proto_channel.v 37.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5 6 7 8 9 10 11
(** This file defines the core of the Actris logic:

- It defines dependent separation protocols and the various operations on it
  dual, append, branching
- It defines the connective [c ↣ prot] for ownership of channel endpoints.
- It proves Actris's specifications of [send] and [receive] w.r.t. dependent
  separation protocols.

Dependent separation protocols are defined by instanting the parametrized
version in [proto_model] with type of values [val] of HeapLang and the
propositions [iProp] of Iris.
12

Jonas Kastberg's avatar
Jonas Kastberg committed
13
In doing so we define ways of constructing instances of the instantiated type
14
via two constructors:
Robbert Krebbers's avatar
Robbert Krebbers committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28
- [iProto_end], which is identical to [proto_end].
- [iProto_message], which takes an action and a continuation to construct
  the corresponding message protocols.

For convenience sake, we provide the following notations:
- [END], which is simply [iProto_end].
- [<!> x1 .. xn, MSG v; {{ P }}; prot] and [<?> x1 .. xn, MSG v; {{ P }}; prot],
  which construct an instance of [iProto_message] with the appropriate
  continuation.

Futhermore, we define the following operations:
- [iProto_dual], which turns all [Send] of a protocol into [Recv] and vice-versa
- [iProto_app], which appends two protocols as described in proto_model.v

29 30
An encoding of the usual branching connectives [prot1 <{Q1}+{Q2}> prot2] and
[prot1 <{Q1}&{Q2}> prot2], inspired by session types, is also included in this
Robbert Krebbers's avatar
Robbert Krebbers committed
31 32 33 34 35 36 37 38 39 40
file.

The logical connective for protocol ownership is denoted as [c ↣ prot]. It
describes that channel endpoint [c] adheres to protocol [prot]. This connective
is modeled using Iris invariants and ghost state along with the logical
connectives of the channel encodings [is_chan] and [chan_own].

Lastly, relevant typeclasses are defined for each of the above notions, such as
contractiveness and non-expansiveness, after which the specifications of the
message-passing primitives are defined in terms of the protocol connectives. *)
41
From actris.channel Require Export channel. 
Robbert Krebbers's avatar
Robbert Krebbers committed
42
From actris.channel Require Import proto_model.
Robbert Krebbers's avatar
Robbert Krebbers committed
43 44
From iris.base_logic.lib Require Import invariants.
From iris.heap_lang Require Import proofmode notation.
45
From iris.algebra Require Import excl_auth.
Robbert Krebbers's avatar
Robbert Krebbers committed
46
Export action.
Robbert Krebbers's avatar
Robbert Krebbers committed
47

Robbert Krebbers's avatar
Robbert Krebbers committed
48 49 50 51
Definition start_chan : val := λ: "f",
  let: "cc" := new_chan #() in
  Fork ("f" (Snd "cc"));; Fst "cc".

Robbert Krebbers's avatar
Robbert Krebbers committed
52
(** * Setup of Iris's cameras *)
Robbert Krebbers's avatar
Robbert Krebbers committed
53 54
Class proto_chanG Σ := {
  proto_chanG_chanG :> chanG Σ;
55
  proto_chanG_authG :> inG Σ (excl_authR (laterO (proto val (iPrePropO Σ) (iPrePropO Σ))));
Robbert Krebbers's avatar
Robbert Krebbers committed
56 57 58 59
}.

Definition proto_chanΣ := #[
  chanΣ;
60
  GFunctor (authRF (optionURF (exclRF (laterOF (protoOF val idOF idOF)))))
Robbert Krebbers's avatar
Robbert Krebbers committed
61 62
].
Instance subG_chanΣ {Σ} : subG proto_chanΣ Σ  proto_chanG Σ.
63
Proof. intros [??%subG_inG]%subG_inv. constructor; apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
64

Robbert Krebbers's avatar
Robbert Krebbers committed
65
(** * Types *)
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Definition iProto Σ := proto val (iPropO Σ) (iPropO Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
67 68 69
Delimit Scope proto_scope with proto.
Bind Scope proto_scope with iProto.

Robbert Krebbers's avatar
Robbert Krebbers committed
70
(** * Operators *)
Robbert Krebbers's avatar
Robbert Krebbers committed
71 72 73 74 75 76 77 78 79
Definition iProto_end_def {Σ} : iProto Σ := proto_end.
Definition iProto_end_aux : seal (@iProto_end_def). by eexists. Qed.
Definition iProto_end := iProto_end_aux.(unseal).
Definition iProto_end_eq : @iProto_end = @iProto_end_def := iProto_end_aux.(seal_eq).
Arguments iProto_end {_}.

Program Definition iProto_message_def {Σ} {TT : tele} (a : action)
    (pc : TT  val * iProp Σ * iProto Σ) : iProto Σ :=
  proto_message a (λ v, λne f,  x : TT,
Robbert Krebbers's avatar
Robbert Krebbers committed
80
    (** We need the later to make [iProto_message] contractive *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82 83
     v = (pc x).1.1  
     (pc x).1.2 
    f (Next (pc x).2))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
84
Next Obligation. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
85 86 87 88
Definition iProto_message_aux : seal (@iProto_message_def). by eexists. Qed.
Definition iProto_message := iProto_message_aux.(unseal).
Definition iProto_message_eq : @iProto_message = @iProto_message_def := iProto_message_aux.(seal_eq).
Arguments iProto_message {_ _} _ _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
89
Instance: Params (@iProto_message) 3 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
90

91
Notation "< a > x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92 93 94 95 96 97 98 99 100 101 102
  (iProto_message
    a
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, a at level 10, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "< a > x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    a
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, a at level 10, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
103
Notation "< a > 'MSG' v {{ P } } ; p" :=
104 105 106 107 108 109 110 111 112
  (iProto_message
    a
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, a at level 10, v at level 20, P, p at level 200) : proto_scope.
Notation "< a > 'MSG' v ; p" :=
  (iProto_message
    a
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, a at level 10, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
113

