proto_channel.v 31.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5 6
From osiris.channel Require Export channel.
From osiris.channel Require Import proto_model.
From iris.base_logic.lib Require Import invariants.
From iris.heap_lang Require Import proofmode notation.
From iris.algebra Require Import auth excl.
From osiris.utils Require Import auth_excl.
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8
Export action.
Robbert Krebbers's avatar
Robbert Krebbers committed
9

Robbert Krebbers's avatar
Robbert Krebbers committed
10 11 12 13
Definition start_chan : val := λ: "f",
  let: "cc" := new_chan #() in
  Fork ("f" (Snd "cc"));; Fst "cc".

Robbert Krebbers's avatar
Robbert Krebbers committed
14 15 16 17 18 19 20 21 22 23 24 25 26
(** Camera setup *)
Class proto_chanG Σ := {
  proto_chanG_chanG :> chanG Σ;
  proto_chanG_authG :> auth_exclG (laterO (proto val (iPreProp Σ) (iPreProp Σ))) Σ;
}.

Definition proto_chanΣ := #[
  chanΣ;
  GFunctor (authRF(optionURF (exclRF (laterOF (protoOF val idOF idOF)))))
].
Instance subG_chanΣ {Σ} : subG proto_chanΣ Σ  proto_chanG Σ.
Proof. intros [??%subG_auth_exclG]%subG_inv. constructor; apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
27
(** Types *)
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29 30 31
Definition iProto Σ := proto val (iProp Σ) (iProp Σ).
Delimit Scope proto_scope with proto.
Bind Scope proto_scope with iProto.

Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45
(** Operators *)
Definition iProto_end_def {Σ} : iProto Σ := proto_end.
Definition iProto_end_aux : seal (@iProto_end_def). by eexists. Qed.
Definition iProto_end := iProto_end_aux.(unseal).
Definition iProto_end_eq : @iProto_end = @iProto_end_def := iProto_end_aux.(seal_eq).
Arguments iProto_end {_}.

Program Definition iProto_message_def {Σ} {TT : tele} (a : action)
    (pc : TT  val * iProp Σ * iProto Σ) : iProto Σ :=
  proto_message a (λ v, λne f,  x : TT,
    (* Need the laters to make [iProto_message] contractive *)
     v = (pc x).1.1  
     (pc x).1.2 
    f (Next (pc x).2))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
46
Next Obligation. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
47 48 49 50 51 52
Definition iProto_message_aux : seal (@iProto_message_def). by eexists. Qed.
Definition iProto_message := iProto_message_aux.(unseal).
Definition iProto_message_eq : @iProto_message = @iProto_message_def := iProto_message_aux.(seal_eq).
Arguments iProto_message {_ _} _ _%proto.
Instance: Params (@iProto_message) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
Notation "< a > x1 .. xn , 'MSG' v {{ P }}; p" :=
  (iProto_message
    (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
    a
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, a at level 10, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "< a > x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
    a
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, a at level 10, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
Notation "<!> x1 .. xn , 'MSG' v {{ P }}; p" :=
  (iProto_message
    (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
    Send
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "<!> x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
    Send
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.

Notation "<?> x1 .. xn , 'MSG' v {{ P }}; p" :=
  (iProto_message
    (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
    Receive
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "<?> x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
    Receive
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.

Notation "'END'" := iProto_end : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
99

Robbert Krebbers's avatar
Robbert Krebbers committed
100
(** Dual *)
Robbert Krebbers's avatar
Robbert Krebbers committed
101
Definition iProto_dual {Σ} (p : iProto Σ) : iProto Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
102
  proto_map action_dual cid cid p.
Robbert Krebbers's avatar
Robbert Krebbers committed
103 104 105 106 107 108
Arguments iProto_dual {_} _%proto.
Instance: Params (@iProto_dual) 1.
Definition iProto_dual_if {Σ} (d : bool) (p : iProto Σ) : iProto Σ :=
  if d then iProto_dual p else p.
Arguments iProto_dual_if {_} _ _%proto.
Instance: Params (@iProto_dual_if) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110
(** Branching *)
Robbert Krebbers's avatar
Robbert Krebbers committed
111
Definition iProto_branch {Σ} (a : action) (p1 p2 : iProto Σ) : iProto Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
112
  (<a> (b : bool), MSG #b; if b then p1 else p2)%proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
Typeclasses Opaque iProto_branch.
114 115
Arguments iProto_branch {_} _ _%proto _%proto.
Instance: Params (@iProto_branch) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
116 117 118
Infix "<+>" := (iProto_branch Send) (at level 85) : proto_scope.
Infix "<&>" := (iProto_branch Receive) (at level 85) : proto_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
(** Append *)
Definition iProto_app {Σ} (p1 p2 : iProto Σ) : iProto Σ := proto_app p1 p2.
Arguments iProto_app {_} _%proto _%proto.
Instance: Params (@iProto_app) 1.
Infix "<++>" := iProto_app (at level 60) : proto_scope.

(** Classes *)
Class ActionDualIf (d : bool) (a1 a2 : action) :=
  dual_action_if : a2 = if d then action_dual a1 else a1.
Hint Mode ActionDualIf ! ! - : typeclass_instances.

Instance action_dual_if_false a : ActionDualIf false a a := eq_refl.
Instance action_dual_if_true_send : ActionDualIf true Send Receive := eq_refl.
Instance action_dual_if_true_receive : ActionDualIf true Receive Send := eq_refl.

Class ProtoNormalize {Σ} (d : bool) (p : iProto Σ)
    (pas : list (bool * iProto Σ)) (q : iProto Σ) :=
  proto_normalize :
    q  (iProto_dual_if d p <++>
         foldr (iProto_app  curry iProto_dual_if) END pas)%proto.
Hint Mode ProtoNormalize ! ! ! ! - : typeclass_instances.
Arguments ProtoNormalize {_} _ _%proto _%proto _%proto.

