proto_channel.v 30.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5 6 7 8 9 10 11
(** This file defines the core of the Actris logic:

- It defines dependent separation protocols and the various operations on it
  dual, append, branching
- It defines the connective [c ↣ prot] for ownership of channel endpoints.
- It proves Actris's specifications of [send] and [receive] w.r.t. dependent
  separation protocols.

Dependent separation protocols are defined by instanting the parametrized
version in [proto_model] with type of values [val] of HeapLang and the
propositions [iProp] of Iris.
12

Jonas Kastberg's avatar
Jonas Kastberg committed
13
In doing so we define ways of constructing instances of the instantiated type
14
via two constructors:
Robbert Krebbers's avatar
Robbert Krebbers committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- [iProto_end], which is identical to [proto_end].
- [iProto_message], which takes an action and a continuation to construct
  the corresponding message protocols.

For convenience sake, we provide the following notations:
- [END], which is simply [iProto_end].
- [<!> x1 .. xn, MSG v; {{ P }}; prot] and [<?> x1 .. xn, MSG v; {{ P }}; prot],
  which construct an instance of [iProto_message] with the appropriate
  continuation.

Futhermore, we define the following operations:
- [iProto_dual], which turns all [Send] of a protocol into [Recv] and vice-versa
- [iProto_app], which appends two protocols as described in proto_model.v

An encoding of the usual branching connectives [prot1 {Q1}<+>{Q2} prot2] and
[prot1 {Q1}<&>{Q2} prot2], inspired by session types, is also included in this
file.

The logical connective for protocol ownership is denoted as [c ↣ prot]. It
describes that channel endpoint [c] adheres to protocol [prot]. This connective
is modeled using Iris invariants and ghost state along with the logical
connectives of the channel encodings [is_chan] and [chan_own].

Lastly, relevant typeclasses are defined for each of the above notions, such as
contractiveness and non-expansiveness, after which the specifications of the
message-passing primitives are defined in terms of the protocol connectives. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
41 42
From actris.channel Require Export channel.
From actris.channel Require Import proto_model.
Robbert Krebbers's avatar
Robbert Krebbers committed
43 44 45
From iris.base_logic.lib Require Import invariants.
From iris.heap_lang Require Import proofmode notation.
From iris.algebra Require Import auth excl.
Robbert Krebbers's avatar
Robbert Krebbers committed
46
From actris.utils Require Import auth_excl.
Robbert Krebbers's avatar
Robbert Krebbers committed
47
Export action.
Robbert Krebbers's avatar
Robbert Krebbers committed
48

Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51 52
Definition start_chan : val := λ: "f",
  let: "cc" := new_chan #() in
  Fork ("f" (Snd "cc"));; Fst "cc".

Robbert Krebbers's avatar
Robbert Krebbers committed
53
(** * Setup of Iris's cameras *)
Robbert Krebbers's avatar
Robbert Krebbers committed
54 55
Class proto_chanG Σ := {
  proto_chanG_chanG :> chanG Σ;
Robbert Krebbers's avatar
Robbert Krebbers committed
56
  proto_chanG_authG :> auth_exclG (laterO (proto val (iPrePropO Σ) (iPrePropO Σ))) Σ;
Robbert Krebbers's avatar
Robbert Krebbers committed
57 58 59 60 61 62 63 64 65
}.

Definition proto_chanΣ := #[
  chanΣ;
  GFunctor (authRF(optionURF (exclRF (laterOF (protoOF val idOF idOF)))))
].
Instance subG_chanΣ {Σ} : subG proto_chanΣ Σ  proto_chanG Σ.
Proof. intros [??%subG_auth_exclG]%subG_inv. constructor; apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
66
(** * Types *)
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Definition iProto Σ := proto val (iPropO Σ) (iPropO Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
68 69 70
Delimit Scope proto_scope with proto.
Bind Scope proto_scope with iProto.

Robbert Krebbers's avatar
Robbert Krebbers committed
71
(** * Operators *)
Robbert Krebbers's avatar
Robbert Krebbers committed
72 73 74 75 76 77 78 79 80
Definition iProto_end_def {Σ} : iProto Σ := proto_end.
Definition iProto_end_aux : seal (@iProto_end_def). by eexists. Qed.
Definition iProto_end := iProto_end_aux.(unseal).
Definition iProto_end_eq : @iProto_end = @iProto_end_def := iProto_end_aux.(seal_eq).
Arguments iProto_end {_}.

Program Definition iProto_message_def {Σ} {TT : tele} (a : action)
    (pc : TT  val * iProp Σ * iProto Σ) : iProto Σ :=
  proto_message a (λ v, λne f,  x : TT,
Robbert Krebbers's avatar
Robbert Krebbers committed
81
    (** We need the later to make [iProto_message] contractive *)
Robbert Krebbers's avatar
Robbert Krebbers committed
82 83 84
     v = (pc x).1.1  
     (pc x).1.2 
    f (Next (pc x).2))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
85
Next Obligation. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
86 87 88 89
Definition iProto_message_aux : seal (@iProto_message_def). by eexists. Qed.
Definition iProto_message := iProto_message_aux.(unseal).
Definition iProto_message_eq : @iProto_message = @iProto_message_def := iProto_message_aux.(seal_eq).
Arguments iProto_message {_ _} _ _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
90
Instance: Params (@iProto_message) 3 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
91

92
Notation "< a > x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94 95 96 97 98 99 100 101 102 103
  (iProto_message
    a
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, a at level 10, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "< a > x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    a
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, a at level 10, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
104
Notation "< a > 'MSG' v {{ P } } ; p" :=
105 106 107 108 109 110 111 112 113
  (iProto_message
    a
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, a at level 10, v at level 20, P, p at level 200) : proto_scope.
Notation "< a > 'MSG' v ; p" :=
  (iProto_message
    a
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, a at level 10, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
114

