diff --git a/theories/channel/multi_proto.v b/theories/channel/multi_proto.v index c2fbacb380eb605069f03f7fb828646d8f6d39f3..878792e0dc52940555289f133c1c3f6ab5ecfba0 100644 --- a/theories/channel/multi_proto.v +++ b/theories/channel/multi_proto.v @@ -509,6 +509,8 @@ Section proto. End proto. +Instance iProto_inhabited {Σ V} : Inhabited (iProto Σ V) := populate (END). + Definition can_step {Σ V} (rec : gmap nat (iProto Σ V) → iProp Σ) (ps : gmap nat (iProto Σ V)) (i j : nat) : iProp Σ := (∀ a1 a2 m1 m2, @@ -740,795 +742,26 @@ Section proto. Implicit Types p pl pr : iProto Σ V. Implicit Types m : iMsg Σ V. - (** ** Equality *) - Lemma iProto_case p : p ≡ END ∨ ∃ a m, p ≡ <a> m. - Proof. - rewrite iProto_message_eq iProto_end_eq. - destruct (proto_case p) as [|(a&m&?)]; [by left|right]. - by exists a, (IMsg m). - Qed. - Lemma iProto_message_equivI `{!BiInternalEq SPROP} a1 a2 m1 m2 : - (<a1> m1) ≡ (<a2> m2) ⊣⊢@{SPROP} ⌜ a1 = a2 ⌠∧ - (∀ v lp, iMsg_car m1 v lp ≡ iMsg_car m2 v lp). - Proof. rewrite iProto_message_eq. apply proto_message_equivI. Qed. - - Lemma iProto_message_end_equivI `{!BiInternalEq SPROP} a m : - (<a> m) ≡ END ⊢@{SPROP} False. - Proof. rewrite iProto_message_eq iProto_end_eq. apply proto_message_end_equivI. Qed. - Lemma iProto_end_message_equivI `{!BiInternalEq SPROP} a m : - END ≡ (<a> m) ⊢@{SPROP} False. - Proof. by rewrite internal_eq_sym iProto_message_end_equivI. Qed. - - (** ** Non-expansiveness of operators *) - Global Instance iMsg_car_proper : - Proper (iMsg_equiv ==> (=) ==> (≡) ==> (≡)) (iMsg_car (Σ:=Σ) (V:=V)). - Proof. - intros m1 m2 meq v1 v2 veq p1 p2 peq. rewrite meq. - f_equiv; [ by f_equiv | done ]. - Qed. - Global Instance iMsg_car_ne n : - Proper (iMsg_dist n ==> (=) ==> (dist n) ==> (dist n)) (iMsg_car (Σ:=Σ) (V:=V)). - Proof. - intros m1 m2 meq v1 v2 veq p1 p2 peq. rewrite meq. - f_equiv; [ by f_equiv | done ]. - Qed. - - Global Instance iMsg_contractive v n : - Proper (dist n ==> dist_later n ==> dist n) (iMsg_base (Σ:=Σ) (V:=V) v). - Proof. rewrite iMsg_base_eq=> P1 P2 HP p1 p2 Hp w q /=. solve_contractive. Qed. - Global Instance iMsg_ne v : NonExpansive2 (iMsg_base (Σ:=Σ) (V:=V) v). - Proof. rewrite iMsg_base_eq=> P1 P2 HP p1 p2 Hp w q /=. solve_proper. Qed. - Global Instance iMsg_proper v : - Proper ((≡) ==> (≡) ==> (≡)) (iMsg_base (Σ:=Σ) (V:=V) v). - Proof. apply (ne_proper_2 _). Qed. - - Global Instance iMsg_exist_ne A n : - Proper (pointwise_relation _ (dist n) ==> (dist n)) (@iMsg_exist Σ V A). - Proof. rewrite iMsg_exist_eq=> m1 m2 Hm v p /=. f_equiv=> x. apply Hm. Qed. - Global Instance iMsg_exist_proper A : - Proper (pointwise_relation _ (≡) ==> (≡)) (@iMsg_exist Σ V A). - Proof. rewrite iMsg_exist_eq=> m1 m2 Hm v p /=. f_equiv=> x. apply Hm. Qed. - - Global Instance msg_tele_base (v:V) (P : iProp Σ) (p : iProto Σ V) : - MsgTele (TT:=TeleO) (MSG v {{ P }}; p) v P p. - Proof. done. Qed. - Global Instance msg_tele_exist {A} {TT : A → tele} (m : A → iMsg Σ V) tv tP tp : - (∀ x, MsgTele (TT:=TT x) (m x) (tv x) (tP x) (tp x)) → - MsgTele (TT:=TeleS TT) (∃ x, m x) tv tP tp. - Proof. intros Hm. rewrite /MsgTele /=. f_equiv=> x. apply Hm. Qed. - - Global Instance iProto_message_ne a : - NonExpansive (iProto_message (Σ:=Σ) (V:=V) a). - Proof. rewrite iProto_message_eq. solve_proper. Qed. - Global Instance iProto_message_proper a : - Proper ((≡) ==> (≡)) (iProto_message (Σ:=Σ) (V:=V) a). - Proof. apply (ne_proper _). Qed. - - Lemma iProto_message_equiv {TT1 TT2 : tele} a1 a2 - (m1 m2 : iMsg Σ V) - (v1 : TT1 -t> V) (v2 : TT2 -t> V) - (P1 : TT1 -t> iProp Σ) (P2 : TT2 -t> iProp Σ) - (prot1 : TT1 -t> iProto Σ V) (prot2 : TT2 -t> iProto Σ V) : - MsgTele m1 v1 P1 prot1 → - MsgTele m2 v2 P2 prot2 → - ⌜ a1 = a2 ⌠-∗ - (■∀.. (xs1 : TT1), tele_app P1 xs1 -∗ - ∃.. (xs2 : TT2), ⌜tele_app v1 xs1 = tele_app v2 xs2⌠∗ - â–· (tele_app prot1 xs1 ≡ tele_app prot2 xs2) ∗ - tele_app P2 xs2) -∗ - (■∀.. (xs2 : TT2), tele_app P2 xs2 -∗ - ∃.. (xs1 : TT1), ⌜tele_app v1 xs1 = tele_app v2 xs2⌠∗ - â–· (tele_app prot1 xs1 ≡ tele_app prot2 xs2) ∗ - tele_app P1 xs1) -∗ - (<a1> m1) ≡ (<a2> m2). - Proof. - iIntros (Hm1 Hm2 Heq) "#Heq1 #Heq2". - unfold MsgTele in Hm1. rewrite Hm1. clear Hm1. - unfold MsgTele in Hm2. rewrite Hm2. clear Hm2. - rewrite iProto_message_eq proto_message_equivI. - iSplit; [ done | ]. - iIntros (v p'). - do 2 rewrite iMsg_texist_exist. - rewrite iMsg_base_eq /=. - iApply prop_ext. - iIntros "!>". iSplit. - - iDestruct 1 as (xs1 Hveq1) "[Hrec1 HP1]". - iDestruct ("Heq1" with "HP1") as (xs2 Hveq2) "[Hrec2 HP2]". - iExists xs2. rewrite -Hveq1 Hveq2. - iSplitR; [ done | ]. iSplitR "HP2"; [ | done ]. - iRewrite -"Hrec1". iApply later_equivI. iIntros "!>". by iRewrite "Hrec2". - - iDestruct 1 as (xs2 Hveq2) "[Hrec2 HP2]". - iDestruct ("Heq2" with "HP2") as (xs1 Hveq1) "[Hrec1 HP1]". - iExists xs1. rewrite -Hveq2 Hveq1. - iSplitR; [ done | ]. iSplitR "HP1"; [ | done ]. - iRewrite -"Hrec2". iApply later_equivI. iIntros "!>". by iRewrite "Hrec1". - Qed. - - (** Helpers *) - Lemma iMsg_map_base f v P p : - NonExpansive f → - iMsg_map f (MSG v {{ P }}; p) ≡ (MSG v {{ P }}; f p)%msg. - Proof. - rewrite iMsg_base_eq. intros ? v' p'; simpl. iSplit. - - iDestruct 1 as (p'') "[(->&Hp&$) Hp']". iSplit; [done|]. - iRewrite "Hp'". iIntros "!