diff --git a/theories/channel/multi_channel.v b/theories/channel/multi_channel.v index 590820f5779270211741e8f3f59a76906ad435a5..c5cc7158b9e913bf1aefc702a3bd9bb7b464fd60 100644 --- a/theories/channel/multi_channel.v +++ b/theories/channel/multi_channel.v @@ -111,7 +111,7 @@ Definition iProto_pointsto_def `{!heapGS Σ, !chanG Σ} ∃ γ γE1 (l:loc) (i:nat) (n:nat) p', ⌜ c = (#l,#n,#i)%V ⌠∗ inv (nroot.@"ctx") (iProto_ctx γ) ∗ - ([∗list] j ↦ _ ∈ replicate n (), + ([∗list] j ↦ _ ∈ replicate n (), ∃ γE2 γt1 γt2, inv (nroot.@"p") (chan_inv γ γE1 γt1 i j (l +â‚— (pos n i j))) ∗ inv (nroot.@"p") (chan_inv γ γE2 γt2 j i (l +â‚— (pos n j i)))) ∗ @@ -136,7 +136,7 @@ Definition chan_pool `{!heapGS Σ, !chanG Σ} (∀ p, ⌜ps !! i = Some p⌠-∗ own (γEs !!! i) (â—E (Next p)) ∗ own (γEs !!! i) (â—¯E (Next p)) ∗ - iProto_own γ i p) ∗ + iProto_own γ i p) ∗ [∗ list] j ↦ _ ∈ replicate n (), ∃ γt1 γt2, inv (nroot.@"p") (chan_inv γ (γEs !!! i) γt1 i j (l +â‚— (pos n i j))) ∗ @@ -170,13 +170,13 @@ Section channel. iInduction n as [|n] "IHn". { done. } replace (S n) with (n + 1) by lia. - rewrite !replicate_add. + rewrite !replicate_add. simpl. iDestruct "H" as "[H1 H2]". iSplitL "H1". { by iApply "IHn". } simpl. rewrite !replicate_length. iFrame. Qed. - + Lemma array_to_matrix_pre l n m v : l ↦∗ replicate (n * m) v -∗ [∗ list] i ↦ _ ∈ replicate n (), @@ -192,7 +192,7 @@ Section channel. iDestruct "Hl" as "[H1 H2]". iDestruct ("IHn" with "H1") as "H1". iFrame. - simpl. + simpl. rewrite Nat.add_0_r. rewrite !replicate_length. replace (Z.of_nat (n * m)) with (Z.of_nat n * Z.of_nat m)%Z by lia. @@ -215,7 +215,7 @@ Section channel. iApply (big_sepL_impl with "H"). iIntros "!>" (j ? HSome) "Hl". rewrite /pos. - rewrite Loc.add_assoc. + rewrite Loc.add_assoc. replace (Z.of_nat i * Z.of_nat n + Z.of_nat j)%Z with (Z.of_nat (i * n + j))%Z by lia. apply lookup_replicate in HSome as [-> _]. done. @@ -224,46 +224,48 @@ Section channel. (** ** Specifications of [send] and [recv] *) Lemma new_chan_spec (n:nat) (ps:gmap nat (iProto Σ)) : 0 < n → - (∀ i, i < n ↔ is_Some (ps !! i)) → (* TODO: Weaken this! *) - (* n = (size (dom ps)) → *) + dom ps = list_to_set $ seq 0 n → (* TODO: Consider using [set_eq] instead *) {{{ iProto_consistent ps }}} new_chan #n {{{ cs, RET cs; chan_pool cs ps }}}. Proof. - iIntros (Hle HSome Φ) "Hps HΦ". wp_lam. + iIntros (Hle Hdom Φ) "Hps HΦ". wp_lam. wp_smart_apply wp_allocN; [lia|done|]. iIntros (l) "[Hl _]". iMod (iProto_init with "Hps") as (γ) "[Hps Hps']". wp_pures. iApply "HΦ". iAssert (|==> ∃ (γEs : list gname), - ⌜length γEs = n⌠∗ + ⌜length γEs = n⌠∗ [∗ list] i ↦ _ ∈ replicate n (), own (γEs !!! i) (â—E (Next (ps !!! i))) ∗ own (γEs !!! i) (â—¯E (Next (ps !!! i))) ∗ iProto_own γ i (ps !!! i))%I with "[Hps']" as "H". { clear Hle. (* iInduction n as [|n] "IHn" forall (ps HSome Heq). *) - iInduction n as [|n] "IHn" forall (ps HSome). + iInduction n as [|n] "IHn" forall (ps Hdom). { iExists []. iModIntro. simpl. done. } - assert (n < S n) by lia. - apply HSome in H. destruct H as [p ?]. + (* assert (n < S n) by lia. *) + assert (is_Some (ps !! n)) as [p ?]