115
Notation "<!> x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
116 117 118 119 120 121 122 123 124 125 126
  (iProto_message
    Send
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "<!> x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    Send
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
127
Notation "<!> 'MSG' v {{ P } } ; p" :=
128 129 130 131 132 133 134 135 136 137 138
  (iProto_message
    (TT:=TeleO)
    Send
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, v at level 20, P, p at level 200) : proto_scope.
Notation "<!> 'MSG' v ; p" :=
  (iProto_message
    (TT:=TeleO)
    Send
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
139

140
Notation "<?> x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
141 142 143 144 145 146 147 148 149 150 151
  (iProto_message
    Receive
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "<?> x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    Receive
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
152
Notation "<?> 'MSG' v {{ P } } ; p" :=
153 154 155 156 157 158 159 160 161
  (iProto_message
    Receive
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, v at level 20, P, p at level 200) : proto_scope.
Notation "<?> 'MSG' v ; p" :=
  (iProto_message
    Receive
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163

Notation "'END'" := iProto_end : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
164

Robbert Krebbers's avatar
Robbert Krebbers committed
165
(** * Operations *)
Robbert Krebbers's avatar
Robbert Krebbers committed
166
Definition iProto_dual {Σ} (p : iProto Σ) : iProto Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
167
  proto_map action_dual cid cid p.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
Arguments iProto_dual {_} _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
169
Instance: Params (@iProto_dual) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172
Definition iProto_dual_if {Σ} (d : bool) (p : iProto Σ) : iProto Σ :=
  if d then iProto_dual p else p.
Arguments iProto_dual_if {_} _ _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
173
Instance: Params (@iProto_dual_if) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
174

175 176 177
Definition iProto_branch {Σ} (a : action) (P1 P2 : iProp Σ)
    (p1 p2 : iProto Σ) : iProto Σ :=
  (<a> (b : bool), MSG #b {{ if b then P1 else P2 }}; if b then p1 else p2)%proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
Typeclasses Opaque iProto_branch.
179
Arguments iProto_branch {_} _ _%I _%I _%proto _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
180
Instance: Params (@iProto_branch) 2 := {}.
181 182 183 184 185 186 187 188
Infix "<{ P1 }+{ P2 }>" := (iProto_branch Send P1 P2) (at level 85) : proto_scope.
Infix "<{ P1 }&{ P2 }>" := (iProto_branch Receive P1 P2) (at level 85) : proto_scope.
Infix "<+{ P2 }>" := (iProto_branch Send True P2) (at level 85) : proto_scope.
Infix "<&{ P2 }>" := (iProto_branch Receive True P2) (at level 85) : proto_scope.
Infix "<{ P1 }+>" := (iProto_branch Send P1 True) (at level 85) : proto_scope.
Infix "<{ P1 }&>" := (iProto_branch Receive P1 True) (at level 85) : proto_scope.
Infix "<+>" := (iProto_branch Send True True) (at level 85) : proto_scope.
Infix "<&>" := (iProto_branch Receive True True) (at level 85) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
189

Robbert Krebbers's avatar
Robbert Krebbers committed
190 191
Definition iProto_app {Σ} (p1 p2 : iProto Σ) : iProto Σ := proto_app p1 p2.
Arguments iProto_app {_} _%proto _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
192
Instance: Params (@iProto_app) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
193 194
Infix "<++>" := iProto_app (at level 60) : proto_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
195
(** * Auxiliary definitions and invariants *)
196 197 198
Definition proto_eq_next {Σ} (p : iProto Σ) : laterO (iProto Σ) -n> iPropO Σ :=
  OfeMor (sbi_internal_eq (Next p)).

jihgfee's avatar
jihgfee committed
199
Fixpoint proto_interp `{!proto_chanG Σ} (vs : list val) (p1 p2 : iProto Σ) : iProp Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
200
  match vs with
201
  | [] => iProto_dual p1  p2
Robbert Krebbers's avatar
Robbert Krebbers committed
202
  | v :: vs =>  pc p2',
203 204
     p2  proto_message Receive pc 
     pc v (proto_eq_next p2') 
jihgfee's avatar
jihgfee committed
205
      proto_interp vs p1 p2'
Robbert Krebbers's avatar
Robbert Krebbers committed
206
  end%I.
jihgfee's avatar
jihgfee committed
207
Arguments proto_interp {_ _} _ _%proto _%proto : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

Record proto_name := ProtName {
  proto_c_name : chan_name;
  proto_l_name : gname;
  proto_r_name : gname
}.

Definition to_proto_auth_excl `{!proto_chanG Σ} (p : iProto Σ) :=
  to_auth_excl (Next (proto_map id iProp_fold iProp_unfold p)).

Definition proto_own_frag `{!proto_chanG Σ} (γ : proto_name) (s : side)
    (p : iProto Σ) : iProp Σ :=
  own (side_elim s proto_l_name proto_r_name γ) ( to_proto_auth_excl p)%I.

Definition proto_own_auth `{!proto_chanG Σ} (γ : proto_name) (s : side)
    (p : iProto Σ) : iProp Σ :=
  own (side_elim s proto_l_name proto_r_name γ) ( to_proto_auth_excl p)%I.

Definition proto_inv `{!proto_chanG Σ} (γ : proto_name) : iProp Σ :=
  ( l r pl pr,
    chan_own (proto_c_name γ) Left l 
    chan_own (proto_c_name γ) Right r 
    proto_own_auth γ Left pl 
    proto_own_auth γ Right pr 
jihgfee's avatar
jihgfee committed
232 233
     ((r = []  proto_interp l pl pr) 
       (l = []  proto_interp r pr pl)))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
234

Robbert Krebbers's avatar
Robbert Krebbers committed
235 236
Definition protoN := nroot .@ "proto".