>". by iRewrite "Hp". - - iIntros "(->&Hp'&$)". iExists p. iRewrite -"Hp'". auto. - Qed. - Lemma iMsg_map_exist {A} f (m : A → iMsg Σ V) : - iMsg_map f (∃ x, m x) ≡ (∃ x, iMsg_map f (m x))%msg. - Proof. - rewrite iMsg_exist_eq. intros v' p'; simpl. iSplit. - - iDestruct 1 as (p'') "[H Hp']". iDestruct "H" as (x) "H"; auto. - - iDestruct 1 as (x p'') "[Hm Hp']". auto. - Qed. - - (** ** Dual *) - Global Instance iProto_dual_ne : NonExpansive (@iProto_dual Σ V). - Proof. rewrite iProto_dual_eq. solve_proper. Qed. - Global Instance iProto_dual_proper : Proper ((≡) ==> (≡)) (@iProto_dual Σ V). - Proof. apply (ne_proper _). Qed. - Global Instance iProto_dual_if_ne d : NonExpansive (@iProto_dual_if Σ V d). - Proof. solve_proper. Qed. - Global Instance iProto_dual_if_proper d : - Proper ((≡) ==> (≡)) (@iProto_dual_if Σ V d). - Proof. apply (ne_proper _). Qed. - - Lemma iProto_dual_end : iProto_dual (Σ:=Σ) (V:=V) END ≡ END. - Proof. - rewrite iProto_end_eq iProto_dual_eq /iProto_dual_def /iProto_map_app. - etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. - by rewrite proto_elim_end. - Qed. - Lemma iProto_dual_message a m : - iProto_dual (<a> m) ≡ <action_dual a> iMsg_dual m. - Proof. - rewrite iProto_message_eq iProto_dual_eq /iProto_dual_def /iProto_map_app. - etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. - rewrite /iProto_message_def. rewrite ->proto_elim_message; [done|]. - intros a' m1 m2 Hm; f_equiv; solve_proper. - Qed. - Lemma iMsg_dual_base v P p : - iMsg_dual (MSG v {{ P }}; p) ≡ (MSG v {{ P }}; iProto_dual p)%msg. - Proof. apply iMsg_map_base, _. Qed. - Lemma iMsg_dual_exist {A} (m : A → iMsg Σ V) : - iMsg_dual (∃ x, m x) ≡ (∃ x, iMsg_dual (m x))%msg. - Proof. apply iMsg_map_exist. Qed. - - Global Instance iProto_dual_involutive : Involutive (≡) (@iProto_dual Σ V). - Proof. - intros p. apply (uPred.internal_eq_soundness (M:=iResUR Σ)). - iLöb as "IH" forall (p). destruct (iProto_case p) as [->|(a&m&->)]. - { by rewrite !iProto_dual_end. } - rewrite !iProto_dual_message involutive. - iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p') "/=". - iApply prop_ext; iIntros "!>"; iSplit. - - iDestruct 1 as (pd) "[H Hp']". iRewrite "Hp'". - iDestruct "H" as (pdd) "[H #Hpd]". - iApply (internal_eq_rewrite); [|done]; iIntros "!>". - iRewrite "Hpd". by iRewrite ("IH" $! pdd). - - iIntros "H". destruct (Next_uninj p') as [p'' Hp']. iExists _. - rewrite Hp'. iSplitL; [by auto|]. iIntros "!>". by iRewrite ("IH" $! p''). - Qed. - - (** ** Append *) - Global Instance iProto_app_end_l : LeftId (≡) END (@iProto_app Σ V). - Proof. - intros p. rewrite iProto_end_eq iProto_app_eq /iProto_app_def /iProto_map_app. - etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. - by rewrite proto_elim_end. - Qed. - Lemma iProto_app_message a m p2 : (<a> m) <++> p2 ≡ <a> m <++> p2. - Proof. - rewrite iProto_message_eq iProto_app_eq /iProto_app_def /iProto_map_app. - etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. - rewrite /iProto_message_def. rewrite ->proto_elim_message; [done|]. - intros a' m1 m2 Hm. f_equiv; solve_proper. - Qed. - - Global Instance iProto_app_ne : NonExpansive2 (@iProto_app Σ V). - Proof. - assert (∀ n, Proper (dist n ==> (=) ==> dist n) (@iProto_app Σ V)). - { intros n p1 p1' Hp1 p2 p2' <-. by rewrite iProto_app_eq /iProto_app_def Hp1. } - assert (Proper ((≡) ==> (=) ==> (≡)) (@iProto_app Σ V)). - { intros p1 p1' Hp1 p2 p2' <-. by rewrite iProto_app_eq /iProto_app_def Hp1. } - intros n p1 p1' Hp1 p2 p2' Hp2. rewrite Hp1. clear p1 Hp1. - revert p1'. induction (lt_wf n) as [n _ IH]; intros p1. - destruct (iProto_case p1) as [->|(a&m&->)]. - { by rewrite !left_id. } - rewrite !iProto_app_message. f_equiv=> v p' /=. do 4 f_equiv. - f_contractive. apply IH; eauto using dist_le with lia. - Qed. - Global Instance iProto_app_proper : Proper ((≡) ==> (≡) ==> (≡)) (@iProto_app Σ V). - Proof. apply (ne_proper_2 _). Qed. - - Lemma iMsg_app_base v P p1 p2 : - ((MSG v {{ P }}; p1) <++> p2)%msg ≡ (MSG v {{ P }}; p1 <++> p2)%msg. - Proof. apply: iMsg_map_base. Qed. - Lemma iMsg_app_exist {A} (m : A → iMsg Σ V) p2 : - ((∃ x, m x) <++> p2)%msg ≡ (∃ x, m x <++> p2)%msg. - Proof. apply iMsg_map_exist. Qed. - - Global Instance iProto_app_end_r : RightId (≡) END (@iProto_app Σ V). - Proof. - intros p. apply (uPred.internal_eq_soundness (M:=iResUR Σ)). - iLöb as "IH" forall (p). destruct (iProto_case p) as [->|(a&m&->)]. - { by rewrite left_id. } - rewrite iProto_app_message. - iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p') "/=". - iApply prop_ext; iIntros "!>". iSplit. - - iDestruct 1 as (p1') "[H Hp']". iRewrite "Hp'". - iApply (internal_eq_rewrite); [|done]; iIntros "!>". - by iRewrite ("IH" $! p1'). - - iIntros "H". destruct (Next_uninj p') as [p'' Hp']. iExists p''. - rewrite Hp'. iSplitL; [by auto|]. iIntros "!>". by iRewrite ("IH" $! p''). - Qed. - Global Instance iProto_app_assoc : Assoc (≡) (@iProto_app Σ V). - Proof. - intros p1 p2 p3. apply (uPred.internal_eq_soundness (M:=iResUR Σ)). - iLöb as "IH" forall (p1). destruct (iProto_case p1) as [->|(a&m&->)]. - { by rewrite !left_id. } - rewrite !iProto_app_message. - iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p123) "/=". - iApply prop_ext; iIntros "!>". iSplit. - - iDestruct 1 as (p1') "[H #Hp']". - iExists (p1' <++> p2). iSplitL; [by auto|]. - iRewrite "Hp'". iIntros "!>". iApply "IH". - - iDestruct 1 as (p12) "[H #Hp123]". iDestruct "H" as (p1') "[H #Hp12]". - iExists p1'. iFrame "H". iRewrite "Hp123". - iIntros "!>". iRewrite "Hp12". by iRewrite ("IH" $! p1'). - Qed. - - Lemma iProto_dual_app p1 p2 : - iProto_dual (p1 <++> p2) ≡ iProto_dual p1 <++> iProto_dual p2. - Proof. - apply (uPred.internal_eq_soundness (M:=iResUR Σ)). - iLöb as "IH" forall (p1 p2). destruct (iProto_case p1) as [->|(a&m&->)]. - { by rewrite iProto_dual_end !left_id. } - rewrite iProto_dual_message !iProto_app_message iProto_dual_message /=. - iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p12) "/=". - iApply prop_ext; iIntros "!