. + { apply elem_of_dom. + rewrite Hdom. + rewrite list_to_set_seq. + apply elem_of_set_seq. + lia. } iDestruct (big_sepM_delete _ _ n with "Hps'") as "[Hp Hps']". { done. } iMod (own_alloc (â—E (Next p) â‹… â—¯E (Next p))) as (γE) "[Hauth Hfrag]". { apply excl_auth_valid. } iMod ("IHn" with "[] Hps'") as (γEs Hlen) "H". { iPureIntro. - intros i. - split. - - intros Hle. - rewrite lookup_delete_ne; [|lia]. - apply HSome. lia. - - intros HSome'. - destruct (decide (i=n)). - + simplify_eq. rewrite lookup_delete in HSome'. by inversion HSome'. - + rewrite lookup_delete_ne in HSome'; [|lia]. apply HSome in HSome'. - lia. - } + rewrite dom_delete_L. rewrite Hdom. + replace (S n) with (n + 1) by lia. + rewrite seq_app. + simpl. rewrite list_to_set_app_L. simpl. + rewrite right_id_L. + rewrite difference_union_distr_l_L. + rewrite difference_diag_L. rewrite right_id_L. + assert (n ∉ seq 0 n); [|set_solver]. + intros Hin%elem_of_seq. lia. } iModIntro. iExists (γEs++[γE]). replace (S n) with (n + 1) by lia. rewrite replicate_add. @@ -277,7 +279,7 @@ Section channel. assert (i < n). { by apply lookup_replicate_1 in HSome' as [? ?]. } assert (delete n ps !!! i = ps !!! i) as Heq'. - { apply lookup_total_delete_ne. lia. } + { apply lookup_total_delete_ne. lia. } rewrite Heq'. iFrame. rewrite lookup_total_app_l; [|lia]. iFrame. } simpl. rewrite replicate_length. rewrite Nat.add_0_r. @@ -308,7 +310,11 @@ Section channel. iExists _,_,_,_. iModIntro. iSplit; [done|]. iSplit. - { iPureIntro. intros. apply HSome in H. done. } + { iPureIntro. intros. + apply elem_of_dom in H. + rewrite Hdom in H. + rewrite list_to_set_seq in H. + apply elem_of_set_seq in H. lia. } iFrame "IHp". iApply (big_sepL_impl with "H"). iIntros "!>" (i ? HSome') "(Hauth & Hfrag & Hown)". @@ -349,7 +355,7 @@ Section channel. { apply Hle. eexists _. done. } iDestruct (big_sepL_delete _ _ i () with "Hl") as "[[Hi #IHs] H]". { by apply lookup_replicate. } - iDestruct ("Hi" with "[//]") as "(Hauth & Hown & Hp)". + iDestruct ("Hi" with "[//]") as "(Hauth & Hown & Hp)". iModIntro. iApply "HΦ". iSplitR "H". @@ -365,7 +371,7 @@ Section channel. iSplit. { iPureIntro. intros i' HSome'. apply Hle. assert (i ≠i'). - { intros ->. rewrite lookup_delete in HSome'. by inversion HSome'. } + { intros ->. rewrite lookup_delete in HSome'. by inversion HSome'. } rewrite lookup_delete_ne in HSome'; done. } iFrame "#∗". iApply (big_sepL_impl with "H"). @@ -380,29 +386,29 @@ Section channel. own γ (gmap_view_frag i (DfracOwn 1) (Excl' (Next p1))) -∗ own γ (gmap_view_frag i (DfracOwn 1) (Excl' (Next p2))) -∗ False. - Proof. + Proof. iIntros "Hi Hj". by iDestruct (own_prot_idx with "Hi Hj") as %Hneq. Qed. - Lemma diverge_spec P : + Lemma diverge_spec P : {{{ True }}} diverge #() {{{ RET #(); P }}}. Proof. - iIntros (Φ) "_ HΦ". + iIntros (Φ) "_ HΦ". wp_lam. iLöb as "IH". wp_pures. by iApply "IH". Qed. - Lemma guard_spec (i n : nat) : + Lemma guard_spec (i n : nat) : {{{ True }}} guard #i #n {{{ RET #(); ⌜i < n⌠}}}. Proof. - iIntros (Φ) "_ HΦ". - wp_lam. wp_pures. + iIntros (Φ) "_ HΦ". + wp_lam. wp_pures. case_bool_decide. - - wp_pures. iApply "HΦ". iPureIntro. lia. - - by wp_smart_apply diverge_spec. + - wp_pures. iApply "HΦ". iPureIntro. lia. + - by wp_smart_apply diverge_spec. Qed. - Lemma vpos_spec (n i j : nat) : + Lemma vpos_spec (n i j : nat) : {{{ True }}} vpos #n #i #j {{{ RET #(pos n i j); True }}}. Proof. iIntros (Φ) "_ HΦ". wp_lam. wp_pures. rewrite /pos. @@ -426,13 +432,13 @@ Section channel. wp_smart_apply (vpos_spec); [done|]. iIntros "_". iDestruct (big_sepL_lookup_acc with "Hls") as "[Hj _]". { by apply lookup_replicate_2. } - iDestruct "Hj" as (γE' γt γt') "#[IHl1 IHl2]". + iDestruct "Hj" as (γE' γt γt') "#[IHl1 IHl2]". wp_pures. wp_bind (Store _ _). iInv "IHl1" as "HIp". iDestruct "HIp" as "[HIp|HIp]"; last first. { iDestruct "HIp" as "[HIp|HIp]". - - iDestruct "HIp" as (? m) "(>Hl & Hown' & HIp)". + - iDestruct "HIp" as (? m) "(>Hl & Hown' & HIp)". wp_store. rewrite /iProto_own. iDestruct "Hown" as (p'') "[Hle' Hown]". @@ -449,7 +455,7 @@ Section channel. iMod (own_update_2 with "Hâ— Hâ—¯") as "[Hâ— Hâ—¯]". { apply excl_auth_update. } iModIntro. - iSplitL "Hl' Hâ— Hown Hle". + iSplitL "Hl' Hâ— Hown Hle". { iRight. iLeft. iIntros "!>". iExists _, _. iFrame. iSplitL "Hown Hle". { iApply (iProto_own_le with "Hown Hle"). } @@ -518,7 +524,7 @@ Section channel. wp_smart_apply (vpos_spec); [done|]. iIntros "_". iDestruct (big_sepL_lookup_acc with "Hls") as "[Hj _]". { by apply lookup_replicate_2. } - iDestruct "Hj" as (γE' γt γt') "#[IHl1 IHl2]". + iDestruct "Hj" as (γE' γt γt') "#[IHl1 IHl2]". wp_pures. wp_bind (Xchg _ _). iInv "IHl2" as "HIp". diff --git a/theories/channel/multi_proto_consistency_examples.v b/theories/channel/multi_proto_consistency_examples.v index ec48cd0c79923bd5e73d5ba823382ddb6d727305..78e48a65b4fb42b3f927ea717210515e7d3df187 100644 --- a/theories/channel/multi_proto_consistency_examples.v +++ b/theories/channel/multi_proto_consistency_examples.v @@ -76,10 +76,10 @@ Tactic Notation "iProto_consistent_take_step" := as "[%Heq2 Hm2']";simplify_eq; try (iClear "Hm1' Hm2'"; iExists _,_,_,_,_,_,_,_,_,_; - iSplitL; [iFrame "#"|]; - iSplitL; [iFrame "#"|]; - iSplitL; [iPureIntro; tc_solve|]; - iSplitL; [iPureIntro; tc_solve|]; + iSplitL "Hm1"; [iFrame "#"|]; + iSplitL "Hm2"; [iFrame "#"|]; + iSplit; [iPureIntro; tc_solve|]; + iSplit; [iPureIntro; tc_solve|]; simpl; iClear "Hm1 Hm2"; clear m1 m2); try (repeat (rewrite (insert_commute _ _ i); [|done]); rewrite insert_insert; @@ -96,13 +96,13 @@ Lemma iProto_consistent_empty {Σ} : ⊢ iProto_consistent (@iProto_empty Σ). Proof. iProto_consistent_take_step. Qed. -Definition iProto_binary `{!invGS Σ} (P : iProp Σ) : gmap nat (iProto Σ) := - <[0 := (<(Send, 1) @ (x:Z)> MSG #x {{ P }} ; END)%proto ]> - (<[1 := (<(Recv, 0) @ (x:Z)> MSG #x {{ P }} ; END)%proto ]> +Definition iProto_binary `{!invGS Σ} : gmap nat (iProto Σ) := + <[0 := (<(Send, 1) @ (x:Z)> MSG #x ; END)%proto ]> + (<[1 := (<(Recv, 0) @ (x:Z)> MSG #x ; END)%proto ]> ∅). -Lemma iProto_binary_consistent `{!invGS Σ} (P : iProp Σ) : - ⊢ iProto_consistent (@iProto_binary Σ invGS0 P). +Lemma