Robbert Krebbers's avatar
Robbert Krebbers committed
237
(** * The connective for ownership of channel ends *)
Robbert Krebbers's avatar
Robbert Krebbers committed
238
Definition mapsto_proto_def `{!proto_chanG Σ, !heapG Σ}
Robbert Krebbers's avatar
Robbert Krebbers committed
239 240 241
    (c : val) (p : iProto Σ) : iProp Σ :=
  ( s (c1 c2 : val) γ,
     c = side_elim s c1 c2  
Robbert Krebbers's avatar
Robbert Krebbers committed
242
    proto_own_frag γ s p  is_chan protoN (proto_c_name γ) c1 c2  inv protoN (proto_inv γ))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245
Definition mapsto_proto_aux : seal (@mapsto_proto_def). by eexists. Qed.
Definition mapsto_proto {Σ pΣ hΣ} := mapsto_proto_aux.(unseal) Σ pΣ hΣ.
Definition mapsto_proto_eq : @mapsto_proto = @mapsto_proto_def := mapsto_proto_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
246 247
Arguments mapsto_proto {_ _ _} _ _%proto.
Instance: Params (@mapsto_proto) 4 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
248

Robbert Krebbers's avatar
Robbert Krebbers committed
249 250
Notation "c ↣ p" := (mapsto_proto c p)
  (at level 20, format "c  ↣  p").
Robbert Krebbers's avatar
Robbert Krebbers committed
251

Robbert Krebbers's avatar
Robbert Krebbers committed
252
(** * Proofs *)
Robbert Krebbers's avatar
Robbert Krebbers committed
253
Section proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
254
  Context `{!proto_chanG Σ, !heapG Σ}.
Robbert Krebbers's avatar
Robbert Krebbers committed
255 256 257
  Implicit Types p : iProto Σ.
  Implicit Types TT : tele.

Robbert Krebbers's avatar
Robbert Krebbers committed
258
  (** ** Non-expansiveness of operators *)
Robbert Krebbers's avatar
Robbert Krebbers committed
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
  Lemma iProto_message_contractive {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) n :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, dist_later n ((pc1 x).1.2) ((pc2 x).1.2)) 
    (.. x, dist_later n ((pc1 x).2) ((pc2 x).2)) 
    iProto_message a pc1 {n} iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp.
    rewrite iProto_message_eq /iProto_message_def.
    f_equiv=> v f /=. apply bi.exist_ne=> x.
    repeat (apply Hv || apply HP || apply Hp || f_contractive || f_equiv).
  Qed.
  Lemma iProto_message_ne {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) n :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, (pc1 x).1.2 {n} (pc2 x).1.2) 
    (.. x, (pc1 x).2 {n} (pc2 x).2) 
    iProto_message a pc1 {n} iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp.
    apply iProto_message_contractive; apply tforall_forall; eauto using dist_dist_later.
  Qed.
  Lemma iProto_message_proper {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, (pc1 x).1.2  (pc2 x).1.2) 
    (.. x, (pc1 x).2  (pc2 x).2) 
    iProto_message a pc1  iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp. apply equiv_dist => n.
    apply iProto_message_ne; apply tforall_forall=> x; by try apply equiv_dist.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
291

Robbert Krebbers's avatar
Robbert Krebbers committed
292
  Global Instance iProto_branch_contractive n a :
293 294
    Proper (dist_later n ==> dist_later n ==>
            dist_later n ==> dist_later n ==> dist n) (@iProto_branch Σ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
295
  Proof.
296
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
Robbert Krebbers's avatar
Robbert Krebbers committed
297 298
    apply iProto_message_contractive=> /= -[] //.
  Qed.
299 300
  Global Instance iProto_branch_ne n a :
    Proper (dist n ==> dist n ==> dist n ==> dist n ==> dist n) (@iProto_branch Σ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
301
  Proof.
302 303
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
    by apply iProto_message_ne=> /= -[].
Robbert Krebbers's avatar
Robbert Krebbers committed
304 305
  Qed.
  Global Instance iProto_branch_proper a :
306 307 308 309 310
    Proper (() ==> () ==> () ==> () ==> ()) (@iProto_branch Σ a).
  Proof.
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
    by apply iProto_message_proper=> /= -[].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
311

Robbert Krebbers's avatar
Robbert Krebbers committed
312
  (** ** Dual *)
Robbert Krebbers's avatar
Robbert Krebbers committed
313
  Global Instance iProto_dual_ne : NonExpansive (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
314
  Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
315
  Global Instance iProto_dual_proper : Proper (() ==> ()) (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
316
  Proof. apply (ne_proper _). Qed.
317 318 319 320
  Global Instance iProto_dual_if_ne d : NonExpansive (@iProto_dual_if Σ d).
  Proof. solve_proper. Qed.
  Global Instance iProto_dual_if_proper d : Proper (() ==> ()) (@iProto_dual_if Σ d).
  Proof. apply (ne_proper _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
321 322

  Global Instance iProto_dual_involutive : Involutive () (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
323
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
    intros p. rewrite /iProto_dual -proto_map_compose -{2}(proto_map_id p).
Robbert Krebbers's avatar
Robbert Krebbers committed
325 326
    apply: proto_map_ext=> //. by intros [].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
327 328 329 330 331 332 333 334 335 336 337

  Lemma iProto_dual_end : iProto_dual (Σ:=Σ) END  END%proto.
  Proof. by rewrite iProto_end_eq /iProto_dual proto_map_end. Qed.
  Lemma iProto_dual_message {TT} a (pc : TT  val * iProp Σ * iProto Σ) :
    iProto_dual (iProto_message a pc)
     iProto_message (action_dual a) (prod_map id iProto_dual  pc).
  Proof.
    rewrite /iProto_dual iProto_message_eq /iProto_message_def proto_map_message.
    by f_equiv=> v f /=.
  Qed.