>". iSplit. - - iDestruct 1 as (p12d) "[H #Hp12]". iDestruct "H" as (p1') "[H #Hp12d]". - iExists (iProto_dual p1'). iSplitL; [by auto|]. - iRewrite "Hp12". iIntros "!>". iRewrite "Hp12d". iApply "IH". - - iDestruct 1 as (p1') "[H #Hp12]". iDestruct "H" as (p1d) "[H #Hp1']". - iExists (p1d <++> p2). iSplitL; [by auto|]. - iRewrite "Hp12". iIntros "!>". iRewrite "Hp1'". by iRewrite ("IH" $! p1d p2). - Qed. - - Lemma iProto_consistent_flip p1 p2 : - iProto_consistent p2 p1 -∗ - iProto_consistent p1 p2. - Proof. - iLöb as "IH" forall (p1 p2). - iIntros "Hprot". - rewrite iProto_consistent_unfold /iProto_consistent_pre. - rewrite iProto_consistent_unfold /iProto_consistent_pre. - iIntros (a1 a2 m1 m2) "Hm1 Hm2". - iDestruct ("Hprot" with "Hm2 Hm1") as "Hprot". - destruct a1, a2; [done| | |done]. - - iIntros (v p1') "Hm1". - iDestruct ("Hprot" with "Hm1") as (p2') "[Hprot Hrec]". - iExists p2'. iFrame. by iApply "IH". - - iIntros (v p2') "Hm2". - iDestruct ("Hprot" with "Hm2") as (p1') "[Hprot Hrec]". - iExists p1'. iFrame. by iApply "IH". - Qed. - - Lemma iProto_consistent_step m1 m2 v p1 : - iProto_consistent (<!> m1) (<?> m2) -∗ + Lemma iProto_consistent_step ps m1 m2 i j v p1 : + ps !!! i ≡ (<(Send j)> m1) -∗ + ps !!! j ≡ (<(Recv i)> m2) -∗ + iProto_consistent ps -∗ iMsg_car m1 v (Next p1) -∗ - ∃ p2, iMsg_car m2 v (Next p2) ∗ â–· iProto_consistent p1 p2. + ∃ p2, iMsg_car m2 v (Next p2) ∗ + â–· iProto_consistent (<[i := p1]>(<[j := p2]>ps)). Proof. - iIntros "Hprot Hm1". + iIntros "#Hi #Hj Hprot Hm1". rewrite iProto_consistent_unfold /iProto_consistent_pre. - iDestruct ("Hprot" with "[//] [//] Hm1") as (p2) "[Hm2 Hprot]". + iDestruct ("Hprot" $!i j with "[] [] Hi Hj Hm1") as (p2) "[Hm2 Hprot]". + { rewrite !lookup_total_alt elem_of_dom. + destruct (ps !! i) eqn: Hi; [done|]=> /=. + by rewrite iProto_end_message_equivI. } + { rewrite !lookup_total_alt elem_of_dom. + destruct (ps !! j) eqn: Hj; [done|]=> /=. + by rewrite iProto_end_message_equivI. } iExists p2. iFrame. Qed. - Lemma iProto_consistent_dual p : - ⊢ iProto_consistent p (iProto_dual p). - Proof. - iLöb as "IH" forall (p). - rewrite iProto_consistent_unfold. - iIntros (a1 a2 m1 m2) "#Hmeq1 #Hmeq2". - destruct a1, a2; [done| | |done]. - - iIntros (v p') "Hm1". - iRewrite "Hmeq1" in "Hmeq2". - rewrite iProto_dual_message. simpl. - rewrite iProto_message_equivI. - iDestruct "Hmeq2" as (_) "Hmeq2". - iSpecialize ("Hmeq2" $! v (Next (iProto_dual p'))). - iExists (iProto_dual p'). - iRewrite -"Hmeq2". - iSplitL; [|iNext; by iApply "IH"]. - simpl. iExists p'. iFrame. done. - - iIntros (v p') "Hm2". - iRewrite "Hmeq1" in "Hmeq2". - rewrite iProto_dual_message. simpl. - rewrite iProto_message_equivI. - iDestruct "Hmeq2" as (_) "Hmeq2". - iSpecialize ("Hmeq2" $! v (Next p')). - iRewrite -"Hmeq2" in "Hm2". - simpl. - iDestruct "Hm2" as (p'') "[Hm2 Hmeq']". - iExists p''. iFrame. - iNext. iRewrite "Hmeq'". - iApply "IH". - Qed. - - Lemma iProto_consistent_le_l pl pl' pr : - iProto_consistent pl pr -∗ pl ⊑ pl' -∗ iProto_consistent pl' pr. - Proof. iIntros "Hprot Hle". by iApply "Hle". Qed. - Lemma iProto_consistent_le_r pl pr pr' : - iProto_consistent pl pr -∗ pr ⊑ pr' -∗ iProto_consistent pl pr'. - Proof. - iIntros "H Hle". iApply iProto_consistent_flip. - iApply "Hle". by iApply iProto_consistent_flip. - Qed. - - Lemma iProto_le_refl p : ⊢ p ⊑ p. - Proof. iIntros (p') "$". Qed. - - Lemma iProto_le_end : ⊢ END ⊑ (END : iProto Σ V). - Proof. iApply iProto_le_refl. Qed. - - (* Lemma iProto_le_send m1 m2 : *) - (* (∀ v p2', iMsg_car m2 v (Next p2') -∗ ∃ p1', *) - (* â–· (p1' ⊑ p2') ∗ iMsg_car m1 v (Next p1')) -∗ *) - (* (<!> m1) ⊑ (<!> m2). *) - (* Proof. *) - (* iLöb as "IH" forall (m1 m2). *) - (* iIntros "Hle". *) - (* repeat (unfold iProto_le at 3). *) - (* iIntros (p) "Hprot". *) - (* repeat rewrite iProto_consistent_unfold; unfold iProto_consistent_pre. *) - (* iSplit; [iDestruct "Hprot" as "[Hprot _]"|iDestruct "Hprot" as "[_ Hprot]"]. *) - (* { iIntros (a m) "H". *) - (* iDestruct (iProto_message_equivI with "H") as (Heq) "{H} #Hmeq"; subst. *) - (* iIntros (v p') "Hm". *) - (* iSpecialize ("Hprot" with "[//]"). *) - (* iSpecialize ("Hmeq" $! v (Next p')). iRewrite -"Hmeq" in "Hm". *) - (* iSpecialize ("Hle" $! _ _ with "Hm"). iDestruct "Hle" as (p'') "[Hle Hm]". *) - (* iApply "Hle". iApply "Hprot". iApply "Hm". } *) - (* { iIntros (a m) "H". *) - (* iSpecialize ("Hprot" $! _ _ with "H"). *) - (* destruct a. *) - (* - iIntros (v p') "Hm". *) - (* iApply ("IH" with "[Hle]"). *) - (* { iNext. iIntros (v' p'') "Hm". *) - (* iSpecialize ("Hle" with "Hm"). *) - (* iDestruct "Hle" as (p''') "[Hle Hm]". *) - (* iExists p'''. iSplitR "Hm"; [iApply "Hle" | iApply "Hm"]. } *) - (* iApply "Hprot". iApply "Hm". *) - (* - iIntros (v vs Heq); subst. *) - (* iSpecialize ("Hprot" $! _ _ eq_refl). *) - (* iDestruct "Hprot" as (p') "[Hm Hprot]". *) - (* iExists (p'). iFrame "Hm". *) - (* iApply ("IH" with "[Hle] [Hprot]"); [|iApply "Hprot"]. *) - (* iNext. iIntros (v' p'') "Hm". *) - (* iSpecialize ("Hle" with "Hm"). iDestruct "Hle" as (p''') "[Hle Hm]". *) - (* iExists p'''; iSplitR "Hm"; [iApply "Hle" |iApply "Hm"]. } *) - (* Qed. *) - - (* Lemma iProto_le_recv m1 m2 : *) - (* (∀ v p1', iMsg_car m1 v (Next p1') -∗ ∃ p2', *) - (* â–· (p1' ⊑ p2') ∗ iMsg_car m2 v (Next p2')) -∗ *) - (* (<?> m1) ⊑ (<?