114
Notation "<!> x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
115 116 117 118 119 120 121 122 123 124 125
  (iProto_message
    Send
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "<!> x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    Send
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
126
Notation "<!> 'MSG' v {{ P } } ; p" :=
127 128 129 130 131 132 133 134 135 136 137
  (iProto_message
    (TT:=TeleO)
    Send
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, v at level 20, P, p at level 200) : proto_scope.
Notation "<!> 'MSG' v ; p" :=
  (iProto_message
    (TT:=TeleO)
    Send
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
138

139
Notation "<?> x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
140 141 142 143 144 145 146 147 148 149 150
  (iProto_message
    Receive
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "<?> x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    Receive
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
151
Notation "<?> 'MSG' v {{ P } } ; p" :=
152 153 154 155 156 157 158 159 160
  (iProto_message
    Receive
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, v at level 20, P, p at level 200) : proto_scope.
Notation "<?> 'MSG' v ; p" :=
  (iProto_message
    Receive
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
161 162

Notation "'END'" := iProto_end : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
163

Robbert Krebbers's avatar
Robbert Krebbers committed
164
(** * Operations *)
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Definition iProto_dual {Σ} (p : iProto Σ) : iProto Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
166
  proto_map action_dual cid cid p.
Robbert Krebbers's avatar
Robbert Krebbers committed
167
Arguments iProto_dual {_} _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
168
Instance: Params (@iProto_dual) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
169 170 171
Definition iProto_dual_if {Σ} (d : bool) (p : iProto Σ) : iProto Σ :=
  if d then iProto_dual p else p.
Arguments iProto_dual_if {_} _ _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
172
Instance: Params (@iProto_dual_if) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
173

174 175 176
Definition iProto_branch {Σ} (a : action) (P1 P2 : iProp Σ)
    (p1 p2 : iProto Σ) : iProto Σ :=
  (<a> (b : bool), MSG #b {{ if b then P1 else P2 }}; if b then p1 else p2)%proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
177
Typeclasses Opaque iProto_branch.
178
Arguments iProto_branch {_} _ _%I _%I _%proto _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
179
Instance: Params (@iProto_branch) 2 := {}.
180 181 182 183 184 185 186 187
Infix "<{ P1 }+{ P2 }>" := (iProto_branch Send P1 P2) (at level 85) : proto_scope.
Infix "<{ P1 }&{ P2 }>" := (iProto_branch Receive P1 P2) (at level 85) : proto_scope.
Infix "<+{ P2 }>" := (iProto_branch Send True P2) (at level 85) : proto_scope.
Infix "<&{ P2 }>" := (iProto_branch Receive True P2) (at level 85) : proto_scope.
Infix "<{ P1 }+>" := (iProto_branch Send P1 True) (at level 85) : proto_scope.
Infix "<{ P1 }&>" := (iProto_branch Receive P1 True) (at level 85) : proto_scope.
Infix "<+>" := (iProto_branch Send True True) (at level 85) : proto_scope.
Infix "<&>" := (iProto_branch Receive True True) (at level 85) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
188

Robbert Krebbers's avatar
Robbert Krebbers committed
189 190
Definition iProto_app {Σ} (p1 p2 : iProto Σ) : iProto Σ := proto_app p1 p2.
Arguments iProto_app {_} _%proto _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
191
Instance: Params (@iProto_app) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
192 193
Infix "<++>" := iProto_app (at level 60) : proto_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
194
(** * Auxiliary definitions and invariants *)
195 196 197
Definition proto_eq_next {Σ} (p : iProto Σ) : laterO (iProto Σ) -n> iPropO Σ :=
  OfeMor (sbi_internal_eq (Next p)).

198
Program Definition iProto_le_aux `{invG Σ} (rec : iProto Σ -n> iProto Σ -n> iPropO Σ) :
199 200 201 202
    iProto Σ -n> iProto Σ -n> iPropO Σ := λne p1 p2,
  ((p1  proto_end  p2  proto_end) 
   ( pc1 pc2,
     p1  proto_message Send pc1  p2  proto_message Send pc2 
203
      v p2', pc2 v (proto_eq_next p2') ={}=
204 205 206
        p1',  rec p1' p2'  pc1 v (proto_eq_next p1')) 
   ( pc1 pc2,
     p1  proto_message Receive pc1  p2  proto_message Receive pc2 
207
      v p1', pc1 v (proto_eq_next p1') ={}=
208 209
        p2',  rec p1' p2'  pc2 v (proto_eq_next p2')))%I.
Solve Obligations with solve_proper.
210
Local Instance iProto_le_aux_contractive `{invG Σ} : Contractive (@iProto_le_aux Σ _).
211
Proof. solve_contractive. Qed.
212
Definition iProto_le `{invG Σ} (p1 p2 : iProto Σ) : iProp Σ :=
213
  fixpoint iProto_le_aux p1 p2.
214
Arguments iProto_le {_ _} _%proto _%proto.
215 216

Fixpoint proto_interp {Σ} (vs : list val) (p1 p2 : iProto Σ) : iProp Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
217
  match vs with
218
  | [] => iProto_dual p1  p2
Robbert Krebbers's avatar
Robbert Krebbers committed
219
  | v :: vs =>  pc p2',
220 221
     p2  proto_message Receive pc 
     pc v (proto_eq_next p2') 
jihgfee's avatar
jihgfee committed
222
      proto_interp vs p1 p2'
Robbert Krebbers's avatar
Robbert Krebbers committed
223
  end%I.
224
Arguments proto_interp {_} _ _%proto _%proto : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
225 226 227 228 229 230 231

Record proto_name := ProtName {
  proto_c_name : chan_name;
  proto_l_name : gname;
  proto_r_name : gname
}.

