diff --git a/theories/logrel/subtyping.v b/theories/logrel/subtyping.v index 47a5941408d7a28768cac6c725c668ca4f45eae6..4e33d931118b7f6e646fd7aa1cec55fcb3c1e994 100644 --- a/theories/logrel/subtyping.v +++ b/theories/logrel/subtyping.v @@ -321,6 +321,61 @@ Section subtype. Proof. apply lsty_le_dual_message. Qed. Lemma lsty_le_dual_recv A S : ⊢ lsty_dual (<??> A; S) <s:> (<!!> A; lsty_dual S). Proof. apply lsty_le_dual_message. Qed. + + Lemma lsty_le_dual_choice a (Ss : gmap Z (lsty Σ)) : + ⊢ lsty_dual (lsty_choice a Ss) <s:> lsty_choice (action_dual a) (lsty_dual <$> Ss). + Proof. + iSplit. + - iIntros "!>". + rewrite /lsty_dual iProto_dual_message_tele /lsty_choice /=. + destruct a. + + iApply iProto_le_recv. + iIntros "!>" (x) "%". + iExists _. + iSplit; first done. iSplit. + * by rewrite lookup_fmap fmap_is_Some. + * destruct a as [S HSs]=> /=. + rewrite lookup_total_alt lookup_total_alt lookup_fmap HSs. + iApply iProto_le_refl. + + iApply iProto_le_send. + iIntros "!>" (x) "%". + iExists _. + iSplit; first done. iSplit. + * rewrite lookup_fmap in a. rewrite ->fmap_is_Some in a. done. + * destruct a as [S HSs]=> /=. + rewrite lookup_total_alt lookup_total_alt HSs /=. + rewrite lookup_fmap in HSs. + apply fmap_Some_1 in HSs as [S' [-> ->]]. + iApply iProto_le_refl. + - iIntros "!>". + rewrite /lsty_dual iProto_dual_message_tele /lsty_choice /=. + destruct a. + + iApply iProto_le_recv. + iIntros "!>" (x) "%". iExists _. + iSplit; first done. iSplit. + * rewrite lookup_fmap in a. rewrite ->fmap_is_Some in a. done. + * destruct a as [S HSs]=> /=. + rewrite lookup_total_alt lookup_total_alt HSs /=. + rewrite lookup_fmap in HSs. + apply fmap_Some_1 in HSs as [S' [-> ->]]. + iApply iProto_le_refl. + + iApply iProto_le_send. + iIntros "!>" (x) "%". iExists _. + iSplit; first done. iSplit. + * by rewrite lookup_fmap fmap_is_Some. + * destruct a as [S HSs]=> /=. + rewrite lookup_total_alt lookup_total_alt lookup_fmap HSs. + iApply iProto_le_refl. + Qed. + + Lemma lsty_le_dual_select (Ss : gmap Z (lsty Σ)) : + ⊢ lsty_dual (lsty_select Ss) <s:> lsty_branch (lsty_dual <$> Ss). + Proof. iApply lsty_le_dual_choice. Qed. + + Lemma lsty_le_dual_branch (Ss : gmap Z (lsty Σ)) : + ⊢ lsty_dual (lsty_branch Ss) <s:> lsty_select (lsty_dual <$> Ss). + Proof. iApply lsty_le_dual_choice. Qed. + Lemma lsty_le_dual_end : ⊢ lsty_dual (Σ:=Σ) END <s:> END. Proof. rewrite /lsty_dual iProto_dual_end=> /=. apply lsty_bi_le_refl. Qed.