Class ProtoContNormalize {Σ TT} (d : bool) (pc : TT  val * iProp Σ * iProto Σ)
    (pas : list (bool * iProto Σ)) (qc : TT  val * iProp Σ * iProto Σ) :=
  proto_cont_normalize x :
    (qc x).1.1 = (pc x).1.1 
    (qc x).1.2  (pc x).1.2 
    ProtoNormalize d ((pc x).2) pas ((qc x).2).
Hint Mode ProtoContNormalize ! ! ! ! ! - : typeclass_instances.

(** Auxiliary definitions and invariants *)
Robbert Krebbers's avatar
Robbert Krebbers committed
151 152
Fixpoint proto_eval `{!proto_chanG Σ} (vs : list val) (p1 p2 : iProto Σ) : iProp Σ :=
  match vs with
Robbert Krebbers's avatar
Robbert Krebbers committed
153
  | [] => p1  iProto_dual p2
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  | v :: vs =>  pc p2',
     p2  (proto_message Receive pc)%proto 
     ( f : laterO (iProto Σ) -n> iProp Σ, f (Next p2') - pc v f) 
      proto_eval vs p1 p2'
  end%I.
Arguments proto_eval {_ _} _ _%proto _%proto : simpl nomatch.

Record proto_name := ProtName {
  proto_c_name : chan_name;
  proto_l_name : gname;
  proto_r_name : gname
}.

Definition to_proto_auth_excl `{!proto_chanG Σ} (p : iProto Σ) :=
  to_auth_excl (Next (proto_map id iProp_fold iProp_unfold p)).

Definition proto_own_frag `{!proto_chanG Σ} (γ : proto_name) (s : side)
    (p : iProto Σ) : iProp Σ :=
  own (side_elim s proto_l_name proto_r_name γ) ( to_proto_auth_excl p)%I.

Definition proto_own_auth `{!proto_chanG Σ} (γ : proto_name) (s : side)
    (p : iProto Σ) : iProp Σ :=
  own (side_elim s proto_l_name proto_r_name γ) ( to_proto_auth_excl p)%I.

Definition proto_inv `{!proto_chanG Σ} (γ : proto_name) : iProp Σ :=
  ( l r pl pr,
    chan_own (proto_c_name γ) Left l 
    chan_own (proto_c_name γ) Right r 
    proto_own_auth γ Left pl 
    proto_own_auth γ Right pr 
     ((r = []  proto_eval l pl pr) 
       (l = []  proto_eval r pr pl)))%I.

Robbert Krebbers's avatar
Robbert Krebbers committed
187
Definition mapsto_proto_def `{!proto_chanG Σ, !heapG Σ} (N : namespace)
Robbert Krebbers's avatar
Robbert Krebbers committed
188 189 190 191
    (c : val) (p : iProto Σ) : iProp Σ :=
  ( s (c1 c2 : val) γ,
     c = side_elim s c1 c2  
    proto_own_frag γ s p  is_chan N (proto_c_name γ) c1 c2  inv N (proto_inv γ))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
192 193 194 195 196
Definition mapsto_proto_aux : seal (@mapsto_proto_def). by eexists. Qed.
Definition mapsto_proto {Σ pΣ hΣ} := mapsto_proto_aux.(unseal) Σ pΣ hΣ.
Definition mapsto_proto_eq : @mapsto_proto = @mapsto_proto_def := mapsto_proto_aux.(seal_eq).
Arguments mapsto_proto {_ _ _} _ _ _%proto.
Instance: Params (@mapsto_proto) 5 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
197

Robbert Krebbers's avatar
Robbert Krebbers committed
198
Notation "c ↣ p @ N" := (mapsto_proto N c p)
Robbert Krebbers's avatar
Robbert Krebbers committed
199 200 201 202
  (at level 20, N at level 50, format "c  ↣  p  @  N").

Section proto.
  Context `{!proto_chanG Σ, !heapG Σ} (N : namespace).
Robbert Krebbers's avatar
Robbert Krebbers committed
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  Implicit Types p : iProto Σ.
  Implicit Types TT : tele.

  (** Non-expansiveness of operators *)
  Lemma iProto_message_contractive {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) n :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, dist_later n ((pc1 x).1.2) ((pc2 x).1.2)) 
    (.. x, dist_later n ((pc1 x).2) ((pc2 x).2)) 
    iProto_message a pc1 {n} iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp.
    rewrite iProto_message_eq /iProto_message_def.
    f_equiv=> v f /=. apply bi.exist_ne=> x.
    repeat (apply Hv || apply HP || apply Hp || f_contractive || f_equiv).
  Qed.
  Lemma iProto_message_ne {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) n :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, (pc1 x).1.2 {n} (pc2 x).1.2) 
    (.. x, (pc1 x).2 {n} (pc2 x).2) 
    iProto_message a pc1 {n} iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp.
    apply iProto_message_contractive; apply tforall_forall; eauto using dist_dist_later.
  Qed.
  Lemma iProto_message_proper {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, (pc1 x).1.2  (pc2 x).1.2) 
    (.. x, (pc1 x).2  (pc2 x).2) 
    iProto_message a pc1  iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp. apply equiv_dist => n.
    apply iProto_message_ne; apply tforall_forall=> x; by try apply equiv_dist.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
239

Robbert Krebbers's avatar
Robbert Krebbers committed
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  Global Instance iProto_branch_contractive n a :
    Proper (dist_later n ==> dist_later n ==> dist n) (@iProto_branch Σ a).
  Proof.
    intros p1 p1' Hp1 p2 p2' Hp2.
    apply iProto_message_contractive=> /= -[] //.
  Qed.
  Global Instance iProto_branch_ne a : NonExpansive2 (@iProto_branch Σ a).
  Proof.
    intros n p1 p1' Hp1 p2 p2' Hp2. by apply iProto_message_ne=> /= -[].
  Qed.
  Global Instance iProto_branch_proper a :
    Proper (() ==> () ==> ()) (@iProto_branch Σ a).
  Proof. apply (ne_proper_2 _). Qed.