232 233 234
Definition to_pre_proto {Σ} (p : iProto Σ) :
    proto val (iPrePropO Σ) (iPrePropO Σ) :=
  proto_map id iProp_fold iProp_unfold p.
Robbert Krebbers's avatar
Robbert Krebbers committed
235 236 237

Definition proto_own_frag `{!proto_chanG Σ} (γ : proto_name) (s : side)
    (p : iProto Σ) : iProp Σ :=
238
  own (side_elim s proto_l_name proto_r_name γ) (E (Next (to_pre_proto p))).
Robbert Krebbers's avatar
Robbert Krebbers committed
239 240 241

Definition proto_own_auth `{!proto_chanG Σ} (γ : proto_name) (s : side)
    (p : iProto Σ) : iProp Σ :=
242
  own (side_elim s proto_l_name proto_r_name γ) (E (Next (to_pre_proto p))).
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245 246 247 248 249

Definition proto_inv `{!proto_chanG Σ} (γ : proto_name) : iProp Σ :=
  ( l r pl pr,
    chan_own (proto_c_name γ) Left l 
    chan_own (proto_c_name γ) Right r 
    proto_own_auth γ Left pl 
    proto_own_auth γ Right pr 
jihgfee's avatar
jihgfee committed
250 251
     ((r = []  proto_interp l pl pr) 
       (l = []  proto_interp r pr pl)))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
252

Robbert Krebbers's avatar
Robbert Krebbers committed
253 254
Definition protoN := nroot .@ "proto".

Robbert Krebbers's avatar
Robbert Krebbers committed
255
(** * The connective for ownership of channel ends *)
Robbert Krebbers's avatar
Robbert Krebbers committed
256
Definition mapsto_proto_def `{!proto_chanG Σ, !heapG Σ}
Robbert Krebbers's avatar
Robbert Krebbers committed
257
    (c : val) (p : iProto Σ) : iProp Σ :=
258
  ( s (c1 c2 : val) γ p',
Robbert Krebbers's avatar
Robbert Krebbers committed
259
     c = side_elim s c1 c2  
260
    iProto_le p' p 
261 262 263
    proto_own_frag γ s p' 
    is_chan protoN (proto_c_name γ) c1 c2 
    inv protoN (proto_inv γ))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
264 265 266
Definition mapsto_proto_aux : seal (@mapsto_proto_def). by eexists. Qed.
Definition mapsto_proto {Σ pΣ hΣ} := mapsto_proto_aux.(unseal) Σ pΣ hΣ.
Definition mapsto_proto_eq : @mapsto_proto = @mapsto_proto_def := mapsto_proto_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
267 268
Arguments mapsto_proto {_ _ _} _ _%proto.
Instance: Params (@mapsto_proto) 4 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
269

Robbert Krebbers's avatar
Robbert Krebbers committed
270 271
Notation "c ↣ p" := (mapsto_proto c p)
  (at level 20, format "c  ↣  p").
Robbert Krebbers's avatar
Robbert Krebbers committed
272

Robbert Krebbers's avatar
Robbert Krebbers committed
273
(** * Proofs *)
Robbert Krebbers's avatar
Robbert Krebbers committed
274
Section proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
275
  Context `{!proto_chanG Σ, !heapG Σ}.
Robbert Krebbers's avatar
Robbert Krebbers committed
276 277 278
  Implicit Types p : iProto Σ.
  Implicit Types TT : tele.

Robbert Krebbers's avatar
Robbert Krebbers committed
279
  (** ** Non-expansiveness of operators *)
Robbert Krebbers's avatar
Robbert Krebbers committed
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
  Lemma iProto_message_contractive {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) n :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, dist_later n ((pc1 x).1.2) ((pc2 x).1.2)) 
    (.. x, dist_later n ((pc1 x).2) ((pc2 x).2)) 
    iProto_message a pc1 {n} iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp.
    rewrite iProto_message_eq /iProto_message_def.
    f_equiv=> v f /=. apply bi.exist_ne=> x.
    repeat (apply Hv || apply HP || apply Hp || f_contractive || f_equiv).
  Qed.
  Lemma iProto_message_ne {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) n :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, (pc1 x).1.2 {n} (pc2 x).1.2) 
    (.. x, (pc1 x).2 {n} (pc2 x).2) 
    iProto_message a pc1 {n} iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp.
    apply iProto_message_contractive; apply tforall_forall; eauto using dist_dist_later.
  Qed.
  Lemma iProto_message_proper {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, (pc1 x).1.2  (pc2 x).1.2) 
    (.. x, (pc1 x).2  (pc2 x).2) 
    iProto_message a pc1  iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp. apply equiv_dist => n.
    apply iProto_message_ne; apply tforall_forall=> x; by try apply equiv_dist.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
312

Robbert Krebbers's avatar
Robbert Krebbers committed
313
  Global Instance iProto_branch_contractive n a :
314 315
    Proper (dist_later n ==> dist_later n ==>
            dist_later n ==> dist_later n ==> dist n) (@iProto_branch Σ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
316
  Proof.
317
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
Robbert Krebbers's avatar
Robbert Krebbers committed
318 319
    apply iProto_message_contractive=> /= -[] //.
  Qed.
320 321
  Global Instance iProto_branch_ne n a :
    Proper (dist n ==> dist n ==> dist n ==> dist n ==> dist n) (@iProto_branch Σ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
322
  Proof.
323 324
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
    by apply iProto_message_ne=> /= -[].
Robbert Krebbers's avatar
Robbert Krebbers committed
325 326
  Qed.
  Global Instance iProto_branch_proper a :
327 328 329 330 331
    Proper (() ==> () ==> () ==> () ==> ()) (@iProto_branch Σ a).
  Proof.
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
    by apply iProto_message_proper=> /= -[].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
332

Robbert Krebbers's avatar
Robbert Krebbers committed
333
  (** ** Dual *)
Robbert Krebbers's avatar
Robbert Krebbers committed
334
  Global Instance iProto_dual_ne : NonExpansive (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
335
  Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
336
  Global Instance iProto_dual_proper : Proper (() ==> ()) (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
337
  Proof. apply (ne_proper _). Qed.
338 339 340 341
  Global Instance iProto_dual_if_ne d : NonExpansive (@iProto_dual_if Σ d).
  Proof. solve_proper. Qed.
  Global Instance iProto_dual_if_proper d : Proper (() ==> ()) (@iProto_dual_if Σ d).
  Proof. apply (ne_proper _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
342 343

