rec_n_unfold).
diff --git a/multi_actris/examples/leader_election.v b/multi_actris/examples/leader_election.v
index cb21e823d4d481ec63a2fefc575d85f1000644e5..0a3bcff51cd0b837a3edc9bc4bd382250147a9c1 100644
--- a/multi_actris/examples/leader_election.v
+++ b/multi_actris/examples/leader_election.v
@@ -133,98 +133,54 @@ Section ring_leader_election_example.
   Definition prot_tail (i_max : nat) : iProto Σ :=
     (<(Send,0)> MSG #i_max; END)%proto.
 
-  Definition pre_prot_pool id_max : gmap nat (iProto Σ) :=
-     <[0 := (<(Recv,1) @ (id_max : nat)> MSG #id_max ;
+  Definition pre_prot_pool id_max : list (iProto Σ) :=
+     [(<(Recv,1) @ (id_max : nat)> MSG #id_max ;
              <(Recv,2)> MSG #id_max ;
              <(Recv,3)> MSG #id_max ;
-             END)%proto ]>
-    (<[1 := prot_tail id_max ]>
-    (<[2 := prot_tail id_max ]>
-    (<[3 := prot_tail id_max ]> ∅))).
+             END)%proto;
+      prot_tail id_max;
+      prot_tail id_max;
+      prot_tail id_max].
 
   Lemma pre_prot_pool_consistent id_max :
     ⊢ iProto_consistent (pre_prot_pool id_max).
   Proof. rewrite /pre_prot_pool. iProto_consistent_take_steps. Qed.
 
-  Definition prot_pool : gmap nat (iProto Σ) :=
-     <[0 := (<(Recv,1) @ (id_max : nat)> MSG #id_max ;
+  Definition prot_pool : list (iProto Σ) :=
+     [(<(Recv,1) @ (id_max : nat)> MSG #id_max ;
              <(Recv,2)> MSG #id_max ;
              <(Recv,3)> MSG #id_max ;
-             END)%proto ]>
-    (<[1 := rle_preprot 3 1 2 prot_tail ]>
-    (<[2 := rle_prot 1 2 3 prot_tail false ]>
-    (<[3 := rle_preprot 2 3 1 prot_tail ]> ∅))).
+             END)%proto;
+      rle_preprot 3 1 2 prot_tail;
+      rle_prot 1 2 3 prot_tail false;
+      rle_preprot 2 3 1 prot_tail].
 
   Lemma prot_pool_consistent : ⊢ iProto_consistent prot_pool.
   Proof.
     rewrite /prot_pool /rle_preprot.
     rewrite !rle_prot_unfold'.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    repeat clean_map 0. repeat clean_map 1.
-    repeat clean_map 2. repeat clean_map 3.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    repeat clean_map 0. repeat clean_map 1.
-    repeat clean_map 2. repeat clean_map 3.
+    iProto_consistent_take_steps.
+    case_bool_decide; try lia.
+    case_bool_decide; try lia.
     rewrite !rle_prot_unfold'.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    repeat clean_map 0. repeat clean_map 1.
-    repeat clean_map 2. repeat clean_map 3.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    repeat clean_map 0. repeat clean_map 1.
-    repeat clean_map 2. repeat clean_map 3.
+    iProto_consistent_take_steps.
+    case_bool_decide; try lia.
+    case_bool_decide; try lia.
     rewrite !rle_prot_unfold'.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    repeat clean_map 0. repeat clean_map 1.
-    repeat clean_map 2. repeat clean_map 3.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    repeat clean_map 0. repeat clean_map 1.
-    repeat clean_map 2. repeat clean_map 3.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    iProto_consistent_take_step.
-    iProto_consistent_resolve_step.
-    repeat clean_map 0. repeat clean_map 1.
-    repeat clean_map 2. repeat clean_map 3.
-    repeat (rewrite (insert_commute _ _ 3); [|lia]).
-    repeat (rewrite (insert_commute _ _ 2); [|lia]).
-    repeat (rewrite (insert_commute _ _ 1); [|lia]).
-    repeat (rewrite (insert_commute _ _ 0); [|lia]).
-    iApply pre_prot_pool_consistent.
+    iProto_consistent_take_steps.
   Qed.
 
   Lemma program_spec :
     {{{ True }}} program #() {{{ RET #(); True }}}.
   Proof. 
     iIntros (Φ) "_ HΦ". wp_lam.
-    wp_smart_apply (new_chan_spec 4 prot_pool);
-      [lia|set_solver|iApply prot_pool_consistent|].
+    wp_smart_apply (new_chan_spec prot_pool);
+      [set_solver|iApply prot_pool_consistent|].
     iIntros (cs) "Hcs".
-    wp_smart_apply (get_chan_spec _ 0 with "Hcs"); [done|].
-    iIntros (c0) "[Hc0 Hcs]".
-    wp_smart_apply (get_chan_spec _ 1 with "Hcs"); [done|].
-    iIntros (c1) "[Hc1 Hcs]".
-    wp_smart_apply (get_chan_spec _ 2 with "Hcs"); [done|].
-    iIntros (c2) "[Hc2 Hcs]".
-    wp_smart_apply (get_chan_spec _ 3 with "Hcs"); [done|].
-    iIntros (c3) "[Hc3 Hcs]".
+    wp_get_chan (c0) "[Hc0 Hcs]".
+    wp_get_chan (c1) "[Hc1 Hcs]".
+    wp_get_chan (c2) "[Hc2 Hcs]".
+    wp_get_chan (c3) "[Hc3 Hcs]".
     wp_smart_apply (wp_fork with "[Hc1]").
     { iIntros "!>". wp_smart_apply (init_spec with "Hc1").
       iIntros (i') "Hc1". by wp_send with "[//]". }