  (** Dual *)
  Global Instance iProto_dual_ne : NonExpansive (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
256
  Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
257
  Global Instance iProto_dual_proper : Proper (() ==> ()) (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
258
  Proof. apply (ne_proper _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
259 260

  Global Instance iProto_dual_involutive : Involutive () (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
261
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
262
    intros p. rewrite /iProto_dual -proto_map_compose -{2}(proto_map_id p).
Robbert Krebbers's avatar
Robbert Krebbers committed
263 264
    apply: proto_map_ext=> //. by intros [].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

  Lemma iProto_dual_end : iProto_dual (Σ:=Σ) END  END%proto.
  Proof. by rewrite iProto_end_eq /iProto_dual proto_map_end. Qed.
  Lemma iProto_dual_message {TT} a (pc : TT  val * iProp Σ * iProto Σ) :
    iProto_dual (iProto_message a pc)
     iProto_message (action_dual a) (prod_map id iProto_dual  pc).
  Proof.
    rewrite /iProto_dual iProto_message_eq /iProto_message_def proto_map_message.
    by f_equiv=> v f /=.
  Qed.

  Lemma iProto_dual_branch a p1 p2 :
    iProto_dual (iProto_branch a p1 p2)
     iProto_branch (action_dual a) (iProto_dual p1) (iProto_dual p2).
  Proof.
    rewrite /iProto_branch iProto_dual_message /=.
    by apply iProto_message_proper=> /= -[].
  Qed.

  (** Append *)
  Global Instance iProto_app_ne : NonExpansive2 (@iProto_app Σ).
  Proof. apply _. Qed.
  Global Instance iProto_app_proper : Proper (() ==> () ==> ()) (@iProto_app Σ).
  Proof. apply (ne_proper_2 _). Qed.

  Lemma iProto_app_message {TT} a (pc : TT  val * iProp Σ * iProto Σ) p2 :
    (iProto_message a pc <++> p2)%proto  iProto_message a (prod_map id (flip iProto_app p2)  pc).
  Proof.
    rewrite /iProto_app iProto_message_eq /iProto_message_def proto_app_message.
    by f_equiv=> v f /=.
  Qed.

  Global Instance iProto_app_end_l : LeftId () END%proto (@iProto_app Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
298
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
299 300 301
    intros p. by rewrite iProto_end_eq /iProto_end_def /iProto_app proto_app_end_l.
  Qed.
  Global Instance iProto_app_end_r : RightId () END%proto (@iProto_app Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
302
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
    intros p. by rewrite iProto_end_eq /iProto_end_def /iProto_app proto_app_end_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
304
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
305 306 307
  Global Instance iProto_app_assoc : Assoc () (@iProto_app Σ).
  Proof. intros p1 p2 p3. by rewrite /iProto_app proto_app_assoc. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
308 309 310 311 312 313 314
  Lemma iProto_app_branch a p1 p2 q :
    (iProto_branch a p1 p2 <++> q)%proto  (iProto_branch a (p1 <++> q) (p2 <++> q))%proto.
  Proof.
    rewrite /iProto_branch iProto_app_message.
    by apply iProto_message_proper=> /= -[].
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
315 316 317 318 319 320 321 322 323 324
  Lemma iProto_dual_app p1 p2 :
    iProto_dual (p1 <++> p2)  (iProto_dual p1 <++> iProto_dual p2)%proto.
  Proof. by rewrite /iProto_dual /iProto_app proto_map_app. Qed.

  (** Classes *)
  Global Instance proto_normalize_done p : ProtoNormalize false p [] p | 0.
  Proof. by rewrite /ProtoNormalize /= right_id. Qed. 
  Global Instance proto_normalize_done_dual p :
    ProtoNormalize true p [] (iProto_dual p) | 0.
  Proof. by rewrite /ProtoNormalize /= right_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
325 326 327
  Global Instance proto_normalize_done_dual_end :
    ProtoNormalize (Σ:=Σ) true END [] END | 0.
  Proof. by rewrite /ProtoNormalize /= right_id iProto_dual_end. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

  Global Instance proto_normalize_dual d p pas q :
    ProtoNormalize (negb d) p pas q 
    ProtoNormalize d (iProto_dual p) pas q.
  Proof. rewrite /ProtoNormalize=> ->. by destruct d; rewrite /= ?involutive. Qed.

  Global Instance proto_normalize_app_l d p1 p2 pas q :
    ProtoNormalize d p1 ((d,p2) :: pas) q 
    ProtoNormalize d (p1 <++> p2) pas q.
  Proof.
    rewrite /ProtoNormalize=> -> /=. rewrite assoc.
    by destruct d; by rewrite /= ?iProto_dual_app.
  Qed.

  Global Instance proto_normalize_end d d' p pas q :
    ProtoNormalize d p pas q 
    ProtoNormalize d' END ((d,p) :: pas) q | 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
345
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
346 347
    rewrite /ProtoNormalize=> -> /=.
    destruct d'; by rewrite /= ?iProto_dual_end left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
348 349
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  Global Instance proto_normalize_app_r d p1 p2 pas q :
    ProtoNormalize d p2 pas q 
    ProtoNormalize false p1 ((d,p2) :: pas) (p1 <++> q) | 10.
  Proof. by rewrite /ProtoNormalize=> -> /=. Qed.