iProto_binary_consistent `{!invGS Σ} : + ⊢ iProto_consistent (@iProto_binary Σ invGS0). Proof. rewrite /iProto_binary. iProto_consistent_take_step. @@ -113,8 +113,7 @@ Qed. Definition iProto_roundtrip `{!invGS Σ} : gmap nat (iProto Σ) := <[0 := (<(Send, 1) @ (x:Z)> MSG #x ; <(Recv, 2)> MSG #x; END)%proto ]> (<[1 := (<(Recv, 0) @ (x:Z)> MSG #x ; <(Send, 2)> MSG #x; END)%proto ]> - (<[2 := (<(Recv, 1) @ (x:Z)> MSG #x ; <(Send, 0)> MSG #x; END)%proto ]> - ∅)). + (<[2 := (<(Recv, 1) @ (x:Z)> MSG #x ; <(Send, 0)> MSG #x; END)%proto ]> ∅)). Lemma iProto_roundtrip_consistent `{!invGS Σ} : ⊢ iProto_consistent (@iProto_roundtrip Σ invGS0). @@ -150,7 +149,7 @@ Section channel. Proof using chanG0 heapGS0 Σ. iIntros (Φ) "_ HΦ". wp_lam. wp_smart_apply (new_chan_spec 3 iProto_roundtrip). - { intros i Hle. destruct i as [|[|[]]]; try set_solver. lia. } + { lia. } { set_solver. } { iApply iProto_roundtrip_consistent. } iIntros (cs) "Hcs". @@ -219,7 +218,7 @@ Section proof. Proof using chanG0. iIntros (Φ) "_ HΦ". wp_lam. wp_smart_apply (new_chan_spec 3 iProto_roundtrip_ref with "[]"). - { intros i Hle. destruct i as [|[|[]]]; try set_solver. lia. } + { lia. } { set_solver. } { iApply iProto_roundtrip_ref_consistent. } iIntros (cs) "Hcs". @@ -361,7 +360,7 @@ Section proof. Proof using chanG0. iIntros (Φ) "_ HΦ". wp_lam. wp_smart_apply (new_chan_spec 3 iProto_roundtrip_ref_rec with "[]"). - { intros i Hle. destruct i as [|[|[]]]; try set_solver. lia. } + { lia. } { set_solver. } { iApply iProto_roundtrip_ref_rec_consistent. } iIntros (cs) "Hcs". @@ -389,7 +388,16 @@ End proof. Section parallel. Context `{!heapGS Σ}. - (** + (** + + 0 -> 1 : (x1:Z) < x1 > . + 0 -> 2 : (x2:Z) < x2 > . + 2 -> 3 : (y1:Z) < x1+y1 > ; + 3 -> 4 : (y2:Z) < x2+y2 > ; + 3 -> 0 : < x1+y1 > ; + 4 -> 0 : < x2+y2 > ; + end + 0 / \ 1 2 @@ -400,83 +408,84 @@ Section parallel. *) Definition iProto_parallel : gmap nat (iProto Σ) := - <[0 := (<(Send, 1) @ (x:Z)> MSG #x ; <(Send, 2)> MSG #x ; - <(Recv, 3)> MSG #x; <(Recv, 4)> MSG #x; END)%proto]> + <[0 := (<(Send, 1) @ (x1:Z)> MSG #x1 ; + <(Send, 2) @ (x2:Z)> MSG #x2 ; + <(Recv, 3) @ (y1:Z)> MSG #(x1+y1); + <(Recv, 4) @ (y2:Z)> MSG #(x2+y2); END)%proto]> (<[1 := (<(Recv, 0) @ (x:Z)> MSG #x ; - <(Send, 3)> MSG #x; END)%proto]> + <(Send, 3) @ (y:Z)> MSG #(x+y); END)%proto]> (<[2 := (<(Recv, 0) @ (x:Z)> MSG #x ; - <(Send, 4)> MSG #x ; END)%proto]> + <(Send, 4) @ (y:Z)> MSG #(x+y) ; END)%proto]> (<[3 := (<(Recv, 1) @ (x:Z)> MSG #x ; <(Send, 0)> MSG #x; END)%proto]> (<[4 := (<(Recv, 2) @ (x:Z)> MSG #x ; - <(Send, 0)> MSG #x ; END)%proto]> - ∅)))). + <(Send, 0)> MSG #x ; END)%proto]> ∅)))). Lemma iProto_parallel_consistent : ⊢ iProto_consistent iProto_parallel. Proof. rewrite /iProto_parallel. iProto_consistent_take_step. - iIntros (x) "_". iExists _. iSplit; [done|]. iSplit; [done|]. + iIntros (x1) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 0. clean_map 1. iProto_consistent_take_step. - - iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. + - iIntros (x2) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 0. clean_map 