proto_channel.v 37.9 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5 6 7 8 9 10 11
(** This file defines the core of the Actris logic:

- It defines dependent separation protocols and the various operations on it
  dual, append, branching
- It defines the connective [c ↣ prot] for ownership of channel endpoints.
- It proves Actris's specifications of [send] and [receive] w.r.t. dependent
  separation protocols.

Dependent separation protocols are defined by instanting the parametrized
version in [proto_model] with type of values [val] of HeapLang and the
propositions [iProp] of Iris.
12

Jonas Kastberg's avatar
Jonas Kastberg committed
13
In doing so we define ways of constructing instances of the instantiated type
14
via two constructors:
Robbert Krebbers's avatar
Robbert Krebbers committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- [iProto_end], which is identical to [proto_end].
- [iProto_message], which takes an action and a continuation to construct
  the corresponding message protocols.

For convenience sake, we provide the following notations:
- [END], which is simply [iProto_end].
- [<!> x1 .. xn, MSG v; {{ P }}; prot] and [<?> x1 .. xn, MSG v; {{ P }}; prot],
  which construct an instance of [iProto_message] with the appropriate
  continuation.

Futhermore, we define the following operations:
- [iProto_dual], which turns all [Send] of a protocol into [Recv] and vice-versa
- [iProto_app], which appends two protocols as described in proto_model.v

An encoding of the usual branching connectives [prot1 {Q1}<+>{Q2} prot2] and
[prot1 {Q1}<&>{Q2} prot2], inspired by session types, is also included in this
file.

The logical connective for protocol ownership is denoted as [c ↣ prot]. It
describes that channel endpoint [c] adheres to protocol [prot]. This connective
is modeled using Iris invariants and ghost state along with the logical
connectives of the channel encodings [is_chan] and [chan_own].

Lastly, relevant typeclasses are defined for each of the above notions, such as
contractiveness and non-expansiveness, after which the specifications of the
message-passing primitives are defined in terms of the protocol connectives. *)
41
From actris.channel Require Export channel. 
Robbert Krebbers's avatar
Robbert Krebbers committed
42
From actris.channel Require Import proto_model.
Robbert Krebbers's avatar
Robbert Krebbers committed
43 44 45
From iris.base_logic.lib Require Import invariants.
From iris.heap_lang Require Import proofmode notation.
From iris.algebra Require Import auth excl.
Robbert Krebbers's avatar
Robbert Krebbers committed
46
From actris.utils Require Import auth_excl.
Robbert Krebbers's avatar
Robbert Krebbers committed
47
Export action.
Robbert Krebbers's avatar
Robbert Krebbers committed
48

Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51 52
Definition start_chan : val := λ: "f",
  let: "cc" := new_chan #() in
  Fork ("f" (Snd "cc"));; Fst "cc".

Robbert Krebbers's avatar
Robbert Krebbers committed
53
(** * Setup of Iris's cameras *)
Robbert Krebbers's avatar
Robbert Krebbers committed
54 55
Class proto_chanG Σ := {
  proto_chanG_chanG :> chanG Σ;
Robbert Krebbers's avatar
Robbert Krebbers committed
56
  proto_chanG_authG :> auth_exclG (laterO (proto val (iPrePropO Σ) (iPrePropO Σ))) Σ;
Robbert Krebbers's avatar
Robbert Krebbers committed
57 58 59 60 61 62 63 64 65
}.

Definition proto_chanΣ := #[
  chanΣ;
  GFunctor (authRF(optionURF (exclRF (laterOF (protoOF val idOF idOF)))))
].
Instance subG_chanΣ {Σ} : subG proto_chanΣ Σ  proto_chanG Σ.
Proof. intros [??%subG_auth_exclG]%subG_inv. constructor; apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
66
(** * Types *)
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Definition iProto Σ := proto val (iPropO Σ) (iPropO Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
68 69 70
Delimit Scope proto_scope with proto.
Bind Scope proto_scope with iProto.

Robbert Krebbers's avatar
Robbert Krebbers committed
71
(** * Operators *)
Robbert Krebbers's avatar
Robbert Krebbers committed
72 73 74 75 76 77 78 79 80
Definition iProto_end_def {Σ} : iProto Σ := proto_end.
Definition iProto_end_aux : seal (@iProto_end_def). by eexists. Qed.
Definition iProto_end := iProto_end_aux.(unseal).
Definition iProto_end_eq : @iProto_end = @iProto_end_def := iProto_end_aux.(seal_eq).
Arguments iProto_end {_}.

Program Definition iProto_message_def {Σ} {TT : tele} (a : action)
    (pc : TT  val * iProp Σ * iProto Σ) : iProto Σ :=
  proto_message a (λ v, λne f,  x : TT,
Robbert Krebbers's avatar
Robbert Krebbers committed
81
    (** We need the later to make [iProto_message] contractive *)
Robbert Krebbers's avatar
Robbert Krebbers committed
82 83 84
     v = (pc x).1.1  
     (pc x).1.2 
    f (Next (pc x).2))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
85
Next Obligation. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
86 87 88 89
Definition iProto_message_aux : seal (@iProto_message_def). by eexists. Qed.
Definition iProto_message := iProto_message_aux.(unseal).
Definition iProto_message_eq : @iProto_message = @iProto_message_def := iProto_message_aux.(seal_eq).
Arguments iProto_message {_ _} _ _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
90
Instance: Params (@iProto_message) 3 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
91