> m2). *) - (* Proof. *) - (* iIntros "H" (vsl vsr p) "Hprot". *) - (* iLöb as "IH" forall (vsl vsr m2 p). *) - (* iEval (rewrite iProto_consistent_unfold). *) - (* rewrite /iProto_consistent_pre. *) - (* rewrite iProto_consistent_unfold /iProto_consistent_pre. *) - (* iSplit; last first. *) - (* { *) - (* iDestruct "Hprot" as "[_ Hprot]". *) - (* iIntros ([] m) "Heq". *) - (* { iIntros (v vs) "Hm". *) - (* iDestruct ("Hprot" with "Heq Hm") as "Hprot". *) - (* iIntros "!>". *) - (* by iApply ("IH" with "H"). } *) - (* { iIntros (v vs) "Hm". *) - (* iDestruct ("Hprot" with "Heq Hm") as (p') "[Hm Hprot]". *) - (* iExists p'. iFrame. *) - (* iIntros "!>". *) - (* by iApply ("IH" with "H"). } *) - (* } *) - (* destruct vsr. *) - (* { iIntros (a m) "Heq". rewrite iProto_message_equivI. *) - (* iDestruct "Heq" as (<-) "Heq". *) - (* iIntros (v vs Heq). done. } *) - (* iIntros (a m) "Heq". rewrite iProto_message_equivI. *) - (* iDestruct "Heq" as (<-) "Heq". *) - (* iIntros (w vs Heq). *) - (* assert (v = w) as <- by set_solver. *) - (* assert (vsr = vs) as <- by set_solver. *) - (* iDestruct "Hprot" as "[Hprot _]". *) - (* iDestruct ("Hprot" with "[//] [//]") as (p') "[Hm Hprot]". *) - (* iDestruct ("H" with "Hm") as (p'') "[Hle H]". *) - (* iExists p''. *) - (* iSpecialize ("Heq" $! v (Next p'')). iRewrite -"Heq". *) - (* iFrame. iIntros "!>". *) - (* iApply (iProto_consistent_le_l with "Hprot Hle"). *) - (* Qed. *) - - (* Lemma iProto_le_base a v P p1 p2 : *) - (* â–· (p1 ⊑ p2) -∗ *) - (* (<a> MSG v {{ P }}; p1) ⊑ (<a> MSG v {{ P }}; p2). *) - (* Proof. *) - (* rewrite iMsg_base_eq. iIntros "H". destruct a. *) - (* - iApply iProto_le_send. iIntros (v' p') "(->&Hp&$)". *) - (* iExists p1. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp". *) - (* - iApply iProto_le_recv. iIntros (v' p') "(->&Hp&$)". *) - (* iExists p2. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp". *) - (* Qed. *) - - (* Lemma iProto_le_end_inv_l p : p ⊑ END -∗ (p ≡ END). *) - (* Proof. *) - (* rewrite iProto_le_unfold. iIntros "[[Hp _]|H] //". *) - (* iDestruct "H" as (a1 a2 m1 m2) "(_ & Heq & _)". *) - (* by iDestruct (iProto_end_message_equivI with "Heq") as %[]. *) - (* Qed. *) - - (* Lemma iProto_le_end_inv_r p : END ⊑ p -∗ (p ≡ END). *) - (* Proof. *) - (* rewrite iProto_le_unfold. iIntros "[[_ Hp]|H] //". *) - (* iDestruct "H" as (a1 a2 m1 m2) "(Heq & _ & _)". *) - (* iDestruct (iProto_end_message_equivI with "Heq") as %[]. *) - (* Qed. *) - - (* Lemma iProto_le_send_inv p1 m2 : *) - (* p1 ⊑ (<!> m2) -∗ ∃ a1 m1, *) - (* (p1 ≡ <a1> m1) ∗ *) - (* match a1 with *) - (* | Send => ∀ v p2', *) - (* iMsg_car m2 v (Next p2') -∗ ∃ p1', *) - (* â–· (p1' ⊑ p2') ∗ iMsg_car m1 v (Next p1') *) - (* | Recv => ∀ v1 v2 p1' p2', *) - (* iMsg_car m1 v1 (Next p1') -∗ iMsg_car m2 v2 (Next p2') -∗ ∃ pt, *) - (* â–· (p1' ⊑ <!> MSG v2; pt) ∗ â–· ((<?> MSG v1; pt) ⊑ p2') *) - (* end. *) - (* Proof. *) - (* rewrite iProto_le_unfold. iIntros "[[_ Heq]|H]". *) - (* { iDestruct (iProto_message_end_equivI with "Heq") as %[]. } *) - (* iDestruct "H" as (a1 a2 m1 m2') "(Hp1 & Hp2 & H)". *) - (* iExists _, _; iSplit; [done|]. destruct a1, a2. *) - (* - iIntros (v p2') "Hm2". *) - (* iDestruct (iProto_message_equivI with "Hp2") as (_) "{Hp2} #Hm". *) - (* iApply "H". by iRewrite -("Hm" $! v (Next p2')). *) - (* - done. *) - (* - iIntros (v1 v2 p1' p2') "Hm1 Hm2". *) - (* iDestruct (iProto_message_equivI with "Hp2") as (_) "{Hp2} #Hm". *) - (* iApply ("H" with "Hm1"). by iRewrite -("Hm" $! v2 (Next p2')). *) - (* - iDestruct (iProto_message_equivI with "Hp2") as ([=]) "_". *) - (* Qed. *) - (* Lemma iProto_le_send_send_inv m1 m2 v p2' : *) - (* (<!> m1) ⊑ (<!> m2) -∗ *) - (* iMsg_car m2 v (Next p2') -∗ ∃ p1', â–· (p1' ⊑ p2') ∗ iMsg_car m1 v (Next p1'). *) - (* Proof. *) - (* iIntros "H Hm2". iDestruct (iProto_le_send_inv with "H") as (a m1') "[Hm1 H]". *) - (* iDestruct (iProto_message_equivI with "Hm1") as (<-) "Hm1". *) - (* iDestruct ("H" with "Hm2") as (p1') "[Hle Hm]". *) - (* iRewrite -("Hm1" $! v (Next p1')) in "Hm". auto with iFrame. *) - (* Qed. *) - (* Lemma iProto_le_recv_send_inv m1 m2 v1 v2 p1' p2' : *) - (* (<?> m1) ⊑ (<!> m2) -∗ *) - (* iMsg_car m1 v1 (Next p1') -∗ iMsg_car m2 v2 (Next p2') -∗ ∃ pt, *) - (* â–· (p1' ⊑ <!> MSG v2; pt) ∗ â–· ((<?> MSG v1; pt) ⊑ p2'). *) - (* Proof. *) - (* iIntros "H Hm1 Hm2". iDestruct (iProto_le_send_inv with "H") as (a m1') "[Hm H]". *) - (* iDestruct (iProto_message_equivI with "Hm") as (<-) "{Hm} #Hm". *) - (* iApply ("H" with "[Hm1] Hm2"). by iRewrite -("Hm" $! v1 (Next p1')). *) - (* Qed. *) - - (* Lemma iProto_le_recv_inv p1 m2 : *) - (* p1 ⊑ (<?> m2) -∗ ∃ m1, *) - (* (p1 ≡ <?> m1) ∗ *) - (* ∀ v p1', iMsg_car m1 v (Next p1') -∗ ∃ p2', *) - (* â–· (p1' ⊑ p2') ∗ iMsg_car m2 v (Next p2'). *) - (* Proof. *) - (* rewrite iProto_le_unfold. iIntros "[[_ Heq]|H]". *) - (* { iDestruct (iProto_message_end_equivI with "Heq") as %[]. } *) - (* iDestruct "H" as (a1 a2 m1 m2') "(Hp1 & Hp2 & H)". *) - (* iExists m1. *) - (* iDestruct (iProto_message_equivI with "Hp2") as (<-) "{Hp2} #Hm2". *) - (* destruct a1; [done|]. iSplit; [done|]. *) - (* iIntros (v p1') "Hm". iDestruct ("H" with "Hm") as (p2') "[Hle Hm]". *) - (* iExists p2'. iIntros "{$Hle}". by iRewrite ("Hm2" $! v (Next p2')). *) - (* Qed. *) - (* Lemma iProto_le_recv_recv_inv m1 m2 v p1' : *) - (* (<?> m1) ⊑ (<?