2. iProto_consistent_take_step. - + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. + + iIntros (y1) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 1. clean_map 3. iProto_consistent_take_step. - * iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. + * iIntros (y2) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 2. clean_map 4. iProto_consistent_take_step. - iIntros "_". iSplit; [done|]. iSplit; [done|]. + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 0. clean_map 3. iProto_consistent_take_step. - iIntros "_". iSplit; [done|]. iSplit; [done|]. + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. iProto_consistent_take_step. - * iIntros "_". iSplit; [done|]. iSplit; [done|]. + * iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 3. clean_map 0. iProto_consistent_take_step. - iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. + iIntros (y2) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 2. clean_map 4. iProto_consistent_take_step. - iIntros "_". iSplit; [done|]. iSplit; [done|]. + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 4. clean_map 0. iProto_consistent_take_step. - + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. + + iIntros (y1) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 2. clean_map 4. iProto_consistent_take_step. - iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. + iIntros (y2) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 1. clean_map 3. iProto_consistent_take_step. - iIntros "_". iSplit; [done|]. iSplit; [done|]. + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 3. clean_map 0. iProto_consistent_take_step. - iIntros "_". iSplit; [done|]. iSplit; [done|]. + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 4. clean_map 0. iProto_consistent_take_step. - - iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. + - iIntros (y1) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 1. clean_map 3. iProto_consistent_take_step. - iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. + iIntros (x2) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 0. clean_map 2. iProto_consistent_take_step. - + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. + + iIntros (y2) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 2. clean_map 4. iProto_consistent_take_step. - iIntros "_". iSplit; [done|]. iSplit; [done|]. + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 3. clean_map 0. iProto_consistent_take_step. - iIntros "_". iSplit; [done|]. iSplit; [done|]. + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 4. clean_map 0. iProto_consistent_take_step. - + iIntros "_". iSplit; [done|]. iSplit; [done|]. + + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 3. clean_map 0. iProto_consistent_take_step. - iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. + iIntros (z) "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 2. clean_map 4. iProto_consistent_take_step. - iIntros "_". iSplit; [done|]. iSplit; [done|]. + iIntros "_". iExists _. iSplit; [done|]. iSplit; [done|]. clean_map 4. clean_map 0. iProto_consistent_take_step. Qed.