  Global Instance iProto_dual_involutive : Involutive () (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
344
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
345
    intros p. rewrite /iProto_dual -proto_map_compose -{2}(proto_map_id p).
Robbert Krebbers's avatar
Robbert Krebbers committed
346 347
    apply: proto_map_ext=> //. by intros [].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
348 349 350 351 352 353 354 355 356 357 358

  Lemma iProto_dual_end : iProto_dual (Σ:=Σ) END  END%proto.
  Proof. by rewrite iProto_end_eq /iProto_dual proto_map_end. Qed.
  Lemma iProto_dual_message {TT} a (pc : TT  val * iProp Σ * iProto Σ) :
    iProto_dual (iProto_message a pc)
     iProto_message (action_dual a) (prod_map id iProto_dual  pc).
  Proof.
    rewrite /iProto_dual iProto_message_eq /iProto_message_def proto_map_message.
    by f_equiv=> v f /=.
  Qed.

359 360 361
  Lemma iProto_dual_branch a P1 P2 p1 p2 :
    iProto_dual (iProto_branch a P1 P2 p1 p2)
     iProto_branch (action_dual a) P1 P2 (iProto_dual p1) (iProto_dual p2).
Robbert Krebbers's avatar
Robbert Krebbers committed
362 363 364 365 366
  Proof.
    rewrite /iProto_branch iProto_dual_message /=.
    by apply iProto_message_proper=> /= -[].
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
367
  (** ** Append *)
Robbert Krebbers's avatar
Robbert Krebbers committed
368 369 370 371 372 373 374 375 376 377 378 379 380
  Global Instance iProto_app_ne : NonExpansive2 (@iProto_app Σ).
  Proof. apply _. Qed.
  Global Instance iProto_app_proper : Proper (() ==> () ==> ()) (@iProto_app Σ).
  Proof. apply (ne_proper_2 _). Qed.

  Lemma iProto_app_message {TT} a (pc : TT  val * iProp Σ * iProto Σ) p2 :
    (iProto_message a pc <++> p2)%proto  iProto_message a (prod_map id (flip iProto_app p2)  pc).
  Proof.
    rewrite /iProto_app iProto_message_eq /iProto_message_def proto_app_message.
    by f_equiv=> v f /=.
  Qed.

  Global Instance iProto_app_end_l : LeftId () END%proto (@iProto_app Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
381
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
382 383 384
    intros p. by rewrite iProto_end_eq /iProto_end_def /iProto_app proto_app_end_l.
  Qed.
  Global Instance iProto_app_end_r : RightId () END%proto (@iProto_app Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
385
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
    intros p. by rewrite iProto_end_eq /iProto_end_def /iProto_app proto_app_end_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
388 389 390
  Global Instance iProto_app_assoc : Assoc () (@iProto_app Σ).
  Proof. intros p1 p2 p3. by rewrite /iProto_app proto_app_assoc. Qed.

391 392 393
  Lemma iProto_app_branch a P1 P2 p1 p2 q :
    (iProto_branch a P1 P2 p1 p2 <++> q)%proto
     (iProto_branch a P1 P2 (p1 <++> q) (p2 <++> q))%proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
394 395 396 397 398
  Proof.
    rewrite /iProto_branch iProto_app_message.
    by apply iProto_message_proper=> /= -[].
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
399 400 401 402
  Lemma iProto_dual_app p1 p2 :
    iProto_dual (p1 <++> p2)  (iProto_dual p1 <++> iProto_dual p2)%proto.
  Proof. by rewrite /iProto_dual /iProto_app proto_map_app. Qed.

403
  (** ** Protocol entailment **)
404
  Global Instance iProto_le_ne : NonExpansive2 (@iProto_le Σ _).
405
  Proof. solve_proper. Qed.
406
  Global Instance iProto_le_proper : Proper (() ==> () ==> ()) (@iProto_le Σ _).
407 408 409 410 411 412 413 414 415 416 417
  Proof. solve_proper. Qed.

  Lemma iProto_le_unfold p1 p2 :
    iProto_le p1 p2  iProto_le_aux (fixpoint iProto_le_aux) p1 p2.
  Proof. apply: (fixpoint_unfold iProto_le_aux). Qed.

  Lemma iProto_le_refl p : iProto_le p p.
  Proof.
    iLöb as "IH" forall (p). destruct (proto_case p) as [->|([]&pc&->)].
    - rewrite iProto_le_unfold. iLeft; by auto.
    - rewrite iProto_le_unfold. iRight; iLeft. iExists _, _; do 2 (iSplit; [done|]).
418
      iIntros (v p') "Hpc". iExists p'. iIntros "{$Hpc} !> !>". iApply "IH".
419
    - rewrite iProto_le_unfold. iRight; iRight. iExists _, _; do 2 (iSplit; [done|]).
420
      iIntros (v p') "Hpc". iExists p'. iIntros "{$Hpc} !> !>". iApply "IH".
421 422 423 424 425 426 427 428 429 430 431 432
  Qed.

  Lemma iProto_le_end_inv p : iProto_le p proto_end - p  proto_end.
  Proof.
    rewrite iProto_le_unfold. iIntros "[[Hp _]|H] //".
    iDestruct "H" as "[H|H]"; iDestruct "H" as (pc1 pc2) "(_ & Heq & _)";
      by rewrite proto_end_message_equivI.
  Qed.

  Lemma iProto_le_send_inv p1 pc2 :
    iProto_le p1 (proto_message Send pc2) -  pc1,
      p1  proto_message Send pc1 
433
       v p2', pc2 v (proto_eq_next p2') ={}=
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
         p1',  iProto_le p1' p2'  pc1 v (proto_eq_next p1').
  Proof.
    rewrite iProto_le_unfold. iIntros "[[_ Heq]|[H|H]]".
    - by rewrite proto_message_end_equivI.
    - iDestruct "H" as (pc1 pc2') "(Hp1 & Heq & H)".
      iDestruct (proto_message_equivI with "Heq") as "[_ #Heq]".
      iExists pc1. iIntros "{$Hp1}" (v p2') "Hpc".
      iSpecialize ("Heq" $! v). iDestruct (bi.ofe_morO_equivI with "Heq") as "Heq'".
      iRewrite ("Heq'" $! (proto_eq_next p2')) in "Hpc". by iApply "H".
    - iDestruct "H" as (pc1 pc2') "(_ & Heq & _)".
      by iDestruct (proto_message_equivI with "Heq") as "[% ?]".
  Qed.