  Global Instance proto_normalize_app_r_dual d p1 p2 pas q :
    ProtoNormalize d p2 pas q 
    ProtoNormalize true p1 ((d,p2) :: pas) (iProto_dual p1 <++> q) | 10.
  Proof. by rewrite /ProtoNormalize=> -> /=. Qed.

  Global Instance proto_cont_normalize_O d v P p q pas :
    ProtoNormalize d p pas q 
    ProtoContNormalize d (tele_app (TT:=TeleO) (v,P,p)) pas
                         (tele_app (TT:=TeleO) (v,P,q)).
  Proof. rewrite /ProtoContNormalize=> ?. by apply tforall_forall. Qed.

  Global Instance proto_cont_normalize_S {A} {TT : A  tele} d
      (pc qc :  a, TT a -t> val * iProp Σ * iProto Σ) pas :
    ( a, ProtoContNormalize d (tele_app (pc a)) pas (tele_app (qc a))) 
    ProtoContNormalize d (tele_app (TT:=TeleS TT) pc) pas (tele_app (TT:=TeleS TT) qc).
Robbert Krebbers's avatar
Robbert Krebbers committed
370
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
371 372
    rewrite /ProtoContNormalize=> H. apply tforall_forall=> /= x.
    apply tforall_forall, (H x).
Robbert Krebbers's avatar
Robbert Krebbers committed
373 374
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
  Global Instance proto_normalize_message {TT} d a1 a2
      (pc qc : TT  val * iProp Σ * iProto Σ) pas :
    ActionDualIf d a1 a2 
    ProtoContNormalize d pc pas qc 
    ProtoNormalize d (iProto_message a1 pc) pas
                     (iProto_message a2 qc).
  Proof.
    rewrite /ActionDualIf /ProtoContNormalize /ProtoNormalize=> -> H.
    destruct d; simpl.
    - rewrite iProto_dual_message iProto_app_message.
      apply iProto_message_proper; apply tforall_forall=> x /=; apply H.
    - rewrite iProto_app_message.
      apply iProto_message_proper; apply tforall_forall=> x /=; apply H.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
390 391 392 393 394 395 396 397 398 399
  Global Instance proto_normalize_branch d a1 a2 p1 p2 q1 q2 pas :
    ActionDualIf d a1 a2 
    ProtoNormalize d p1 pas q1  ProtoNormalize d p2 pas q2 
    ProtoNormalize d (iProto_branch a1 p1 p2) pas
                     (iProto_branch a2 q1 q2).
  Proof.
    rewrite /ActionDualIf /ProtoNormalize=> -> -> ->.
    destruct d; by rewrite /= -?iProto_app_branch -?iProto_dual_branch.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
400
  (** Auxiliary definitions and invariants *)
Robbert Krebbers's avatar
Robbert Krebbers committed
401 402 403 404 405 406 407 408 409
  Global Instance proto_eval_ne : NonExpansive2 (proto_eval vs).
  Proof. induction vs; solve_proper. Qed.
  Global Instance proto_eval_proper vs : Proper (() ==> () ==> ()) (proto_eval vs).
  Proof. apply (ne_proper_2 _). Qed.

  Global Instance to_proto_auth_excl_ne : NonExpansive to_proto_auth_excl.
  Proof. solve_proper. Qed.
  Global Instance proto_own_ne γ s : NonExpansive (proto_own_frag γ s).
  Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
410 411 412
  Global Instance mapsto_proto_ne c : NonExpansive (mapsto_proto N c).
  Proof. rewrite mapsto_proto_eq. solve_proper. Qed.
  Global Instance mapsto_proto_proper c : Proper (() ==> ()) (mapsto_proto N c).
Robbert Krebbers's avatar
Robbert Krebbers committed
413 414 415 416 417 418 419 420 421
  Proof. apply (ne_proper _). Qed.

  Lemma proto_own_auth_agree γ s p p' :
    proto_own_auth γ s p - proto_own_frag γ s p' -  (p  p').
  Proof.
    iIntros "Hauth Hfrag".
    iDestruct (own_valid_2 with "Hauth Hfrag") as "Hvalid".
    iDestruct (to_auth_excl_valid with "Hvalid") as "Hvalid".
    iDestruct (bi.later_eq_1 with "Hvalid") as "Hvalid"; iNext.
Robbert Krebbers's avatar
Robbert Krebbers committed
422
    assert ( p,
Robbert Krebbers's avatar
Robbert Krebbers committed
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
      proto_map id iProp_unfold iProp_fold (proto_map id iProp_fold iProp_unfold p)  p) as help.
    { intros p''. rewrite -proto_map_compose -{2}(proto_map_id p'').
      apply proto_map_ext=> // pc /=; by rewrite iProp_fold_unfold. }
    rewrite -{2}(help p). iRewrite "Hvalid". by rewrite help.
  Qed.

  Lemma proto_own_auth_update γ s p p' p'' :
    proto_own_auth γ s p - proto_own_frag γ s p' ==
    proto_own_auth γ s p''  proto_own_frag γ s p''.
  Proof.
    iIntros "Hauth Hfrag".
    iDestruct (own_update_2 with "Hauth Hfrag") as "H".
    { eapply (auth_update _ _ (to_proto_auth_excl p'') (to_proto_auth_excl p'')).
      apply option_local_update. by apply exclusive_local_update. }
    by rewrite own_op.
  Qed.