> m2) -∗ *) - (* iMsg_car m1 v (Next p1') -∗ ∃ p2', â–· (p1' ⊑ p2') ∗ iMsg_car m2 v (Next p2'). *) - (* Proof. *) - (* iIntros "H Hm2". iDestruct (iProto_le_recv_inv with "H") as (m1') "[Hm1 H]". *) - (* iApply "H". iDestruct (iProto_message_equivI with "Hm1") as (_) "Hm1". *) - (* by iRewrite -("Hm1" $! v (Next p1')). *) - (* Qed. *) - - (* Lemma iProto_le_refl p : ⊢ p ⊑ p. *) - (* Proof. *) - (* iLöb as "IH" forall (p). destruct (iProto_case p) as [->|([]&m&->)]. *) - (* - iApply iProto_le_end. *) - (* - iApply iProto_le_send. auto 10 with iFrame. *) - (* - iApply iProto_le_recv. auto 10 with iFrame. *) - (* Qed. *) - - Lemma iProto_le_trans p1 p2 p3 : p1 ⊑ p2 -∗ p2 ⊑ p3 -∗ p1 ⊑ p3. - Proof. - iIntros "H1 H2" (p) "Hprot". - iApply "H2". iApply "H1". done. - Qed. - - (* Lemma iProto_le_payload_elim_l a m v P p : *) - (* (P -∗ (<?> MSG v; p) ⊑ (<a> m)) -∗ *) - (* (<?> MSG v {{ P }}; p) ⊑ (<a> m). *) - (* Proof. *) - (* rewrite iMsg_base_eq. iIntros "H". destruct a. *) - (* - iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= (#?&#?&HP) Hm2 /=". *) - (* iApply (iProto_le_recv_send_inv with "(H HP)"); simpl; auto. *) - (* - iApply iProto_le_recv. iIntros (v' p') "(->&Hp&HP)". *) - (* iApply (iProto_le_recv_recv_inv with "(H HP)"); simpl; auto. *) - (* Qed. *) - (* Lemma iProto_le_payload_elim_r a m v P p : *) - (* (P -∗ (<a> m) ⊑ (<!> MSG v; p)) -∗ *) - (* (<a> m) ⊑ (<!> MSG v {{ P }}; p). *) - (* Proof. *) - (* rewrite iMsg_base_eq. iIntros "H". destruct a. *) - (* - iApply iProto_le_send. iIntros (v' p') "(->&Hp&HP)". *) - (* iApply (iProto_le_send_send_inv with "(H HP)"); simpl; auto. *) - (* - iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= Hm1 (->&#?&HP) /=". *) - (* iApply (iProto_le_recv_send_inv with "(H HP) Hm1"); simpl; auto. *) - (* Qed. *) - (* Lemma iProto_le_payload_intro_l v P p : *) - (* P -∗ (<!> MSG v {{ P }}; p) ⊑ (<!> MSG v; p). *) - (* Proof. *) - (* rewrite iMsg_base_eq. *) - (* iIntros "HP". iApply iProto_le_send. iIntros (v' p') "(->&Hp&_) /=". *) - (* iExists p'. iSplitR; [iApply iProto_le_refl|]. auto. *) - (* Qed. *) - (* Lemma iProto_le_payload_intro_r v P p : *) - (* P -∗ (<?> MSG v; p) ⊑ (<?> MSG v {{ P }}; p). *) - (* Proof. *) - (* rewrite iMsg_base_eq. *) - (* iIntros "HP". iApply iProto_le_recv. iIntros (v' p') "(->&Hp&_) /=". *) - (* iExists p'. iSplitR; [iApply iProto_le_refl|]. auto. *) - (* Qed. *) - - (* Lemma iProto_le_exist_elim_l {A} (m1 : A → iMsg Σ V) a m2 : *) - (* (∀ x, (<?> m1 x) ⊑ (<a> m2)) -∗ *) - (* (<? x> m1 x) ⊑ (<a> m2). *) - (* Proof. *) - (* rewrite iMsg_exist_eq. iIntros "H". destruct a. *) - (* - iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= Hm1 Hm2 /=". *) - (* iDestruct "Hm1" as (x) "Hm1". *) - (* iApply (iProto_le_recv_send_inv with "H Hm1 Hm2"). *) - (* - iApply iProto_le_recv. iIntros (v p1') "/=". iDestruct 1 as (x) "Hm". *) - (* by iApply (iProto_le_recv_recv_inv with "H"). *) - (* Qed. *) - - (* Lemma iProto_le_exist_elim_l_inhabited `{!Inhabited A} (m : A → iMsg Σ V) p : *) - (* (∀ x, (<?> m x) ⊑ p) -∗ *) - (* (<? x> m x) ⊑ p. *) - (* Proof. *) - (* rewrite iMsg_exist_eq. iIntros "H". *) - (* destruct (iProto_case p) as [Heq | [a [m' Heq]]]. *) - (* - unshelve iSpecialize ("H" $!inhabitant); first by apply _. *) - (* rewrite Heq. *) - (* iDestruct (iProto_le_end_inv_l with "H") as "H". *) - (* rewrite iProto_end_eq iProto_message_eq. *) - (* iDestruct (proto_message_end_equivI with "H") as "[]". *) - (* - iEval (rewrite Heq). destruct a. *) - (* + iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= Hm1 Hm2 /=". *) - (* iDestruct "Hm1" as (x) "Hm1". *) - (* iSpecialize ("H" $! x). rewrite Heq. *) - (* iApply (iProto_le_recv_send_inv with "H Hm1 Hm2"). *) - (* + iApply iProto_le_recv. iIntros (v p1') "/=". iDestruct 1 as (x) "Hm". *) - (* iSpecialize ("H" $! x). rewrite Heq. *) - (* by iApply (iProto_le_recv_recv_inv with "H"). *) - (* Qed. *) - - (* Lemma iProto_le_exist_elim_r {A} a m1 (m2 : A → iMsg Σ V) : *) - (* (∀ x, (<a> m1) ⊑ (<!> m2 x)) -∗ *) - (* (<a> m1) ⊑ (<! x> m2 x). *) - (* Proof. *) - (* rewrite iMsg_exist_eq. iIntros "H". destruct a. *) - (* - iApply iProto_le_send. iIntros (v p2'). iDestruct 1 as (x) "Hm". *) - (* by iApply (iProto_le_send_send_inv with "H"). *) - (* - iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= Hm1". *) - (* iDestruct 1 as (x) "Hm2". *) - (* iApply (iProto_le_recv_send_inv with "H Hm1 Hm2"). *) - (* Qed. *) - (* Lemma iProto_le_exist_elim_r_inhabited `{Hinh : Inhabited A} p (m : A → iMsg Σ V) : *) - (* (∀ x, p ⊑ (<!> m x)) -∗ *) - (* p ⊑ (<! x> m x). *) - (* Proof. *) - (* rewrite iMsg_exist_eq. iIntros "H". *) - (* destruct (iProto_case p) as [Heq | [a [m' Heq]]]. *) - (* - unshelve iSpecialize ("H" $!inhabitant); first by apply _. *) - (* rewrite Heq. *) - (* iDestruct (iProto_le_end_inv_r with "H") as "H". *) - (* rewrite iProto_end_eq iProto_message_eq. *) - (* iDestruct (proto_message_end_equivI with "H") as "[]". *) - (* - iEval (rewrite Heq). destruct a. *) - (* + iApply iProto_le_send. iIntros (v p2'). iDestruct 1 as (x) "Hm". *) - (* iSpecialize ("H" $! x). rewrite Heq. *) - (* by iApply (iProto_le_send_send_inv with "H"). *) - (* + iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= Hm1". *) - (* iDestruct 1 as (x) "Hm2". *) - (* iSpecialize ("H" $! x). rewrite Heq. *) - (* iApply (iProto_le_recv_send_inv with "H Hm1 Hm2"). *) - (* Qed. *) - (* Lemma iProto_le_exist_intro_l {A} (m : A → iMsg Σ V) a : *) - (* ⊢ (<! x> m x) ⊑ (<!> m a). *) - (* Proof. *) - (* rewrite iMsg_exist_eq. iApply iProto_le_send. iIntros (v p') "Hm /=". *) - (* iExists p'. iSplitR; last by auto. iApply iProto_le_refl. *) - (* Qed. *) - (* Lemma iProto_le_exist_intro_r {A} (m : A → iMsg Σ V) a : *) - (* ⊢ (<?> m a) ⊑ (<? x> m x). *) - (* Proof. *) - (* rewrite iMsg_exist_eq. iApply iProto_le_recv. iIntros (v p') "Hm /=". *) - (* iExists p'. iSplitR; last by auto. iApply iProto_le_refl. *) - (* Qed. *) - - (* Lemma iProto_le_texist_elim_l {TT : tele} (m1 : TT → iMsg Σ V) a m2 : *) - (* (∀ x, (<?