  Lemma iProto_le_recv_inv p1 pc2 :
    iProto_le p1 (proto_message Receive pc2) -  pc1,
      p1  proto_message Receive pc1 
450
       v p1', pc1 v (proto_eq_next p1') ={}=
451 452 453 454 455 456 457 458 459 460
         p2',  iProto_le p1' p2'  pc2 v (proto_eq_next p2').
  Proof.
    rewrite iProto_le_unfold. iIntros "[[_ Heq]|[H|H]]".
    - by rewrite proto_message_end_equivI.
    - iDestruct "H" as (pc1 pc2') "(_ & Heq & _)".
      by iDestruct (proto_message_equivI with "Heq") as "[% ?]".
    - iDestruct "H" as (pc1 pc2') "(Hp1 & Heq & H)".
      iDestruct (proto_message_equivI with "Heq") as "[_ #Heq]".
      iExists pc1. iIntros "{$Hp1}" (v p1') "Hpc".
      iSpecialize ("Heq" $! v). iDestruct (bi.ofe_morO_equivI with "Heq") as "Heq'".
461
      iMod ("H" with "Hpc") as (p2') "[Hle Hpc]". iModIntro.
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
      iExists p2'. iFrame "Hle". by iRewrite ("Heq'" $! (proto_eq_next p2')).
  Qed.

  Lemma iProto_le_trans p1 p2 p3 :
    iProto_le p1 p2 - iProto_le p2 p3 - iProto_le p1 p3.
  Proof.
    iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3).
    destruct (proto_case p3) as [->|([]&pc3&->)].
    - rewrite iProto_le_end_inv. by iRewrite "H2" in "H1".
    - iDestruct (iProto_le_send_inv with "H2") as (pc2) "[Hp2 H3]".
      iRewrite "Hp2" in "H1".
      iDestruct (iProto_le_send_inv with "H1") as (pc1) "[Hp1 H2]".
      iRewrite "Hp1". rewrite iProto_le_unfold; iRight; iLeft.
      iExists _, _; do 2 (iSplit; [done|]).
      iIntros (v p3') "Hpc".
477 478
      iMod ("H3" with "Hpc") as (p2') "[Hle Hpc]".
      iMod ("H2" with "Hpc") as (p1') "[Hle' Hpc]".
479 480 481 482 483 484 485
      iExists p1'. iIntros "{$Hpc} !>". by iApply ("IH" with "Hle'").
    - iDestruct (iProto_le_recv_inv with "H2") as (pc2) "[Hp2 H3]".
      iRewrite "Hp2" in "H1".
      iDestruct (iProto_le_recv_inv with "H1") as (pc1) "[Hp1 H2]".
      iRewrite "Hp1". rewrite iProto_le_unfold; iRight; iRight.
      iExists _, _; do 2 (iSplit; [done|]).
      iIntros (v p1') "Hpc".
486 487
      iMod ("H2" with "Hpc") as (p2') "[Hle Hpc]".
      iMod ("H3" with "Hpc") as (p3') "[Hle' Hpc]".
488 489 490 491 492
      iExists p3'. iIntros "{$Hpc} !>". by iApply ("IH" with "Hle").
  Qed.

  Lemma iProto_send_le {TT1 TT2} (pc1 : TT1  val * iProp Σ * iProto Σ)
      (pc2 : TT2  val * iProp Σ * iProto Σ) :
493
    (.. x2 : TT2,  (pc2 x2).1.2 ={}= .. x1 : TT1,
494
      (pc1 x1).1.1 = (pc2 x2).1.1 
495 496
       (pc1 x1).1.2 
       iProto_le (pc1 x1).2 (pc2 x2).2) -
497 498 499 500
    iProto_le (iProto_message Send pc1) (iProto_message Send pc2).
  Proof.
    iIntros "H". rewrite iProto_le_unfold iProto_message_eq. iRight; iLeft.
    iExists _, _; do 2 (iSplit; [done|]).
501 502 503 504
    iIntros (v p2') "/=". iDestruct 1 as (x2 ->) "[Hpc #Heq]".
    iMod ("H" with "Hpc") as (x1 ?) "[Hpc Hle]".
    iExists (pc1 x1).2. iSplitL "Hle".
    { iIntros "!> !>". change (fixpoint iProto_le_aux ?p1 ?p2) with (iProto_le p1 p2).
505
      by iRewrite "Heq". }
506
    iModIntro. iExists x1. iSplit; [done|]. iSplit; [by iApply "Hpc"|done].
507 508 509 510
  Qed.

  Lemma iProto_recv_le {TT1 TT2} (pc1 : TT1  val * iProp Σ * iProto Σ)
      (pc2 : TT2  val * iProp Σ * iProto Σ) :
511
    (.. x1 : TT1,  (pc1 x1).1.2 ={}= .. x2 : TT2,
512
      (pc1 x1).1.1 = (pc2 x2).1.1 
513 514
       (pc2 x2).1.2 
       iProto_le (pc1 x1).2 (pc2 x2).2) -
515 516 517 518
    iProto_le (iProto_message Receive pc1) (iProto_message Receive pc2).
  Proof.
    iIntros "H". rewrite iProto_le_unfold iProto_message_eq. iRight; iRight.
    iExists _, _; do 2 (iSplit; [done|]).
519 520 521
    iIntros (v p1') "/=". iDestruct 1 as (x1 ->) "[Hpc #Heq]".
    iMod ("H" with "Hpc") as (x2 ?) "[Hpc Hle]". iExists (pc2 x2).2. iSplitL "Hle".
    { iIntros "!> !>". change (fixpoint iProto_le_aux ?p1 ?p2) with (iProto_le p1 p2).
522
      by iRewrite "Heq". }
523
    iModIntro. iExists x2. iSplit; [done|]. iSplit; [by iApply "Hpc"|done].
524 525 526 527 528 529 530 531 532
  Qed.