338 339 340
  Lemma iProto_dual_branch a P1 P2 p1 p2 :
    iProto_dual (iProto_branch a P1 P2 p1 p2)
     iProto_branch (action_dual a) P1 P2 (iProto_dual p1) (iProto_dual p2).
Robbert Krebbers's avatar
Robbert Krebbers committed
341 342 343 344 345
  Proof.
    rewrite /iProto_branch iProto_dual_message /=.
    by apply iProto_message_proper=> /= -[].
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
346
  (** ** Append *)
Robbert Krebbers's avatar
Robbert Krebbers committed
347 348 349 350 351 352 353 354 355 356 357 358 359
  Global Instance iProto_app_ne : NonExpansive2 (@iProto_app Σ).
  Proof. apply _. Qed.
  Global Instance iProto_app_proper : Proper (() ==> () ==> ()) (@iProto_app Σ).
  Proof. apply (ne_proper_2 _). Qed.

  Lemma iProto_app_message {TT} a (pc : TT  val * iProp Σ * iProto Σ) p2 :
    (iProto_message a pc <++> p2)%proto  iProto_message a (prod_map id (flip iProto_app p2)  pc).
  Proof.
    rewrite /iProto_app iProto_message_eq /iProto_message_def proto_app_message.
    by f_equiv=> v f /=.
  Qed.

  Global Instance iProto_app_end_l : LeftId () END%proto (@iProto_app Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
360
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
361 362 363
    intros p. by rewrite iProto_end_eq /iProto_end_def /iProto_app proto_app_end_l.
  Qed.
  Global Instance iProto_app_end_r : RightId () END%proto (@iProto_app Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
364
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
365
    intros p. by rewrite iProto_end_eq /iProto_end_def /iProto_app proto_app_end_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
366
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
367 368 369
  Global Instance iProto_app_assoc : Assoc () (@iProto_app Σ).
  Proof. intros p1 p2 p3. by rewrite /iProto_app proto_app_assoc. Qed.

370 371 372
  Lemma iProto_app_branch a P1 P2 p1 p2 q :
    (iProto_branch a P1 P2 p1 p2 <++> q)%proto
     (iProto_branch a P1 P2 (p1 <++> q) (p2 <++> q))%proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
373 374 375 376 377
  Proof.
    rewrite /iProto_branch iProto_app_message.
    by apply iProto_message_proper=> /= -[].
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
378 379 380 381
  Lemma iProto_dual_app p1 p2 :
    iProto_dual (p1 <++> p2)  (iProto_dual p1 <++> iProto_dual p2)%proto.
  Proof. by rewrite /iProto_dual /iProto_app proto_map_app. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
382
  (** ** Auxiliary definitions and invariants *)
jihgfee's avatar
jihgfee committed
383
  Global Instance proto_interp_ne : NonExpansive2 (proto_interp vs).
Robbert Krebbers's avatar
Robbert Krebbers committed
384
  Proof. induction vs; solve_proper. Qed.
jihgfee's avatar
jihgfee committed
385
  Global Instance proto_interp_proper vs : Proper (() ==> () ==> ()) (proto_interp vs).
Robbert Krebbers's avatar
Robbert Krebbers committed
386 387 388 389 390 391
  Proof. apply (ne_proper_2 _). Qed.

  Global Instance to_proto_auth_excl_ne : NonExpansive to_proto_auth_excl.
  Proof. solve_proper. Qed.
  Global Instance proto_own_ne γ s : NonExpansive (proto_own_frag γ s).
  Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
  Global Instance mapsto_proto_ne c : NonExpansive (mapsto_proto c).
Robbert Krebbers's avatar
Robbert Krebbers committed
393
  Proof. rewrite mapsto_proto_eq. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
394
  Global Instance mapsto_proto_proper c : Proper (() ==> ()) (mapsto_proto c).
Robbert Krebbers's avatar
Robbert Krebbers committed
395 396 397 398 399 400 401 402 403
  Proof. apply (ne_proper _). Qed.

  Lemma proto_own_auth_agree γ s p p' :
    proto_own_auth γ s p - proto_own_frag γ s p' -  (p  p').
  Proof.
    iIntros "Hauth Hfrag".
    iDestruct (own_valid_2 with "Hauth Hfrag") as "Hvalid".
    iDestruct (to_auth_excl_valid with "Hvalid") as "Hvalid".
    iDestruct (bi.later_eq_1 with "Hvalid") as "Hvalid"; iNext.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
    assert ( p,
Robbert Krebbers's avatar
Robbert Krebbers committed
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
      proto_map id iProp_unfold iProp_fold (proto_map id iProp_fold iProp_unfold p)  p) as help.
    { intros p''. rewrite -proto_map_compose -{2}(proto_map_id p'').
      apply proto_map_ext=> // pc /=; by rewrite iProp_fold_unfold. }
    rewrite -{2}(help p). iRewrite "Hvalid". by rewrite help.
  Qed.

  Lemma proto_own_auth_update γ s p p' p'' :
    proto_own_auth γ s p - proto_own_frag γ s p' ==
    proto_own_auth γ s p''  proto_own_frag γ s p''.
  Proof.
    iIntros "Hauth Hfrag".
    iDestruct (own_update_2 with "Hauth Hfrag") as "H".
    { eapply (auth_update _ _ (to_proto_auth_excl p'') (to_proto_auth_excl p'')).
      apply option_local_update. by apply exclusive_local_update. }
    by rewrite own_op.
  Qed.