> m1 x) ⊑ (<a> m2)) -∗ *) - (* (<?.. x> m1 x) ⊑ (<a> m2). *) - (* Proof. *) - (* iIntros "H". iInduction TT as [|T TT] "IH"; simpl; [done|]. *) - (* iApply iProto_le_exist_elim_l; iIntros (x). *) - (* iApply "IH". iIntros (xs). iApply "H". *) - (* Qed. *) - (* Lemma iProto_le_texist_elim_r {TT : tele} a m1 (m2 : TT → iMsg Σ V) : *) - (* (∀ x, (<a> m1) ⊑ (<!> m2 x)) -∗ *) - (* (<a> m1) ⊑ (<!.. x> m2 x). *) - (* Proof. *) - (* iIntros "H". iInduction TT as [|T TT] "IH"; simpl; [done|]. *) - (* iApply iProto_le_exist_elim_r; iIntros (x). *) - (* iApply "IH". iIntros (xs). iApply "H". *) - (* Qed. *) - - (* Lemma iProto_le_texist_intro_l {TT : tele} (m : TT → iMsg Σ V) x : *) - (* ⊢ (<!.. x> m x) ⊑ (<!> m x). *) - (* Proof. *) - (* induction x as [|T TT x xs IH] using tele_arg_ind; simpl. *) - (* { iApply iProto_le_refl. } *) - (* iApply iProto_le_trans; [by iApply iProto_le_exist_intro_l|]. iApply IH. *) - (* Qed. *) - (* Lemma iProto_le_texist_intro_r {TT : tele} (m : TT → iMsg Σ V) x : *) - (* ⊢ (<?> m x) ⊑ (<?.. x> m x). *) - (* Proof. *) - (* induction x as [|T TT x xs IH] using tele_arg_ind; simpl. *) - (* { iApply iProto_le_refl. } *) - (* iApply iProto_le_trans; [|by iApply iProto_le_exist_intro_r]. iApply IH. *) - (* Qed. *) - - (* Lemma iProto_le_base a v P p1 p2 : *) - (* â–· (p1 ⊑ p2) -∗ *) - (* (<a> MSG v {{ P }}; p1) ⊑ (<a> MSG v {{ P }}; p2). *) - (* Proof. *) - (* rewrite iMsg_base_eq. iIntros "H". destruct a. *) - (* - iApply iProto_le_send. iIntros (v' p') "(->&Hp&$)". *) - (* iExists p1. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp". *) - (* - iApply iProto_le_recv. iIntros (v' p') "(->&Hp&$)". *) - (* iExists p2. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp". *) - (* Qed. *) - - (* Lemma iProto_le_base_swap v1 v2 P1 P2 p : *) - (* ⊢ (<?> MSG v1 {{ P1 }}; <!> MSG v2 {{ P2 }}; p) *) - (* ⊑ (<!> MSG v2 {{ P2 }}; <?> MSG v1 {{ P1 }}; p). *) - (* Proof. *) - (* rewrite {1 3}iMsg_base_eq. iApply iProto_le_swap. *) - (* iIntros (v1' v2' p1' p2') "/= (->&#Hp1&HP1) (->&#Hp2&HP2)". iExists p. *) - (* iSplitL "HP2". *) - (* - iIntros "!>". iRewrite -"Hp1". by iApply iProto_le_payload_intro_l. *) - (* - iIntros "!>". iRewrite -"Hp2". by iApply iProto_le_payload_intro_r. *) - (* Qed. *) - - (* Lemma iProto_le_dual p1 p2 : p2 ⊑ p1 -∗ iProto_dual p1 ⊑ iProto_dual p2. *) - (* Proof. *) - (* iIntros "H". iLöb as "IH" forall (p1 p2). *) - (* destruct (iProto_case p1) as [->|([]&m1&->)]. *) - (* - iDestruct (iProto_le_end_inv_l with "H") as "H". *) - (* iRewrite "H". iApply iProto_le_refl. *) - (* - iDestruct (iProto_le_send_inv with "H") as (a2 m2) "[Hp2 H]". *) - (* iRewrite "Hp2"; clear p2. iEval (rewrite !iProto_dual_message). *) - (* destruct a2; simpl. *) - (* + iApply iProto_le_recv. iIntros (v p1d). *) - (* iDestruct 1 as (p1') "[Hm1 #Hp1d]". *) - (* iDestruct ("H" with "Hm1") as (p2') "[H Hm2]". *) - (* iDestruct ("IH" with "H") as "H". iExists (iProto_dual p2'). *) - (* iSplitL "H"; [iIntros "!>"; by iRewrite "Hp1d"|]. simpl; auto. *) - (* + iApply iProto_le_swap. iIntros (v1 v2 p1d p2d). *) - (* iDestruct 1 as (p1') "[Hm1 #Hp1d]". iDestruct 1 as (p2') "[Hm2 #Hp2d]". *) - (* iDestruct ("H" with "Hm2 Hm1") as (pt) "[H1 H2]". *) - (* iDestruct ("IH" with "H1") as "H1". iDestruct ("IH" with "H2") as "H2 {IH}". *) - (* rewrite !iProto_dual_message /=. iExists (iProto_dual pt). iSplitL "H2". *) - (* * iIntros "!>". iRewrite "Hp1d". by rewrite -iMsg_dual_base. *) - (* * iIntros "!>". iRewrite "Hp2d". by rewrite -iMsg_dual_base. *) - (* - iDestruct (iProto_le_recv_inv with "H") as (m2) "[Hp2 H]". *) - (* iRewrite "Hp2"; clear p2. iEval (rewrite !iProto_dual_message /=). *) - (* iApply iProto_le_send. iIntros (v p2d). *) - (* iDestruct 1 as (p2') "[Hm2 #Hp2d]". *) - (* iDestruct ("H" with "Hm2") as (p1') "[H Hm1]". *) - (* iDestruct ("IH" with "H") as "H". iExists (iProto_dual p1'). *) - (* iSplitL "H"; [iIntros "!>"; by iRewrite "Hp2d"|]. simpl; auto. *) - (* Qed. *) - - (* Lemma iProto_le_amber_internal (p1 p2 : iProto Σ V → iProto Σ V) *) - (* `{Contractive p1, Contractive p2}: *) - (* â–¡ (∀ rec1 rec2, â–· (rec1 ⊑ rec2) → p1 rec1 ⊑ p2 rec2) -∗ *) - (* fixpoint p1 ⊑ fixpoint p2. *) - (* Proof. *) - (* iIntros "#H". iLöb as "IH". *) - (* iEval (rewrite (fixpoint_unfold p1)). *) - (* iEval (rewrite (fixpoint_unfold p2)). *) - (* iApply "H". iApply "IH". *) - (* Qed. *) - (* Lemma iProto_le_amber_external (p1 p2 : iProto Σ V → iProto Σ V) *) - (* `{Contractive p1, Contractive p2}: *) - (* (∀ rec1 rec2, (⊢ rec1 ⊑ rec2) → ⊢ p1 rec1 ⊑ p2 rec2) → *) - (* ⊢ fixpoint p1 ⊑ fixpoint p2. *) - (* Proof. *) - (* intros IH. apply fixpoint_ind. *) - (* - by intros p1' p2' -> ?. *) - (* - exists (fixpoint p2). iApply iProto_le_refl. *) - (* - intros p' ?. rewrite (fixpoint_unfold p2). by apply IH. *) - (* - apply bi.limit_preserving_entails; [done|solve_proper]. *) - (* Qed. *) - - (* Lemma iProto_le_dual_l p1 p2 : iProto_dual p2 ⊑ p1 -∗ iProto_dual p1 ⊑ p2. *) - (* Proof. *) - (* iIntros "H". iEval (rewrite -(involutive iProto_dual p2)). *) - (* by iApply iProto_le_dual. *) - (* Qed. *) - (* Lemma iProto_le_dual_r p1 p2 : p2 ⊑ iProto_dual p1 -∗ p1 ⊑ iProto_dual p2. *) - (* Proof. *) - (* iIntros "H". iEval (rewrite -(involutive iProto_dual p1)). *) - (* by iApply iProto_le_dual. *) - (* Qed. *) - - (* Lemma iProto_le_app p1 p2 p3 p4 : *) - (* p1 ⊑ p2 -∗ p3 ⊑ p4 -∗ p1 <++> p3 ⊑ p2 <++> p4. *) - (* Proof. *) - (* iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3 p4). *) - (* destruct (iProto_case p2) as [->|([]&m2&->)]. *) - (* - iDestruct (iProto_le_end_inv_l with "H1") as "H1". *) - (* iRewrite "H1". by rewrite !left_id. *) - (* - iDestruct (iProto_le_send_inv with "H1") as (a1 m1) "[Hp1 H1]". *) - (* iRewrite "Hp1"; clear p1. rewrite !iProto_app_message. destruct a1; simpl. *) - (* + iApply iProto_le_send. iIntros (v p24). *) - (* iDestruct 1 as (p2') "[Hm2 #Hp24]". *) - (* iDestruct ("H1" with "Hm2") as (p1') "[H1 Hm1]". *) - (* iExists (p1' <++> p3). iSplitR "Hm1"; [|by simpl; eauto]. *) - (* iIntros "!