  Lemma iProto_mapsto_le c p1 p2 : c  p1 - iProto_le p1 p2 - c  p2.
  Proof.
    rewrite mapsto_proto_eq. iDestruct 1 as (s c1 c2 γ p1' ->) "[Hle H]".
    iIntros "Hle'". iExists s, c1, c2, γ, p1'. iSplit; first done. iFrame "H".
    by iApply (iProto_le_trans with "Hle").
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
533
  (** ** Auxiliary definitions and invariants *)
534
  Global Instance proto_interp_ne : NonExpansive2 (proto_interp (Σ:=Σ) vs).
Robbert Krebbers's avatar
Robbert Krebbers committed
535
  Proof. induction vs; solve_proper. Qed.
536 537
  Global Instance proto_interp_proper vs :
    Proper (() ==> () ==> ()) (proto_interp (Σ:=Σ) vs).
Robbert Krebbers's avatar
Robbert Krebbers committed
538 539
  Proof. apply (ne_proper_2 _). Qed.

540
  Global Instance to_pre_proto_ne : NonExpansive (to_pre_proto (Σ:=Σ)).
Robbert Krebbers's avatar
Robbert Krebbers committed
541 542 543
  Proof. solve_proper. Qed.
  Global Instance proto_own_ne γ s : NonExpansive (proto_own_frag γ s).
  Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
544
  Global Instance mapsto_proto_ne c : NonExpansive (mapsto_proto c).
Robbert Krebbers's avatar
Robbert Krebbers committed
545
  Proof. rewrite mapsto_proto_eq. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
546
  Global Instance mapsto_proto_proper c : Proper (() ==> ()) (mapsto_proto c).
Robbert Krebbers's avatar
Robbert Krebbers committed
547 548 549 550 551 552 553
  Proof. apply (ne_proper _). Qed.

  Lemma proto_own_auth_agree γ s p p' :
    proto_own_auth γ s p - proto_own_frag γ s p' -  (p  p').
  Proof.
    iIntros "Hauth Hfrag".
    iDestruct (own_valid_2 with "Hauth Hfrag") as "Hvalid".
554
    iDestruct (excl_auth_agreeI with "Hvalid") as "Hvalid".
Robbert Krebbers's avatar
Robbert Krebbers committed
555
    iDestruct (bi.later_eq_1 with "Hvalid") as "Hvalid"; iNext.
556
    rewrite /to_pre_proto. assert ( p,
Robbert Krebbers's avatar
Robbert Krebbers committed
557 558 559 560 561 562 563 564 565 566 567 568
      proto_map id iProp_unfold iProp_fold (proto_map id iProp_fold iProp_unfold p)  p) as help.
    { intros p''. rewrite -proto_map_compose -{2}(proto_map_id p'').
      apply proto_map_ext=> // pc /=; by rewrite iProp_fold_unfold. }
    rewrite -{2}(help p). iRewrite "Hvalid". by rewrite help.
  Qed.

  Lemma proto_own_auth_update γ s p p' p'' :
    proto_own_auth γ s p - proto_own_frag γ s p' ==
    proto_own_auth γ s p''  proto_own_frag γ s p''.
  Proof.
    iIntros "Hauth Hfrag".
    iDestruct (own_update_2 with "Hauth Hfrag") as "H".
569
    { eapply (excl_auth_update _ _ (Next (to_pre_proto p''))). }
Robbert Krebbers's avatar
Robbert Krebbers committed
570 571 572
    by rewrite own_op.
  Qed.

573 574 575 576 577 578 579 580 581 582 583
  Lemma proto_eq_next_dual p :
    ofe_mor_map (laterO_map (proto_map action_dual cid cid)) cid (proto_eq_next (iProto_dual p)) 
    proto_eq_next p.
  Proof.
    intros lp. iSplit; iIntros "Hlp /="; last by iRewrite -"Hlp".
    destruct (Next_uninj lp) as [p' ->].
    rewrite /later_map /= !bi.later_equivI. iNext.
    rewrite -{2}(involutive iProto_dual p) -{2}(involutive iProto_dual p').
    by iRewrite "Hlp".
  Qed.

jihgfee's avatar
jihgfee committed
584 585
  Lemma proto_interp_send v vs pc p1 p2 :
    proto_interp vs (proto_message Send pc) p2 -
586
    pc v (proto_eq_next p1) -
jihgfee's avatar
jihgfee committed
587
    proto_interp (vs ++ [v]) p1 p2.
Robbert Krebbers's avatar
Robbert Krebbers committed
588 589 590
  Proof.
    iIntros "Heval Hc". iInduction vs as [|v' vs] "IH" forall (p2); simpl.
    - iDestruct "Heval" as "#Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
591
      iExists _, (iProto_dual p1). iSplit.
592 593
      { iRewrite -"Heval". by rewrite /iProto_dual proto_map_message. }
      rewrite /= proto_eq_next_dual; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
594 595 596 597
    - iDestruct "Heval" as (pc' p2') "(Heq & Hc' & Heval)".
      iExists pc', p2'. iFrame "Heq Hc'". iNext. iApply ("IH" with "Heval Hc").
  Qed.

jihgfee's avatar
jihgfee committed
598 599
  Lemma proto_interp_recv v vs p1 pc :
     proto_interp (v :: vs) p1 (proto_message Receive pc) -  p2,
600
       pc v (proto_eq_next p2) 
jihgfee's avatar
jihgfee committed
601
        proto_interp vs p1 p2.
Robbert Krebbers's avatar
Robbert Krebbers committed
602 603 604 605
  Proof.
    simpl. iDestruct 1 as (pc' p2) "(Heq & Hc & Hp2)". iExists p2. iFrame "Hp2".
    iDestruct (@proto_message_equivI with "Heq") as "[_ Heq]".
    iSpecialize ("Heq" $! v). rewrite bi.ofe_morO_equivI.
606
    by iRewrite ("Heq" $! (proto_eq_next p2)).
Robbert Krebbers's avatar
Robbert Krebbers committed
607 608
  Qed.