422 423 424 425 426 427 428 429 430 431 432
  Lemma proto_eq_next_dual p :
    ofe_mor_map (laterO_map (proto_map action_dual cid cid)) cid (proto_eq_next (iProto_dual p)) 
    proto_eq_next p.
  Proof.
    intros lp. iSplit; iIntros "Hlp /="; last by iRewrite -"Hlp".
    destruct (Next_uninj lp) as [p' ->].
    rewrite /later_map /= !bi.later_equivI. iNext.
    rewrite -{2}(involutive iProto_dual p) -{2}(involutive iProto_dual p').
    by iRewrite "Hlp".
  Qed.

jihgfee's avatar
jihgfee committed
433 434
  Lemma proto_interp_send v vs pc p1 p2 :
    proto_interp vs (proto_message Send pc) p2 -
435
    pc v (proto_eq_next p1) -
jihgfee's avatar
jihgfee committed
436
    proto_interp (vs ++ [v]) p1 p2.
Robbert Krebbers's avatar
Robbert Krebbers committed
437 438 439
  Proof.
    iIntros "Heval Hc". iInduction vs as [|v' vs] "IH" forall (p2); simpl.
    - iDestruct "Heval" as "#Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
440
      iExists _, (iProto_dual p1). iSplit.
441 442
      { iRewrite -"Heval". by rewrite /iProto_dual proto_map_message. }
      rewrite /= proto_eq_next_dual; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
443 444 445 446
    - iDestruct "Heval" as (pc' p2') "(Heq & Hc' & Heval)".
      iExists pc', p2'. iFrame "Heq Hc'". iNext. iApply ("IH" with "Heval Hc").
  Qed.

jihgfee's avatar
jihgfee committed
447 448
  Lemma proto_interp_recv v vs p1 pc :
     proto_interp (v :: vs) p1 (proto_message Receive pc) -  p2,
449
       pc v (proto_eq_next p2) 
jihgfee's avatar
jihgfee committed
450
        proto_interp vs p1 p2.
Robbert Krebbers's avatar
Robbert Krebbers committed
451 452 453 454
  Proof.
    simpl. iDestruct 1 as (pc' p2) "(Heq & Hc & Hp2)". iExists p2. iFrame "Hp2".
    iDestruct (@proto_message_equivI with "Heq") as "[_ Heq]".
    iSpecialize ("Heq" $! v). rewrite bi.ofe_morO_equivI.
455
    by iRewrite ("Heq" $! (proto_eq_next p2)).
Robbert Krebbers's avatar
Robbert Krebbers committed
456 457
  Qed.

jihgfee's avatar
jihgfee committed
458 459
  Lemma proto_interp_False p pc v vs :
    proto_interp (v :: vs) p (proto_message Send pc) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
460 461 462 463 464
  Proof.
    simpl. iDestruct 1 as (pc' p2') "[Heq _]".
    by iDestruct (@proto_message_equivI with "Heq") as "[% _]".
  Qed.

jihgfee's avatar
jihgfee committed
465
  Lemma proto_interp_nil p1 p2 : proto_interp [] p1 p2 - p1  iProto_dual p2.
466
  Proof. iIntros "#H /=". iRewrite -"H". by rewrite involutive. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
467

jihgfee's avatar
jihgfee committed
468
  Arguments proto_interp : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
469