  Lemma proto_eval_send v vs pc p1 p2 :
    proto_eval vs (proto_message Send pc) p2 -
    ( f : laterO (iProto Σ) -n> iProp Σ, f (Next p1) - pc v f) -
    proto_eval (vs ++ [v]) p1 p2.
  Proof.
    iIntros "Heval Hc". iInduction vs as [|v' vs] "IH" forall (p2); simpl.
    - iDestruct "Heval" as "#Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
447 448 449
      iExists _, (iProto_dual p1). iSplit.
      { rewrite -{2}(involutive iProto_dual p2). iRewrite -"Heval".
        rewrite /iProto_dual. by rewrite proto_map_message. }
Robbert Krebbers's avatar
Robbert Krebbers committed
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
      iSplit.
      { iIntros (f) "Hf /=". by iApply "Hc". }
      by rewrite involutive.
    - iDestruct "Heval" as (pc' p2') "(Heq & Hc' & Heval)".
      iExists pc', p2'. iFrame "Heq Hc'". iNext. iApply ("IH" with "Heval Hc").
  Qed.

  Lemma proto_eval_recv v vs p1 pc :
     proto_eval (v :: vs) p1 (proto_message Receive pc) -  p2,
       ( f : laterO (iProto Σ) -n> iProp Σ, f (Next p2) - pc v f) 
        proto_eval vs p1 p2.
  Proof.
    simpl. iDestruct 1 as (pc' p2) "(Heq & Hc & Hp2)". iExists p2. iFrame "Hp2".
    iDestruct (@proto_message_equivI with "Heq") as "[_ Heq]".
    iSpecialize ("Heq" $! v). rewrite bi.ofe_morO_equivI.
    iIntros (f) "Hfp2". iRewrite ("Heq" $! f). by iApply "Hc".
  Qed.

  Lemma proto_eval_False p pc v vs :
    proto_eval (v :: vs) p (proto_message Send pc) - False.
  Proof.
    simpl. iDestruct 1 as (pc' p2') "[Heq _]".
    by iDestruct (@proto_message_equivI with "Heq") as "[% _]".
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
475
  Lemma proto_eval_nil p1 p2 : proto_eval [] p1 p2 - p1  iProto_dual p2.
Robbert Krebbers's avatar
Robbert Krebbers committed
476 477 478 479
  Proof. done. Qed.

  Arguments proto_eval : simpl never.

Robbert Krebbers's avatar
Robbert Krebbers committed
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  (** Automatically perform normalization of protocols in the proof mode *)
  Global Instance mapsto_proto_from_assumption q c p1 p2 :
    ProtoNormalize false p1 [] p2 
    FromAssumption q (c  p1 @ N) (c  p2 @ N).
  Proof.
    rewrite /FromAssumption /ProtoNormalize=> ->.
    by rewrite /= right_id bi.intuitionistically_if_elim.
  Qed.
  Global Instance mapsto_proto_from_frame q c p1 p2 :
    ProtoNormalize false p1 [] p2 
    Frame q (c  p1 @ N) (c  p2 @ N) True.
  Proof.
    rewrite /Frame /ProtoNormalize=> ->.
    by rewrite /= !right_id bi.intuitionistically_if_elim.
  Qed.