jihgfee's avatar
jihgfee committed
609 610
  Lemma proto_interp_False p pc v vs :
    proto_interp (v :: vs) p (proto_message Send pc) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
611 612 613 614 615
  Proof.
    simpl. iDestruct 1 as (pc' p2') "[Heq _]".
    by iDestruct (@proto_message_equivI with "Heq") as "[% _]".
  Qed.

jihgfee's avatar
jihgfee committed
616
  Lemma proto_interp_nil p1 p2 : proto_interp [] p1 p2 - p1  iProto_dual p2.
617
  Proof. iIntros "#H /=". iRewrite -"H". by rewrite involutive. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
618

jihgfee's avatar
jihgfee committed
619
  Arguments proto_interp : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
620

Robbert Krebbers's avatar
Robbert Krebbers committed
621
  (** ** Initialization of a channel *)
Robbert Krebbers's avatar
Robbert Krebbers committed
622
  Lemma proto_init E cγ c1 c2 p :
Robbert Krebbers's avatar
Robbert Krebbers committed
623
    is_chan protoN cγ c1 c2 -
Robbert Krebbers's avatar
Robbert Krebbers committed
624
    chan_own cγ Left [] - chan_own cγ Right [] ={E}=
Robbert Krebbers's avatar
Robbert Krebbers committed
625
    c1  p  c2  iProto_dual p.
Robbert Krebbers's avatar
Robbert Krebbers committed
626 627
  Proof.
    iIntros "#Hcctx Hcol Hcor".
628 629 630 631 632 633
    iMod (own_alloc (E (Next (to_pre_proto p)) 
                     E (Next (to_pre_proto p)))) as (lγ) "[Hlsta Hlstf]".
    { by apply excl_auth_valid. }
    iMod (own_alloc (E (Next (to_pre_proto (iProto_dual p))) 
                     E (Next (to_pre_proto (iProto_dual p))))) as (rγ) "[Hrsta Hrstf]".
    { by apply excl_auth_valid. }
Robbert Krebbers's avatar
Robbert Krebbers committed
634
    pose (ProtName cγ lγ rγ) as pγ.
Robbert Krebbers's avatar
Robbert Krebbers committed
635
    iMod (inv_alloc protoN _ (proto_inv pγ) with "[-Hlstf Hrstf Hcctx]") as "#Hinv".
Robbert Krebbers's avatar
Robbert Krebbers committed
636
    { iNext. rewrite /proto_inv. eauto 10 with iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
637
    iModIntro. rewrite mapsto_proto_eq. iSplitL "Hlstf".
638 639 640 641
    - iExists Left, c1, c2, pγ, p.
      iFrame "Hlstf Hinv Hcctx". iSplit; [done|]. iApply iProto_le_refl.
    - iExists Right, c1, c2, pγ, (iProto_dual p).
      iFrame "Hrstf Hinv Hcctx". iSplit; [done|]. iApply iProto_le_refl.
Robbert Krebbers's avatar
Robbert Krebbers committed
642 643
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
644
  (** ** Accessor style lemmas *)
645 646 647 648
  Lemma proto_send_acc {TT} c (pc : TT  val * iProp Σ * iProto Σ) (x : TT) :
    c  iProto_message Send pc -
    (pc x).1.2 -
     s c1 c2 γ,
Robbert Krebbers's avatar
Robbert Krebbers committed
649
       c = side_elim s c1 c2  
650
      is_chan protoN (proto_c_name γ) c1 c2  |={,∖↑protoN}=>  vs,
Robbert Krebbers's avatar
Robbert Krebbers committed
651
        chan_own (proto_c_name γ) s vs 
652 653
         (chan_own (proto_c_name γ) s (vs ++ [(pc x).1.1]) ={∖↑protoN,}=
           c  (pc x).2).
Robbert Krebbers's avatar
Robbert Krebbers committed
654
  Proof.
655 656
    rewrite {1}mapsto_proto_eq iProto_message_eq. iIntros "Hc HP".
    iDestruct "Hc" as (s c1 c2 γ p ->) "(Hle & Hst & #[Hcctx Hinv])".
Robbert Krebbers's avatar
Robbert Krebbers committed
657
    iExists s, c1, c2, γ. iSplit; first done. iFrame "Hcctx".
658 659 660 661
    iDestruct (iProto_le_send_inv with "Hle") as (pc') "[Hp H] /=".
    iRewrite "Hp" in "Hst"; clear p.
    iMod ("H" with "[HP]") as (p1') "[Hle HP]".
    { iExists _. iFrame "HP". by iSplit. }
662
    iInv protoN as (l r pl pr) "(>Hcl & >Hcr & Hstla & Hstra & Hinv')" "Hclose".
Robbert Krebbers's avatar
Robbert Krebbers committed
663 664
    (* TODO: refactor to avoid twice nearly the same proof *)
    iModIntro. destruct s.
665
    - iExists _. iIntros "{$Hcl} !> Hcl".
666 667 668 669
      iDestruct (proto_own_auth_agree with "Hstla Hst") as "#Heq".
      iMod (proto_own_auth_update _ _ _ _ p1' with "Hstla Hst") as "[Hstla Hst]".
      iMod ("Hclose" with "[-Hst Hle]") as "_".
      { iNext. iExists _,_,_,_. iFrame "Hcr Hstra Hstla Hcl". iLeft.
Robbert Krebbers's avatar
Robbert Krebbers committed
670 671
        iRewrite "Heq" in "Hinv'".
        iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]".
672
        { iSplit=> //. by iApply (proto_interp_send with "Heval [HP]"). }
Robbert Krebbers's avatar
Robbert Krebbers committed
673
        destruct r as [|vr r]; last first.
jihgfee's avatar
jihgfee committed
674 675
        { iDestruct (proto_interp_False with "Heval") as %[]. }
        iSplit; first done; simpl. iRewrite (proto_interp_nil with "Heval").
676 677 678
        iApply (proto_interp_send _ [] with "[//] HP"). }
      iModIntro. rewrite mapsto_proto_eq. iExists Left, c1, c2, γ, p1'.
      by iFrame "Hcctx Hinv Hst Hle".
679
    - iExists _. iIntros "{$Hcr} !> Hcr".
680 681 682 683
      iDestruct (proto_own_auth_agree with "Hstra Hst") as "#Heq".
      iMod (proto_own_auth_update _ _ _ _ p1' with "Hstra Hst") as "[Hstra Hst]".
      iMod ("Hclose" with "[-Hst Hle]") as "_".
      { iNext. iExists _, _, _, _. iFrame "Hcl Hstra Hstla Hcr". iRight.
Robbert Krebbers's avatar
Robbert Krebbers committed
684 685
        iRewrite "Heq" in "Hinv'".
        iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]"; last first.
686
        { iSplit=> //. by iApply (proto_interp_send with "Heval [HP]"). }
Robbert Krebbers's avatar
Robbert Krebbers committed
687
        destruct l as [|vl l]; last first.
jihgfee's avatar
jihgfee committed
688 689
        { iDestruct (proto_interp_False with "Heval") as %[]. }
        iSplit; first done; simpl. iRewrite (proto_interp_nil with "Heval").
690 691 692
        iApply (proto_interp_send _ [] with "[//] HP"). }
      iModIntro. rewrite mapsto_proto_eq. iExists Right, c1, c2, γ, p1'.
      by iFrame "Hcctx Hinv Hst Hle".
Robbert Krebbers's avatar
Robbert Krebbers committed
693 694
  Qed.