Robbert Krebbers's avatar
Robbert Krebbers committed
470
  (** ** Initialization of a channel *)
Robbert Krebbers's avatar
Robbert Krebbers committed
471
  Lemma proto_init E cγ c1 c2 p :
Robbert Krebbers's avatar
Robbert Krebbers committed
472
    is_chan protoN cγ c1 c2 -
Robbert Krebbers's avatar
Robbert Krebbers committed
473
    chan_own cγ Left [] - chan_own cγ Right [] ={E}=
Robbert Krebbers's avatar
Robbert Krebbers committed
474
    c1  p  c2  iProto_dual p.
Robbert Krebbers's avatar
Robbert Krebbers committed
475 476 477 478 479
  Proof.
    iIntros "#Hcctx Hcol Hcor".
    iMod (own_alloc ( (to_proto_auth_excl p) 
                      (to_proto_auth_excl p))) as (lγ) "[Hlsta Hlstf]".
    { by apply auth_both_valid_2. }
Robbert Krebbers's avatar
Robbert Krebbers committed
480 481
    iMod (own_alloc ( (to_proto_auth_excl (iProto_dual p)) 
                      (to_proto_auth_excl (iProto_dual p)))) as (rγ) "[Hrsta Hrstf]".
Robbert Krebbers's avatar
Robbert Krebbers committed
482 483
    { by apply auth_both_valid_2. }
    pose (ProtName cγ lγ rγ) as pγ.
Robbert Krebbers's avatar
Robbert Krebbers committed
484
    iMod (inv_alloc protoN _ (proto_inv pγ) with "[-Hlstf Hrstf Hcctx]") as "#Hinv".
Robbert Krebbers's avatar
Robbert Krebbers committed
485
    { iNext. rewrite /proto_inv. eauto 10 with iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
486
    iModIntro. rewrite mapsto_proto_eq. iSplitL "Hlstf".
Robbert Krebbers's avatar
Robbert Krebbers committed
487 488 489 490
    - iExists Left, c1, c2, pγ; iFrame; auto.
    - iExists Right, c1, c2, pγ; iFrame; auto.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
491
  (** ** Accessor style lemmas *)
Robbert Krebbers's avatar
Robbert Krebbers committed
492
  Lemma proto_send_acc {TT} E c (pc : TT  val * iProp Σ * iProto Σ) :
Robbert Krebbers's avatar
Robbert Krebbers committed
493 494
    protoN  E 
    c  iProto_message Send pc -  s c1 c2 γ,
Robbert Krebbers's avatar
Robbert Krebbers committed
495
       c = side_elim s c1 c2  
Robbert Krebbers's avatar
Robbert Krebbers committed
496
      is_chan protoN (proto_c_name γ) c1 c2  |={E,E∖↑protoN}=>  vs,
Robbert Krebbers's avatar
Robbert Krebbers committed
497
        chan_own (proto_c_name γ) s vs 
Robbert Krebbers's avatar
Robbert Krebbers committed
498 499
          (x : TT),
           (pc x).1.2 -
Robbert Krebbers's avatar
Robbert Krebbers committed
500 501
           chan_own (proto_c_name γ) s (vs ++ [(pc x).1.1]) ={E∖↑protoN,E}=
           c  (pc x).2.
Robbert Krebbers's avatar
Robbert Krebbers committed
502
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
503 504
    iIntros (?). rewrite {1}mapsto_proto_eq iProto_message_eq.
    iDestruct 1 as (s c1 c2 γ ->) "[Hstf #[Hcctx Hinv]]".
Robbert Krebbers's avatar
Robbert Krebbers committed
505
    iExists s, c1, c2, γ. iSplit; first done. iFrame "Hcctx".
Robbert Krebbers's avatar
Robbert Krebbers committed
506
    iInv protoN as (l r pl pr) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose".
Robbert Krebbers's avatar
Robbert Krebbers committed
507 508 509 510 511 512
    (* TODO: refactor to avoid twice nearly the same proof *)
    iModIntro. destruct s.
    - iExists _.
      iIntros "{$Hclf} !>" (x) "HP Hclf".
      iRename "Hstf" into "Hstlf".
      iDestruct (proto_own_auth_agree with "Hstla Hstlf") as "#Heq".
Robbert Krebbers's avatar
Robbert Krebbers committed
513
      iMod (proto_own_auth_update _ _ _ _ (pc x).2
Robbert Krebbers's avatar
Robbert Krebbers committed
514 515 516 517 518
        with "Hstla Hstlf") as "[Hstla Hstlf]".
      iMod ("Hclose" with "[-Hstlf]") as "_".
      { iNext. iExists _,_,_,_. iFrame "Hcrf Hstra Hstla Hclf". iLeft.
        iRewrite "Heq" in "Hinv'".
        iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]".
519 520
        { iSplit=> //. iApply (proto_interp_send with "Heval [HP]"); simpl.
          iExists x. by iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
521
        destruct r as [|vr r]; last first.
jihgfee's avatar
jihgfee committed
522 523
        { iDestruct (proto_interp_False with "Heval") as %[]. }
        iSplit; first done; simpl. iRewrite (proto_interp_nil with "Heval").
524 525
        iApply (proto_interp_send _ [] with "[//] [HP]").
        iExists x. by iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
526
      iModIntro. rewrite mapsto_proto_eq. iExists Left, c1, c2, γ. iFrame; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
527 528 529 530
    - iExists _.
      iIntros "{$Hcrf} !>" (x) "HP Hcrf".
      iRename "Hstf" into "Hstrf".
      iDestruct (proto_own_auth_agree with "Hstra Hstrf") as "#Heq".
Robbert Krebbers's avatar
Robbert Krebbers committed
531
      iMod (proto_own_auth_update _ _ _ _ (pc x).2
Robbert Krebbers's avatar
Robbert Krebbers committed
532 533 534 535 536
        with "Hstra Hstrf") as "[Hstra Hstrf]".
      iMod ("Hclose" with "[-Hstrf]") as "_".
      { iNext. iExists _, _, _, _. iFrame "Hcrf Hstra Hstla Hclf". iRight.
        iRewrite "Heq" in "Hinv'".
        iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]"; last first.
537 538
        { iSplit=> //. iApply (proto_interp_send with "Heval [HP]"); simpl.
          iExists x. by iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
539
        destruct l as [|vl l]; last first.
jihgfee's avatar
jihgfee committed
540 541
        { iDestruct (proto_interp_False with "Heval") as %[]. }
        iSplit; first done; simpl. iRewrite (proto_interp_nil with "Heval").
542 543
        iApply (proto_interp_send _ [] with "[//] [HP]").
        iExists x. by iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
544
      iModIntro. rewrite mapsto_proto_eq. iExists Right, c1, c2, γ. iFrame; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
545 546
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
547
  Lemma proto_recv_acc {TT} E c (pc : TT  val * iProp Σ * iProto Σ) :
Robbert Krebbers's avatar
Robbert Krebbers committed
548 549
    protoN  E 
    c  iProto_message Receive pc -  s c1 c2 γ,
Robbert Krebbers's avatar
Robbert Krebbers committed
550
       c = side_elim s c2 c1  
Robbert Krebbers's avatar
Robbert Krebbers committed
551
      is_chan protoN (proto_c_name γ) c1 c2  |={E,E∖↑protoN}=>  vs,
Robbert Krebbers's avatar
Robbert Krebbers committed
552
        chan_own (proto_c_name γ) s vs 
Robbert Krebbers's avatar
Robbert Krebbers committed
553 554
         ((chan_own (proto_c_name γ) s vs ={E∖↑protoN,E}=
             c  iProto_message Receive pc) 
Robbert Krebbers's avatar
Robbert Krebbers committed
555 556
           ( v vs',
              vs = v :: vs'  -
Robbert Krebbers's avatar
Robbert Krebbers committed
557 558
             chan_own (proto_c_name γ) s vs' ={E∖↑protoN,E}=    x : TT,
              v = (pc x).1.1   c  (pc x).2  (pc x).1.2)).
Robbert Krebbers's avatar
Robbert Krebbers committed
559
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
560 561
    iIntros (?). rewrite {1}mapsto_proto_eq iProto_message_eq.
    iDestruct 1 as (s c1 c2 γ ->) "[Hstf #[Hcctx Hinv]]".
Robbert Krebbers's avatar
Robbert Krebbers committed
562 563
    iExists (side_elim s Right Left), c1, c2, γ. iSplit; first by destruct s.
    iFrame "Hcctx".
Robbert Krebbers's avatar
Robbert Krebbers committed
564
    iInv protoN as (l r pl pr) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose".
Robbert Krebbers's avatar
Robbert Krebbers committed
565 566 567 568 569 570 571 572 573 574
    iExists (side_elim s r l). iModIntro.
    (* TODO: refactor to avoid twice nearly the same proof *)
    destruct s; simpl.
    - iIntros "{$Hcrf} !>".
      iRename "Hstf" into "Hstlf".
      iDestruct (proto_own_auth_agree with "Hstla Hstlf") as "#Heq".
      iSplit.
      + iIntros "Hown".
        iMod ("Hclose" with "[-Hstlf]") as "_".
        { iNext. iExists l, r, _, _. iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
575 576
        iModIntro. rewrite mapsto_proto_eq.
        iExists Left, c1, c2, γ. by iFrame "Hcctx ∗ Hinv".
Robbert Krebbers's avatar
Robbert Krebbers committed
577 578
      + iIntros (v vs ->) "Hown".
        iDestruct "Hinv'" as "[[>% _]|[> -> Heval]]"; first done.
jihgfee's avatar
jihgfee committed
579
        iAssert ( proto_interp (v :: vs) pr (iProto_message_def Receive pc))%I
Robbert Krebbers's avatar
Robbert Krebbers committed
580