  (** The actual specs *)
Robbert Krebbers's avatar
Robbert Krebbers committed
497 498 499
  Lemma proto_init E cγ c1 c2 p :
    is_chan N cγ c1 c2 -
    chan_own cγ Left [] - chan_own cγ Right [] ={E}=
Robbert Krebbers's avatar
Robbert Krebbers committed
500
    c1  p @ N  c2  iProto_dual p @ N.
Robbert Krebbers's avatar
Robbert Krebbers committed
501 502 503 504 505
  Proof.
    iIntros "#Hcctx Hcol Hcor".
    iMod (own_alloc ( (to_proto_auth_excl p) 
                      (to_proto_auth_excl p))) as (lγ) "[Hlsta Hlstf]".
    { by apply auth_both_valid_2. }
Robbert Krebbers's avatar
Robbert Krebbers committed
506 507
    iMod (own_alloc ( (to_proto_auth_excl (iProto_dual p)) 
                      (to_proto_auth_excl (iProto_dual p)))) as (rγ) "[Hrsta Hrstf]".
Robbert Krebbers's avatar
Robbert Krebbers committed
508 509 510 511
    { by apply auth_both_valid_2. }
    pose (ProtName cγ lγ rγ) as pγ.
    iMod (inv_alloc N _ (proto_inv pγ) with "[-Hlstf Hrstf Hcctx]") as "#Hinv".
    { iNext. rewrite /proto_inv. eauto 10 with iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
512
    iModIntro. rewrite mapsto_proto_eq. iSplitL "Hlstf".
Robbert Krebbers's avatar
Robbert Krebbers committed
513 514 515 516
    - iExists Left, c1, c2, pγ; iFrame; auto.
    - iExists Right, c1, c2, pγ; iFrame; auto.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
517 518
  (** Accessor style lemmas *)
  Lemma proto_send_acc {TT} E c (pc : TT  val * iProp Σ * iProto Σ) :
Robbert Krebbers's avatar
Robbert Krebbers committed
519
    N  E 
Robbert Krebbers's avatar
Robbert Krebbers committed
520
    c  iProto_message Send pc @ N -  s c1 c2 γ,
Robbert Krebbers's avatar
Robbert Krebbers committed
521 522 523
       c = side_elim s c1 c2  
      is_chan N (proto_c_name γ) c1 c2  |={E,E∖↑N}=>  vs,
        chan_own (proto_c_name γ) s vs 
Robbert Krebbers's avatar
Robbert Krebbers committed
524 525 526 527
          (x : TT),
           (pc x).1.2 -
           chan_own (proto_c_name γ) s (vs ++ [(pc x).1.1]) ={E∖↑N,E}=
           c  (pc x).2 @ N.
Robbert Krebbers's avatar
Robbert Krebbers committed
528
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
529 530
    iIntros (?). rewrite {1}mapsto_proto_eq iProto_message_eq.
    iDestruct 1 as (s c1 c2 γ ->) "[Hstf #[Hcctx Hinv]]".
Robbert Krebbers's avatar
Robbert Krebbers committed
531 532 533 534 535 536 537 538
    iExists s, c1, c2, γ. iSplit; first done. iFrame "Hcctx".
    iInv N as (l r pl pr) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose".
    (* TODO: refactor to avoid twice nearly the same proof *)
    iModIntro. destruct s.
    - iExists _.
      iIntros "{$Hclf} !>" (x) "HP Hclf".
      iRename "Hstf" into "Hstlf".
      iDestruct (proto_own_auth_agree with "Hstla Hstlf") as "#Heq".
Robbert Krebbers's avatar
Robbert Krebbers committed
539
      iMod (proto_own_auth_update _ _ _ _ (pc x).2
Robbert Krebbers's avatar
Robbert Krebbers committed
540 541 542 543 544 545 546 547 548 549 550 551 552
        with "Hstla Hstlf") as "[Hstla Hstlf]".
      iMod ("Hclose" with "[-Hstlf]") as "_".
      { iNext. iExists _,_,_,_. iFrame "Hcrf Hstra Hstla Hclf". iLeft.
        iRewrite "Heq" in "Hinv'".
        iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]".
        { iSplit=> //. iApply (proto_eval_send with "Heval [HP]").
          iIntros (f) "Hf /=". iExists x. by iFrame. }
        destruct r as [|vr r]; last first.
        { iDestruct (proto_eval_False with "Heval") as %[]. }
        iSplit; first done; simpl. iRewrite (proto_eval_nil with "Heval").
        iApply (proto_eval_send _ [] with "[] [HP]").
        { by rewrite /proto_eval involutive. }
        iIntros (f) "Hf /=". iExists x. by iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
553
      iModIntro. rewrite mapsto_proto_eq. iExists Left, c1, c2, γ. iFrame; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
554 555 556 557
    - iExists _.
      iIntros "{$Hcrf} !>" (x) "HP Hcrf".
      iRename "Hstf" into "Hstrf".
      iDestruct (proto_own_auth_agree with "Hstra Hstrf") as "#Heq".
Robbert Krebbers's avatar
Robbert Krebbers committed
558
      iMod (proto_own_auth_update _ _ _ _ (pc x).2
Robbert Krebbers's avatar
Robbert Krebbers committed
559 560 561 562 563 564 565 566 567 568 569 570 571
        with "Hstra Hstrf") as "[Hstra Hstrf]".
      iMod ("Hclose" with "[-Hstrf]") as "_".
      { iNext. iExists _, _, _, _. iFrame "Hcrf Hstra Hstla Hclf". iRight.
        iRewrite "Heq" in "Hinv'".
        iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]"; last first.
        { iSplit=> //. iApply (proto_eval_send with "Heval [HP]").
          iIntros (f) "Hf /=". iExists x. by iFrame. }
        destruct l as [|vl l]; last first.
        { iDestruct (proto_eval_False with "Heval") as %[]. }
        iSplit; first done; simpl. iRewrite (proto_eval_nil with "Heval").
        iApply (proto_eval_send _ [] with "[] [HP]").
        { by rewrite /proto_eval involutive. }
        iIntros (f) "Hf /=". iExists x. by iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
572
      iModIntro. rewrite mapsto_proto_eq. iExists Right, c1, c2, γ. iFrame; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
573 574
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
575
  Lemma proto_recv_acc {TT} E c (pc : TT  val * iProp Σ * iProto Σ) :
Robbert Krebbers's avatar
Robbert Krebbers committed
576
    N  E 
Robbert Krebbers's avatar
Robbert Krebbers committed
577
    c  iProto_message Receive pc @ N -  s c1 c2 γ,