695 696 697
  Lemma proto_recv_acc {TT} c (pc : TT  val * iProp Σ * iProto Σ) :
    c  iProto_message Receive pc -
     s c1 c2 γ,
Robbert Krebbers's avatar
Robbert Krebbers committed
698
       c = side_elim s c2 c1  
699
      is_chan protoN (proto_c_name γ) c1 c2  |={,∖↑protoN}=>  vs,
Robbert Krebbers's avatar
Robbert Krebbers committed
700
        chan_own (proto_c_name γ) s vs 
701
         ((chan_own (proto_c_name γ) s vs ={∖↑protoN,}=
Robbert Krebbers's avatar
Robbert Krebbers committed
702
             c  iProto_message Receive pc) 
Robbert Krebbers's avatar
Robbert Krebbers committed
703 704
           ( v vs',
              vs = v :: vs'  -
705
             chan_own (proto_c_name γ) s vs' ={∖↑protoN,,}=   x : TT,
Robbert Krebbers's avatar
Robbert Krebbers committed
706
              v = (pc x).1.1   c  (pc x).2  (pc x).1.2)).
Robbert Krebbers's avatar
Robbert Krebbers committed
707
  Proof.
708
    rewrite {1}mapsto_proto_eq iProto_message_eq.
709
    iDestruct 1 as (s c1 c2 γ p ->) "(Hle & Hst & #[Hcctx Hinv])".
710 711
    iDestruct (iProto_le_recv_inv with "Hle") as (pc') "[Hp Hle] /=".
    iRewrite "Hp" in "Hst". clear p.
Robbert Krebbers's avatar
Robbert Krebbers committed
712 713
    iExists (side_elim s Right Left), c1, c2, γ. iSplit; first by destruct s.
    iFrame "Hcctx".
714
    iInv protoN as (l r pl pr) "(>Hcl & >Hcr & Hstla & Hstra & Hinv')" "Hclose".
Robbert Krebbers's avatar
Robbert Krebbers committed
715 716 717
    iExists (side_elim s r l). iModIntro.
    (* TODO: refactor to avoid twice nearly the same proof *)
    destruct s; simpl.
718
    - iIntros "{$Hcr} !>". 
719
      iDestruct (proto_own_auth_agree with "Hstla Hst") as "#Heq".
Robbert Krebbers's avatar
Robbert Krebbers committed
720
      iSplit.
721 722
      + iIntros "Hcr".
        iMod ("Hclose" with "[-Hst Hle]") as "_".
Robbert Krebbers's avatar
Robbert Krebbers committed
723
        { iNext. iExists l, r, _, _. iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
724
        iModIntro. rewrite mapsto_proto_eq.
725 726
        iExists Left, c1, c2, γ, (proto_message Receive pc').
        iFrame "Hcctx Hinv Hst". iSplit; first done.
727
        rewrite iProto_le_unfold. iRight; auto 10.
728
      + iIntros (v vs ->) "Hcr".
729
        iDestruct "Hinv'" as "[[>% _]|[>-> Heval]]"; first done.
730
        iAssert ( proto_interp (v :: vs) pr (proto_message Receive pc'))%I
Robbert Krebbers's avatar
Robbert Krebbers committed
731
          with "[Heval]" as "Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
732
        { iNext. by iRewrite "Heq" in "Heval". }
733 734 735 736
        iDestruct (proto_interp_recv with "Heval") as (q) "[Hpc Heval]".
        iMod (proto_own_auth_update _ _ _ _ q with "Hstla Hst") as "[Hstla Hst]".
        iMod ("Hclose" with "[-Hst Hpc Hle]") as %_.
        { iExists _, _,_ ,_; iFrame; eauto. }
737
        iIntros "!> !>". iMod ("Hle" with "Hpc") as (q') "[Hle H]".
738
        iDestruct "H" as (x) "(Hv & HP & #Hf) /=".
739
        iIntros "!> !>". iExists x. iFrame "Hv HP". iRewrite -"Hf".
740
        rewrite mapsto_proto_eq. iExists Left, c1, c2, γ, q. iFrame; auto.
741
    - iIntros "{$Hcl} !>".
742
      iDestruct (proto_own_auth_agree with "Hstra Hst") as "#Heq".
Robbert Krebbers's avatar
Robbert Krebbers committed
743
      iSplit.
744 745
      + iIntros "Hcl".
        iMod ("Hclose"<