          with "[Heval]" as "Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
581
        { iNext. by iRewrite "Heq" in "Heval". }
jihgfee's avatar
jihgfee committed
582
        iDestruct (proto_interp_recv with "Heval") as (q) "[Hf Heval]".
Robbert Krebbers's avatar
Robbert Krebbers committed
583 584 585
        iMod (proto_own_auth_update _ _ _ _ q with "Hstla Hstlf") as "[Hstla Hstlf]".
        iMod ("Hclose" with "[-Hstlf Hf]") as %_.
        { iExists _, _,_ ,_. eauto 10 with iFrame. }
586 587 588 589
        iIntros "!> !> /=".
        iDestruct "Hf" as (x) "(Hv & HP & #Hf) /=".
        iNext. iExists x. iFrame "Hv HP". iRewrite -"Hf".
        rewrite mapsto_proto_eq. iExists Left, c1, c2, γ. iFrame; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
590 591 592 593 594 595 596
    - iIntros "{$Hclf} !>".
      iRename "Hstf" into "Hstrf".
      iDestruct (proto_own_auth_agree with "Hstra Hstrf") as "#Heq".
      iSplit.
      + iIntros "Hown".
        iMod ("Hclose" with "[-Hstrf]") as "_".
        { iNext. iExists l, r, _, _. iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
597 598
        iModIntro. rewrite mapsto_proto_eq.
        iExists Right, c1, c2, γ. by iFrame "Hcctx ∗ Hinv".
Robbert Krebbers's avatar
Robbert Krebbers committed
599 600
      + iIntros (v vs ->) "Hown".
        iDestruct "Hinv'" as "[[>-> Heval]|[>% _]]"; last done.
jihgfee's avatar
jihgfee committed
601
        iAssert ( proto_interp (v :: vs) pl (iProto_message_def Receive pc))%I
Robbert Krebbers's avatar
Robbert Krebbers committed
602
          with "[Heval]" as "Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
603
        { iNext. by iRewrite "Heq" in "Heval". }
jihgfee's avatar
jihgfee committed
604
        iDestruct (proto_interp_recv with "Heval") as (q) "[Hf Heval]".
Robbert Krebbers's avatar
Robbert Krebbers committed
605 606 607 608
        iMod (proto_own_auth_update _ _ _ _ q with "Hstra Hstrf") as "[Hstra Hstrf]".
        iMod ("Hclose" with "[-Hstrf Hf]") as %_.
        { iExists _, _, _, _. eauto 10 with iFrame. }
        iIntros "!> !>".
609 610 611
        iDestruct "Hf" as (x) "(Hv & HP & Hf) /=".
        iNext. iExists x. iFrame "Hv HP". iRewrite -"Hf".
        rewrite mapsto_proto_eq. iExists Right, c1, c2, γ. iFrame; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
612 613
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
614
  (** ** Specifications of [send] and [receive] *)
615
  Lemma new_chan_proto_spec :
Robbert Krebbers's avatar
Robbert Krebbers committed
616 617
    {{{ True }}}
      new_chan #()
Robbert Krebbers's avatar
Robbert Krebbers committed
618
    {{{ c1 c2, RET (c1,c2); ( p, |={}=> c1  p  c2  iProto_dual p) }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
619
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
620
    iIntros (Ψ _) "HΨ". iApply wp_fupd. wp_apply new_chan_spec=> //.
621 622
    iIntros (c1 c2 γ) "(Hc & Hl & Hr)". iApply "HΨ"; iIntros "!>" (p).
    iApply (proto_init  γ c1 c2 p with "Hc Hl Hr").
Robbert Krebbers's avatar
Robbert Krebbers committed
623 624
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
625
  Lemma start_chan_proto_spec p Ψ (f : val) :
Robbert Krebbers's avatar
Robbert Krebbers committed
626 627
     ( c, c  iProto_dual p - WP f c {{ _, True }}) -
     ( c, c  p - Ψ c) -
Robbert Krebbers's avatar
Robbert Krebbers committed
628 629 630
    WP start_chan f {{ Ψ }}.
  Proof.
    iIntros "Hfork HΨ". wp_lam.
631 632
    wp_apply (new_chan_proto_spec with "[//]"); iIntros (c1 c2) "Hc".
    iMod ("Hc" $! p) as "[Hc1 Hc2]".
Robbert Krebbers's avatar
Robbert Krebbers committed
633 634 635 636 637
    wp_apply (wp_fork with "[Hfork Hc2]").
    { iNext. wp_apply ("Hfork" with "Hc2"). }
    wp_pures. iApply ("HΨ" with "Hc1").
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
638
  Lemma send_proto_spec_packed {TT} c (pc : TT  val * iProp Σ * iProto Σ) (x : TT) :
Robbert Krebbers's avatar
Robbert Krebbers committed
639
    {{{ c  iProto_message Send pc  (pc x).1.2 }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
640
      send c (pc x).1.1
Robbert Krebbers's avatar
Robbert Krebbers committed
641
    {{{ RET #(); c  (pc x).2 }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
642 643 644 645 646 647 648 649 650
  Proof.
    iIntros (Ψ) "[Hp Hf] HΨ".
    iDestruct (proto_send_acc  with "Hp") as (γ s c1 c2 ->) "[#Hc Hvs]"; first done.
    iApply (send_spec with "[$]"). iMod "Hvs" as (vs) "[Hch H]".
    iModIntro. iExists vs. iFrame "Hch".
    iIntros "!> Hvs". iApply "HΨ".
    iMod ("H" $! x with "Hf Hvs"); auto.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
651 652
  (** A version written without Texan triples that is more convenient to use
  (via [iApply] in Coq. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
653
  Lemma send_proto_spec {TT} Ψ c v (pc : TT  val * iProp Σ * iProto Σ) :
Robbert Krebbers's avatar
Robbert Krebbers committed
654
    c  iProto_message Send pc -
Robbert Krebbers's avatar
Robbert Krebbers committed
655
    (.. x : TT,
Robbert Krebbers's avatar
Robbert Krebbers committed
656
       v = (pc x).1.1   (pc x).1.2   (c  (pc x).2 - Ψ #())) -
Robbert Krebbers's avatar
Robbert Krebbers committed
657 658 659 660 661 662
    WP send c v {{ Ψ }}.
  Proof.
    iIntros "Hc H". iDestruct (bi_texist_exist with "H") as (x ->) "[HP HΨ]".
    by iApply (send_proto_spec_packed with "[$]").
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
663
  Lemma try_recv_proto_spec_packed {TT} c (pc : TT  val * iProp Σ * iProto Σ) :
Robbert Krebbers's avatar
Robbert Krebbers committed
664
    {{{ c  iProto_message Receive pc }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
665
      try_recv c
Robbert Krebbers's avatar
Robbert Krebbers committed
666 667
    {{{ v, RET v; (v = NONEV  c  iProto_message Receive pc) 
                  ( x : TT, v = SOMEV ((pc x).1.1)  c  (pc x).2  (pc x).1.2) }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
668 669 670 671 672 673 674 675
  Proof.
    iIntros (Ψ) "Hp HΨ".
    iDestruct (proto_recv_acc  with "Hp") as (γ s c1 c2 ->) "[#Hc Hvs]"; first done.
    wp_apply (try_recv_spec with "[$]"). iSplit.
    - iMod "Hvs" as (vs) "[Hch [H _]]".
      iIntros "!> !>". iMod ("H" with "Hch") as "Hch". iApply "HΨ"; auto.
    - iMod "Hvs" as (vs) "[Hch [_ H]]".
      iIntros "!>". iExists vs. iIntros "{$Hch} !>" (v vs' ->) "Hch".
Robbert Krebbers's avatar
Robbert Krebbers committed
676 677
      iMod ("H" with "[//] Hch") as "H". iIntros "!> !> !>".
      iDestruct "H" as (x ->) "H". iApply "HΨ"; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
678 679
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
680
  Lemma recv_proto_spec_packed {TT} c (pc : TT  val * iProp Σ * iProto Σ) :
Robbert Krebbers's avatar
Robbert Krebbers committed
681
    {{{ c  iProto_message Receive pc }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
682
      recv c
Robbert Krebbers's avatar
Robbert Krebbers committed
683
    {{{ x, RET (pc x).1.1; c  (pc x).2  (pc x).1.2 }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
684 685 686 687 688
  Proof.
    iIntros (Ψ) "Hp HΨ".
    iDestruct (proto_recv_acc  with "Hp") as (γ s c1 c2 ->) "[#Hc Hvs]"; first done.
    wp_apply (recv_spec with "[$]"). iMod "Hvs" as (vs) "[Hch [_ H]]".
    iModIntro. iExists vs. iFrame "Hch". iIntros "!>" (v vs' ->) "Hvs'".
Robbert Krebbers's avatar
Robbert Krebbers committed
689 690
    iMod ("H" with "[//] Hvs'") as "H"; iIntros "!> !> !>".
    iDestruct "H" as (x ->) "H". by iApply "HΨ".
Robbert Krebbers's avatar
Robbert Krebbers committed
691 692
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
693 694
  (** A version written without Texan triples that is more convenient to use
  (via [iApply] in Coq. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
695
  Lemma recv_proto_spec {TT} Ψ c (pc : TT  val * iProp Σ * iProto Σ) :
Robbert Krebbers's avatar
Robbert Krebbers committed
696 697
    c  iProto_message Receive pc -
     (.. x : TT, c  (pc x).2 - (pc x).1.2 - Ψ (pc x).1.1) -
Robbert Krebbers's avatar
Robbert Krebbers committed
698 699 700 701 702 703
    WP recv c {{ Ψ }}.
  Proof.
    iIntros "Hc H". iApply (recv_proto_spec_packed with "[$]").
    iIntros "!>" (x) "[Hc HP]". iDestruct (bi_tforall_forall with "H") as "H".
    iApply ("H" with "[$] [$]").
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
704