>". iRewrite "Hp24". by iApply ("IH" with "H1"). *) - (* + iApply iProto_le_swap. iIntros (v1 v2 p13 p24). *) - (* iDestruct 1 as (p1') "[Hm1 #Hp13]". iDestruct 1 as (p2') "[Hm2 #Hp24]". *) - (* iSpecialize ("H1" with "Hm1 Hm2"). *) - (* iDestruct "H1" as (pt) "[H1 H1']". *) - (* iExists (pt <++> p3). iSplitL "H1". *) - (* * iIntros "!>". iRewrite "Hp13". *) - (* rewrite /= -iMsg_app_base -iProto_app_message. *) - (* iApply ("IH" with "H1"). iApply iProto_le_refl. *) - (* * iIntros "!>". iRewrite "Hp24". *) - (* rewrite /= -iMsg_app_base -iProto_app_message. *) - (* iApply ("IH" with "H1' H2"). *) - (* - iDestruct (iProto_le_recv_inv with "H1") as (m1) "[Hp1 H1]". *) - (* iRewrite "Hp1"; clear p1. rewrite !iProto_app_message. iApply iProto_le_recv. *) - (* iIntros (v p13). iDestruct 1 as (p1') "[Hm1 #Hp13]". *) - (* iDestruct ("H1" with "Hm1") as (p2'') "[H1 Hm2]". *) - (* iExists (p2'' <++> p4). iSplitR "Hm2"; [|by simpl; eauto]. *) - (* iIntros "!>". iRewrite "Hp13". by iApply ("IH" with "H1"). *) - (* Qed. *) - - (** ** Lemmas about the auxiliary definitions and invariants *) - Global Instance iProto_app_recvs_ne vs : - NonExpansive (iProto_app_recvs (Σ:=Σ) (V:=V) vs). - Proof. induction vs; solve_proper. Qed. - Global Instance iProto_app_recvs_proper vs : - Proper ((≡) ==> (≡)) (iProto_app_recvs (Σ:=Σ) (V:=V) vs). - Proof. induction vs; solve_proper. Qed. - Global Instance iProto_own_frag_ne γ s : NonExpansive (iProto_own_frag γ s). Proof. solve_proper. Qed. @@ -1549,101 +782,101 @@ Section proto. by rewrite own_op. Qed. - Global Instance iProto_own_ne γ s : NonExpansive (iProto_own γ s). - Proof. solve_proper. Qed. - Global Instance iProto_own_proper γ s : Proper ((≡) ==> (≡)) (iProto_own γ s). - Proof. apply (ne_proper _). Qed. + (* Global Instance iProto_own_ne γ s : NonExpansive (iProto_own γ s). *) + (* Proof. solve_proper. Qed. *) + (* Global Instance iProto_own_proper γ s : Proper ((≡) ==> (≡)) (iProto_own γ s). *) + (* Proof. apply (ne_proper _). Qed. *) - Lemma iProto_own_le γ s p1 p2 : - iProto_own γ s p1 -∗ â–· (p1 ⊑ p2) -∗ iProto_own γ s p2. - Proof. - iDestruct 1 as (p1') "[Hle H]". iIntros "Hle'". - iExists p1'. iFrame "H". by iApply (iProto_le_trans with "Hle"). - Qed. + (* Lemma iProto_own_le γ s p1 p2 : *) + (* iProto_own γ s p1 -∗ â–· (p1 ⊑ p2) -∗ iProto_own γ s p2. *) + (* Proof. *) + (* iDestruct 1 as (p1') "[Hle H]". iIntros "Hle'". *) + (* iExists p1'. iFrame "H". by iApply (iProto_le_trans with "Hle"). *) + (* Qed. *) - Lemma iProto_init p : - ⊢ |==> ∃ γ, - iProto_ctx γ ∗ iProto_own γ Left p ∗ iProto_own γ Right (iProto_dual p). - Proof. - iMod (own_alloc (â—E (Next p) â‹… â—¯E (Next p))) as (lγ) "[Hâ—l Hâ—¯l]". - { by apply excl_auth_valid. } - iMod (own_alloc (â—E (Next (iProto_dual p)) â‹… - â—¯E (Next (iProto_dual p)))) as (rγ) "[Hâ—r Hâ—¯r]". - { by apply excl_auth_valid. } - pose (ProtName lγ rγ) as γ. iModIntro. iExists γ. iSplitL "Hâ—l Hâ—r". - { iExists p, (iProto_dual p). iFrame. iApply iProto_consistent_dual. } - iSplitL "Hâ—¯l"; iExists _; iFrame; iApply iProto_le_refl. - Qed. + (* Lemma iProto_init p : *) + (* ⊢ |==> ∃ γ, *) + (* iProto_ctx γ ∗ iProto_own γ Left p ∗ iProto_own γ Right (iProto_dual p). *) + (* Proof. *) + (* iMod (own_alloc (â—E (Next p) â‹… â—¯E (Next p))) as (lγ) "[Hâ—l Hâ—¯l]". *) + (* { by apply excl_auth_valid. } *) + (* iMod (own_alloc (â—E (Next (iProto_dual p)) â‹… *) + (* â—¯E (Next (iProto_dual p)))) as (rγ) "[Hâ—r Hâ—¯r]". *) + (* { by apply excl_auth_valid. } *) + (* pose (ProtName lγ rγ) as γ. iModIntro. iExists γ. iSplitL "Hâ—l Hâ—r". *) + (* { iExists p, (iProto_dual p). iFrame. iApply iProto_consistent_dual. } *) + (* iSplitL "Hâ—¯l"; iExists _; iFrame; iApply iProto_le_refl. *) + (* Qed. *) - Definition side_dual s := - match s with - | Left => Right - | Right => Left - end. + (* Definition side_dual s := *) + (* match s with *) + (* | Left => Right *) + (* | Right => Left *) + (* end. *) - Lemma iProto_step_l γ m1 m2 p1 v : - iProto_ctx γ -∗ iProto_own γ Left (<!> m1) -∗ iProto_own γ Right (<?> m2) -∗ - iMsg_car m1 v (Next p1) ==∗ - â–· ∃ p2, iMsg_car m2 v (Next p2) ∗ â–· iProto_ctx γ ∗ - iProto_own γ Left p1 ∗ iProto_own γ Right p2. - Proof. - iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hconsistent)". - iDestruct 1 as (pl') "[Hlel Hâ—¯l]". - iDestruct 1 as (pr') "[Hler Hâ—¯r]". - iIntros "Hm". - iDestruct (iProto_own_auth_agree with "Hâ—l Hâ—¯l") as "#Hpl". - iDestruct (iProto_own_auth_agree with "Hâ—r Hâ—¯r") as "#Hpr". - iAssert (â–· (pl ⊑ <!> m1))%I - with "[Hlel]" as "{Hpl} Hlel"; first (iNext; by iRewrite "Hpl"). - iAssert (â–· (pr ⊑ <?> m2))%I - with "[Hler]" as "{Hpr} Hler"; first (iNext; by iRewrite "Hpr"). - iDestruct (iProto_consistent_le_l with "Hconsistent Hlel") as "Hconsistent". - iDestruct (iProto_consistent_le_r with "Hconsistent Hler") as "Hconsistent". - iDestruct (iProto_consistent_step with "Hconsistent [Hm //]") as - (p2) "[Hm2 Hconsistent]". - iMod (iProto_own_auth_update _ _ _ _ p1 with "Hâ—l Hâ—¯l") as "[Hâ—l Hâ—¯l]". - iMod (iProto_own_auth_update _ _ _ _ p2 with "Hâ—r Hâ—¯r") as "[Hâ—r Hâ—¯r]". - iIntros "!