Robbert Krebbers's avatar
Robbert Krebbers committed
578 579 580 581
       c = side_elim s c2 c1  
      is_chan N (proto_c_name γ) c1 c2  |={E,E∖↑N}=>  vs,
        chan_own (proto_c_name γ) s vs 
         ((chan_own (proto_c_name γ) s vs ={E∖↑N,E}=
Robbert Krebbers's avatar
Robbert Krebbers committed
582
             c  iProto_message Receive pc @ N) 
Robbert Krebbers's avatar
Robbert Krebbers committed
583 584
           ( v vs',
              vs = v :: vs'  -
Robbert Krebbers's avatar
Robbert Krebbers committed
585 586
             chan_own (proto_c_name γ) s vs' ={E∖↑N,E}=    x : TT,
              v = (pc x).1.1   c  (pc x).2 @ N  (pc x).1.2)).
Robbert Krebbers's avatar
Robbert Krebbers committed
587
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
588 589
    iIntros (?). rewrite {1}mapsto_proto_eq iProto_message_eq.
    iDestruct 1 as (s c1 c2 γ ->) "[Hstf #[Hcctx Hinv]]".
Robbert Krebbers's avatar
Robbert Krebbers committed
590 591 592 593 594 595 596 597 598 599 600 601 602
    iExists (side_elim s Right Left), c1, c2, γ. iSplit; first by destruct s.
    iFrame "Hcctx".
    iInv N as (l r pl pr) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose".
    iExists (side_elim s r l). iModIntro.
    (* TODO: refactor to avoid twice nearly the same proof *)
    destruct s; simpl.
    - iIntros "{$Hcrf} !>".
      iRename "Hstf" into "Hstlf".
      iDestruct (proto_own_auth_agree with "Hstla Hstlf") as "#Heq".
      iSplit.
      + iIntros "Hown".
        iMod ("Hclose" with "[-Hstlf]") as "_".
        { iNext. iExists l, r, _, _. iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
603 604
        iModIntro. rewrite mapsto_proto_eq.
        iExists Left, c1, c2, γ. by iFrame "Hcctx ∗ Hinv".
Robbert Krebbers's avatar
Robbert Krebbers committed
605 606
      + iIntros (v vs ->) "Hown".
        iDestruct "Hinv'" as "[[>% _]|[> -> Heval]]"; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
607 608
        iAssert ( proto_eval (v :: vs) pr (iProto_message_def Receive pc))%I
          with "[Heval]" as "Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
609 610 611 612 613 614
        { iNext. by iRewrite "Heq" in "Heval". }
        iDestruct (proto_eval_recv with "Heval") as (q) "[Hf Heval]".
        iMod (proto_own_auth_update _ _ _ _ q with "Hstla Hstlf") as "[Hstla Hstlf]".
        iMod ("Hclose" with "[-Hstlf Hf]") as %_.
        { iExists _, _,_ ,_. eauto 10 with iFrame. }
        iIntros "!> !>".
Robbert Krebbers's avatar
Robbert Krebbers committed
615
        set (f lp := ( q, lp  Next q  c1  q @ N)%I).
Robbert Krebbers's avatar
Robbert Krebbers committed
616
        assert (NonExpansive f) by solve_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
617 618 619 620 621
        iDestruct ("Hf" $! (OfeMor f) with "[Hstlf]") as (x) "(Hv & HP & Hf) /=".
        { iExists q. iSplit; first done. rewrite mapsto_proto_eq.
          iExists Left, c1, c2, γ. iFrame; auto. }
        iDestruct "Hf" as (q') "[#Hq Hc]". iModIntro.
        iExists x. iFrame "Hv HP". by iRewrite "Hq".
Robbert Krebbers's avatar
Robbert Krebbers committed
622 623 624 625 626 627 628
    - iIntros "{$Hclf} !>".
      iRename "Hstf" into "Hstrf".
      iDestruct (proto_own_auth_agree with "Hstra Hstrf") as "#Heq".
      iSplit.
      + iIntros "Hown".
        iMod ("Hclose" with "[-Hstrf]") as "_".
        { iNext. iExists l, r, _, _. iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
629 630
        iModIntro. rewrite mapsto_proto_eq.
        iExists Right, c1, c2, γ. by iFrame "Hcctx ∗ Hinv".
Robbert Krebbers's avatar
Robbert Krebbers committed
631 632
      + iIntros (v vs ->) "Hown".
        iDestruct "Hinv'" as "[[>-> Heval]|[>% _]]"; last done.
Robbert Krebbers's avatar
Robbert Krebbers committed
633 634
        iAssert ( proto_eval (v :: vs) pl (iProto_message_def Receive pc))%I
          with "[Heval]" as "Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
635 636 637 638 639 640
        { iNext. by iRewrite "Heq" in "Heval". }
        iDestruct (proto_eval_recv with "Heval") as (q) "[Hf Heval]".
        iMod (proto_own_auth_update _ _ _ _ q with "Hstra Hstrf") as "[Hstra Hstrf]".
        iMod ("Hclose" with "[-Hstrf Hf]") as %_.
        { iExists _, _, _, _. eauto 10 with iFrame. }
        iIntros "!> !>".
Robbert Krebbers's avatar
Robbert Krebbers committed
641
        set (f lp := ( q, lp  Next q  c2  q @ N)%I).
Robbert Krebbers's avatar
Robbert Krebbers committed
642
        assert (NonExpansive f) by solve_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
643 644 645 646 647
        iDestruct ("Hf" $! (OfeMor f) with "[Hstrf]") as (x) "(Hv & HP & Hf) /=".
        { iExists q. iSplit; first done. rewrite mapsto_proto_eq.
          iExists Right, c1, c2, γ. iFrame; auto. }
        iDestruct "Hf" as (q') "[#Hq Hc]". iModIntro.
        iExists x. iFrame "Hv HP". by iRewrite "Hq".
Robbert Krebbers's avatar
Robbert Krebbers committed
648 649
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
650 651
  (** Specifications of send and receive *)
  Lemma new_chan_proto_spec p :
Robbert Krebbers's avatar
Robbert Krebbers committed
652 653
    {{{ True }}}
      new_chan #()
Robbert Krebbers's avatar
Robbert Krebbers committed
654
    {{{ c1 c2, RET (c1,c2); c1  p @ N  c2  iProto_dual p @ N }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
655
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
656
    iIntros (Ψ _) "HΨ". iApply wp_fupd. wp_apply new_chan_spec=> //.
Robbert Krebbers's avatar
Robbert Krebbers committed
657