Robbert Krebbers's avatar
Robbert Krebbers committed
705
  (** ** Specifications for branching *)
706
  Lemma select_spec c (b : bool) P1 P2 p1 p2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
707
    {{{ c  (p1 <{P1}+{P2}> p2)  if b then P1 else P2 }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
708
      send c #b
Robbert Krebbers's avatar
Robbert Krebbers committed
709
    {{{ RET #(); c  (if b then p1 else p2) }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
710
  Proof.
711
    rewrite /iProto_branch. iIntros (Ψ) "[Hc HP] HΨ".
Robbert Krebbers's avatar
Robbert Krebbers committed
712 713 714
    iApply (send_proto_spec with "Hc"); simpl; eauto with iFrame.
  Qed.

715
  Lemma branch_spec c P1 P2 p1 p2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
716
    {{{ c  (p1 <{P1}&{P2}> p2) }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
717
      recv c
Robbert Krebbers's avatar
Robbert Krebbers committed
718
    {{{ b, RET #b; c  (if b : bool then p1 else p2)  if b then P1 else P2 }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
719 720 721
  Proof.
    rewrite /iProto_branch. iIntros (Ψ) "Hc HΨ".
    iApply (recv_proto_spec with "Hc"); simpl.
722
    iIntros "!>" (b) "Hc HP". iApply "HΨ". iFrame.
Robbert Krebbers's avatar
Robbert Krebbers committed
723
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
724
End proto.