>!>". - iExists p2. iFrame. - iSplitL "Hconsistent Hâ—l Hâ—r". - - iExists _, _. iFrame. - - iSplitL "Hâ—¯l". - + iExists _. iFrame. iApply iProto_le_refl. - + iExists _. iFrame. iApply iProto_le_refl. - Qed. - - Lemma iProto_step_r γ m1 m2 p2 v : - iProto_ctx γ -∗ iProto_own γ Left (<?> m1) -∗ iProto_own γ Right (<!> m2) -∗ - iMsg_car m2 v (Next p2) ==∗ - â–· ∃ p1, iMsg_car m1 v (Next p1) ∗ â–· iProto_ctx γ ∗ - iProto_own γ Left p1 ∗ iProto_own γ Right p2. - Proof. - iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hconsistent)". - iDestruct 1 as (pl') "[Hlel Hâ—¯l]". - iDestruct 1 as (pr') "[Hler Hâ—¯r]". - iIntros "Hm". - iDestruct (iProto_own_auth_agree with "Hâ—l Hâ—¯l") as "#Hpl". - iDestruct (iProto_own_auth_agree with "Hâ—r Hâ—¯r") as "#Hpr". - iAssert (â–· (pl ⊑ <?> m1))%I - with "[Hlel]" as "{Hpl} Hlel"; first (iNext; by iRewrite "Hpl"). - iAssert (â–· (pr ⊑ <!> m2))%I - with "[Hler]" as "{Hpr} Hler"; first (iNext; by iRewrite "Hpr"). - iDestruct (iProto_consistent_le_l with "Hconsistent Hlel") as "Hconsistent". - iDestruct (iProto_consistent_le_r with "Hconsistent Hler") as "Hconsistent". - iDestruct (iProto_consistent_flip with "Hconsistent") as - "Hconsistent". - iDestruct (iProto_consistent_step with "Hconsistent [Hm //]") as - (p1) "[Hm1 Hconsistent]". - iMod (iProto_own_auth_update _ _ _ _ p1 with "Hâ—l Hâ—¯l") as "[Hâ—l Hâ—¯l]". - iMod (iProto_own_auth_update _ _ _ _ p2 with "Hâ—r Hâ—¯r") as "[Hâ—r Hâ—¯r]". - iIntros "!>!>". - iExists p1. iFrame. - iSplitL "Hconsistent Hâ—l Hâ—r". - - iExists _, _. iFrame. iApply iProto_consistent_flip. iFrame. - - iSplitL "Hâ—¯l". - + iExists _. iFrame. iApply iProto_le_refl. - + iExists _. iFrame. iApply iProto_le_refl. - Qed. + (* Lemma iProto_step_l γ m1 m2 p1 v : *) + (* iProto_ctx γ -∗ iProto_own γ Left (<!> m1) -∗ iProto_own γ Right (<?> m2) -∗ *) + (* iMsg_car m1 v (Next p1) ==∗ *) + (* â–· ∃ p2, iMsg_car m2 v (Next p2) ∗ â–· iProto_ctx γ ∗ *) + (* iProto_own γ Left p1 ∗ iProto_own γ Right p2. *) + (* Proof. *) + (* iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hconsistent)". *) + (* iDestruct 1 as (pl') "[Hlel Hâ—¯l]". *) + (* iDestruct 1 as (pr') "[Hler Hâ—¯r]". *) + (* iIntros "Hm". *) + (* iDestruct (iProto_own_auth_agree with "Hâ—l Hâ—¯l") as "#Hpl". *) + (* iDestruct (iProto_own_auth_agree with "Hâ—r Hâ—¯r") as "#Hpr". *) + (* iAssert (â–· (pl ⊑ <!> m1))%I *) + (* with "[Hlel]" as "{Hpl} Hlel"; first (iNext; by iRewrite "Hpl"). *) + (* iAssert (â–· (pr ⊑ <?> m2))%I *) + (* with "[Hler]" as "{Hpr} Hler"; first (iNext; by iRewrite "Hpr"). *) + (* iDestruct (iProto_consistent_le_l with "Hconsistent Hlel") as "Hconsistent". *) + (* iDestruct (iProto_consistent_le_r with "Hconsistent Hler") as "Hconsistent". *) + (* iDestruct (iProto_consistent_step with "Hconsistent [Hm //]") as *) + (* (p2) "[Hm2 Hconsistent]". *) + (* iMod (iProto_own_auth_update _ _ _ _ p1 with "Hâ—l Hâ—¯l") as "[Hâ—l Hâ—¯l]". *) + (* iMod (iProto_own_auth_update _ _ _ _ p2 with "Hâ—r Hâ—¯r") as "[Hâ—r Hâ—¯r]". *) + (* iIntros "!>!>". *) + (* iExists p2. iFrame. *) + (* iSplitL "Hconsistent Hâ—l Hâ—r". *) + (* - iExists _, _. iFrame. *) + (* - iSplitL "Hâ—¯l". *) + (* + iExists _. iFrame. iApply iProto_le_refl. *) + (* + iExists _. iFrame. iApply iProto_le_refl. *) + (* Qed. *) + + (* Lemma iProto_step_r γ m1 m2 p2 v : *) + (* iProto_ctx γ -∗ iProto_own γ Left (<?> m1) -∗ iProto_own γ Right (<!> m2) -∗ *) + (* iMsg_car m2 v (Next p2) ==∗ *) + (* â–· ∃ p1, iMsg_car m1 v (Next p1) ∗ â–· iProto_ctx γ ∗ *) + (* iProto_own γ Left p1 ∗ iProto_own γ Right p2. *) + (* Proof. *) + (* iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hconsistent)". *) + (* iDestruct 1 as (pl') "[Hlel Hâ—¯l]". *) + (* iDestruct 1 as (pr') "[Hler Hâ—¯r]". *) + (* iIntros "Hm". *) + (* iDestruct (iProto_own_auth_agree with "Hâ—l Hâ—¯l") as "#Hpl". *) + (* iDestruct (iProto_own_auth_agree with "Hâ—r Hâ—¯r") as "#Hpr". *) + (* iAssert (â–· (pl ⊑ <?> m1))%I *) + (* with "[Hlel]" as "{Hpl} Hlel"; first (iNext; by iRewrite "Hpl"). *) + (* iAssert (â–· (pr ⊑ <!> m2))%I *) + (* with "[Hler]" as "{Hpr} Hler"; first (iNext; by iRewrite "Hpr"). *) + (* iDestruct (iProto_consistent_le_l with "Hconsistent Hlel") as "Hconsistent". *) + (* iDestruct (iProto_consistent_le_r with "Hconsistent Hler") as "Hconsistent". *) + (* iDestruct (iProto_consistent_flip with "Hconsistent") as *) + (* "Hconsistent". *) + (* iDestruct (iProto_consistent_step with "Hconsistent [Hm //]") as *) + (* (p1) "[Hm1 Hconsistent]". *) + (* iMod (iProto_own_auth_update _ _ _ _ p1 with "Hâ—l Hâ—¯l") as "[Hâ—l Hâ—¯l]". *) + (* iMod (iProto_own_auth_update _ _ _ _ p2 with "Hâ—r Hâ—¯r") as "[Hâ—r Hâ—¯r]". *) + (* iIntros "!>!>". *) + (* iExists p1. iFrame. *) + (* iSplitL "Hconsistent Hâ—l Hâ—r". *) + (* - iExists _, _. iFrame. iApply iProto_consistent_flip. iFrame. *) + (* - iSplitL "Hâ—¯l". *) + (* + iExists _. iFrame. iApply iProto_le_refl. *) + (* + iExists _. iFrame. iApply iProto_le_refl. *) + (* Qed. *) (* (** The instances below make it possible to use the tactics [iIntros], *) (* [iExist], [iSplitL]/[iSplitR], [iFrame] and [iModIntro] on [iProto_le] goals. *) *) @@ -1718,7 +951,7 @@ Section proto. End proto. -Typeclasses Opaque iProto_ctx iProto_own. +(* Typeclasses Opaque iProto_ctx iProto_own. *) -Global Hint Extern 0 (environments.envs_entails _ (?x ⊑ ?y)) => - first [is_evar x; fail 1 | is_evar y; fail 1|iApply iProto_le_refl] : core. +(* Global Hint Extern 0 (environments.envs_entails _ (?x ⊑ ?y)) => *) +(* first [is_evar x; fail 1 | is_evar y; fail 1|iApply iProto_le_refl] : core. *)