    iIntros (c1 c2 γ) "(Hc & Hl & Hr)".
Robbert Krebbers's avatar
Robbert Krebbers committed
658 659
    iMod (proto_init  γ c1 c2 p with "Hc Hl Hr") as "[Hp Hdp]".
    iApply "HΨ". by iFrame.
Robbert Krebbers's avatar
Robbert Krebbers committed
660 661
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
662 663 664 665 666 667 668 669 670 671 672 673
  Lemma start_chan_proto_spec p Ψ (f : val) :
     ( c, c  iProto_dual p @ N - WP f c {{ _, True }}) -
     ( c, c  p @ N - Ψ c) -
    WP start_chan f {{ Ψ }}.
  Proof.
    iIntros "Hfork HΨ". wp_lam.
    wp_apply (new_chan_proto_spec p with "[//]"); iIntros (c1 c2) "[Hc1 Hc2]".
    wp_apply (wp_fork with "[Hfork Hc2]").
    { iNext. wp_apply ("Hfork" with "Hc2"). }
    wp_pures. iApply ("HΨ" with "Hc1").
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
674 675 676 677
  Lemma send_proto_spec_packed {TT} c (pc : TT  val * iProp Σ * iProto Σ) (x : TT) :
    {{{ c  iProto_message Send pc @ N  (pc x).1.2 }}}
      send c (pc x).1.1
    {{{ RET #(); c  (pc x).2 @ N }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
678 679 680 681 682 683 684 685 686
  Proof.
    iIntros (Ψ) "[Hp Hf] HΨ".
    iDestruct (proto_send_acc  with "Hp") as (γ s c1 c2 ->) "[#Hc Hvs]"; first done.
    iApply (send_spec with "[$]"). iMod "Hvs" as (vs) "[Hch H]".
    iModIntro. iExists vs. iFrame "Hch".
    iIntros "!> Hvs". iApply "HΨ".
    iMod ("H" $! x with "Hf Hvs"); auto.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
687 688
  Lemma send_proto_spec {TT} Ψ c v (pc : TT  val * iProp Σ * iProto Σ) :
    c  iProto_message Send pc @ N -
Robbert Krebbers's avatar
Robbert Krebbers committed
689 690
    (.. x : TT,
       v = (pc x).1.1   (pc x).1.2   (c  (pc x).2 @ N - Ψ #())) -
Robbert Krebbers's avatar
Robbert Krebbers committed
691 692 693 694 695 696
    WP send c v {{ Ψ }}.
  Proof.
    iIntros "Hc H". iDestruct (bi_texist_exist with "H") as (x ->) "[HP HΨ]".
    by iApply (send_proto_spec_packed with "[$]").
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
697 698
  Lemma try_recv_proto_spec_packed {TT} c (pc : TT  val * iProp Σ * iProto Σ) :
    {{{ c  iProto_message Receive pc @ N }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
699
      try_recv c
Robbert Krebbers's avatar
Robbert Krebbers committed
700 701
    {{{ v, RET v; (v = NONEV  c  iProto_message Receive pc @ N) 
                  ( x : TT, v = SOMEV ((pc x).1.1)  c  (pc x).2 @ N  (pc x).1.2) }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
702 703 704 705 706 707 708 709
  Proof.
    iIntros (Ψ) "Hp HΨ".
    iDestruct (proto_recv_acc  with "Hp") as (γ s c1 c2 ->) "[#Hc Hvs]"; first done.
    wp_apply (try_recv_spec with "[$]"). iSplit.
    - iMod "Hvs" as (vs) "[Hch [H _]]".
      iIntros "!> !>". iMod ("H" with "Hch") as "Hch". iApply "HΨ"; auto.
    - iMod "Hvs" as (vs) "[Hch [_ H]]".
      iIntros "!>". iExists vs. iIntros "{$Hch} !>" (v vs' ->) "Hch".
Robbert Krebbers's avatar
Robbert Krebbers committed
710 711
      iMod ("H" with "[//] Hch") as "H". iIntros "!> !> !>".
      iDestruct "H" as (x ->) "H". iApply "HΨ"; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
712 713
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
714 715
  Lemma recv_proto_spec_packed {TT} c (pc : TT  val * iProp Σ * iProto Σ) :
    {{{ c  iProto_message Receive pc @ N }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
716
      recv c
Robbert Krebbers's avatar
Robbert Krebbers committed
717
    {{{ x, RET (pc x).1.1; c  (pc x).2 @ N  (pc x).1.2 }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
718 719 720 721 722
  Proof.
    iIntros (Ψ) "Hp HΨ".
    iDestruct (proto_recv_acc  with "Hp") as (γ s c1 c2 ->) "[#Hc Hvs]"; first done.
    wp_apply (recv_spec with "[$]"). iMod "Hvs" as (vs) "[Hch [_ H]]".
    iModIntro. iExists vs. iFrame "Hch". iIntros "!>" (v vs' ->) "Hvs'".
Robbert Krebbers's avatar
Robbert Krebbers committed
723 724
    iMod ("H" with "[//] Hvs'") as "H"; iIntros "!> !> !>".
    iDestruct "H" as (x ->) "H". by iApply "HΨ".
Robbert Krebbers's avatar
Robbert Krebbers committed
725 726
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
727 728
  Lemma recv_proto_spec {TT} Ψ c (pc : TT  val * iProp Σ * iProto Σ) :
    c  iProto_message Receive pc @ N -
Robbert Krebbers's avatar
Robbert Krebbers committed
729
     (.. x : TT, c  (pc x).2 @ N - (pc x).1.2 - Ψ (pc x).1.1) -
Robbert Krebbers's avatar
Robbert Krebbers committed
730 731 732 733 734 735
    WP recv c {{ Ψ }}.
  Proof.
    iIntros "Hc H". iApply (recv_proto_spec_packed with "[$]").
    iIntros "!>" (x) "[Hc HP]". iDestruct (bi_tforall_forall with "H") as "H".
    iApply ("H" with "[$] [$]").
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
736

Robbert Krebbers's avatar
Robbert Krebbers committed
737
  (** Branching *)
Robbert Krebbers's avatar
Robbert Krebbers committed
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
  Lemma select_spec c b p1 p2 :
    {{{ c  p1 <+> p2 @ N }}}
      send c #b
    {{{ RET #(); c  (if b : bool then p1 else p2) @ N }}}.
  Proof.
    rewrite /iProto_branch. iIntros (Ψ) "Hc HΨ".
    iApply (send_proto_spec with "Hc"); simpl; eauto with iFrame.
  Qed.

  Lemma branch_spec c p1 p2  :
    {{{ c  p1 <&> p2 @ N }}}
      recv c
    {{{ b, RET #b; c  if b : bool then p1 else p2 @ N }}}.
  Proof.
    rewrite /iProto_branch. iIntros (Ψ) "Hc HΨ".
    iApply (recv_proto_spec with "Hc"); simpl.
    iIntros "!>" (b) "Hc _". by iApply "HΨ".
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
756
End proto.