92
Notation "< a > x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94 95 96 97 98 99 100 101 102 103
  (iProto_message
    a
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, a at level 10, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "< a > x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    a
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, a at level 10, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
104
Notation "< a > 'MSG' v {{ P } } ; p" :=
105 106 107 108 109 110 111 112 113
  (iProto_message
    a
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, a at level 10, v at level 20, P, p at level 200) : proto_scope.
Notation "< a > 'MSG' v ; p" :=
  (iProto_message
    a
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, a at level 10, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
114

115
Notation "<!> x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
116 117 118 119 120 121 122 123 124 125 126
  (iProto_message
    Send
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "<!> x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    Send
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
127
Notation "<!> 'MSG' v {{ P } } ; p" :=
128 129 130 131 132 133 134 135 136 137 138
  (iProto_message
    (TT:=TeleO)
    Send
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, v at level 20, P, p at level 200) : proto_scope.
Notation "<!> 'MSG' v ; p" :=
  (iProto_message
    (TT:=TeleO)
    Send
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
139

140
Notation "<?> x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
141 142 143 144 145 146 147 148 149 150 151
  (iProto_message
    Receive
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "<?> x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    Receive
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
152
Notation "<?> 'MSG' v {{ P } } ; p" :=
153 154 155 156 157 158 159 160 161
  (iProto_message
    Receive
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, v at level 20, P, p at level 200) : proto_scope.
Notation "<?> 'MSG' v ; p" :=
  (iProto_message
    Receive
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163

Notation "'END'" := iProto_end : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
164

Robbert Krebbers's avatar
Robbert Krebbers committed
165
(** * Operations *)
Robbert Krebbers's avatar
Robbert Krebbers committed
166
Definition iProto_dual {Σ} (p : iProto Σ) : iProto Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
167
  proto_map action_dual cid cid p.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
Arguments iProto_dual {_} _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
169
Instance: Params (@iProto_dual) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172
Definition iProto_dual_if {Σ} (d : bool) (p : iProto Σ) : iProto Σ :=
  if d then iProto_dual p else p.
Arguments iProto_dual_if {_} _ _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
173
Instance: Params (@iProto_dual_if) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
174

175 176 177
Definition iProto_branch {Σ} (a : action) (P1 P2 : iProp Σ)
    (p1 p2 : iProto Σ) : iProto Σ :=
  (<a> (b : bool), MSG #b {{ if b then P1 else P2 }}; if b then p1 else p2)%proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
Typeclasses Opaque iProto_branch.
179
Arguments iProto_branch {_} _ _%I _%I _%proto _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
180
Instance: Params (@iProto_branch) 2 := {}.
181 182 183 184 185 186 187 188
Infix "<{ P1 }+{ P2 }>" := (iProto_branch Send P1 P2) (at level 85) : proto_scope.
Infix "<{ P1 }&{ P2 }>" := (iProto_branch Receive P1 P2) (at level 85) : proto_scope.
Infix "<+{ P2 }>" := (iProto_branch Send True P2) (at level 85) : proto_scope.
Infix "<&{ P2 }>" := (iProto_branch Receive True P2) (at level 85) : proto_scope.
Infix "<{ P1 }+>" := (iProto_branch Send P1 True) (at level 85) : proto_scope.
Infix "<{ P1 }&>" := (iProto_branch Receive P1 True) (at level 85) : proto_scope.
Infix "<+>" := (iProto_branch Send True True) (at level 85) : proto_scope.
Infix "<&>" := (iProto_branch Receive True True) (at level 85) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
189

Robbert Krebbers's avatar
Robbert Krebbers committed
190 191
Definition iProto_app {Σ} (p1 p2 : iProto Σ) : iProto Σ := proto_app p1 p2.
Arguments iProto_app {_} _%proto _%proto.
Jonas Kastberg's avatar
Jonas Kastberg committed
192
Instance: Params (@iProto_app) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
193 194
Infix "<++>" := iProto_app (at level 60) : proto_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
195
(** * Auxiliary definitions and invariants *)
196 197 198
Definition proto_eq_next {Σ} (p : iProto Σ) : laterO (iProto Σ) -n> iPropO Σ :=
  OfeMor (sbi_internal_eq (Next p)).

199
Program Definition iProto_le_aux `{invG Σ} (rec : iProto Σ -n> iProto Σ -n> iPropO Σ) :
200 201 202 203
    iProto Σ -n> iProto Σ -n> iPropO Σ := λne p1 p2,
  ((p1  proto_end  p2  proto_end) 
   ( pc1 pc2,
     p1  proto_message Send pc1  p2  proto_message Send pc2 
204
      v p2', pc2 v (proto_eq_next p2') ={}=
205 206 207
        p1',  rec p1' p2'  pc1 v (proto_eq_next p1')) 
   ( pc1 pc2,
     p1  proto_message Receive pc1  p2  proto_message Receive pc2 
208
      v p1', pc1 v (proto_eq_next p1') ={}=
209 210
        p2',  rec p1' p2'  pc2 v (proto_eq_next p2')))%I.
Solve Obligations with solve_proper.
211
Local Instance iProto_le_aux_contractive `{invG Σ} : Contractive (@iProto_le_aux Σ _).
212
Proof. solve_contractive. Qed.
213
Definition iProto_le `{invG Σ} (p1 p2 : iProto Σ) : iProp Σ :=
214
  fixpoint iProto_le_aux p1 p2.
215
Arguments iProto_le {_ _} _%proto _%proto.
216 217

Fixpoint proto_interp {Σ} (vs : list val) (p1 p2 : iProto Σ) : iProp Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
218
  match vs with
219
  | [] => iProto_dual p1  p2
Robbert Krebbers's avatar
Robbert Krebbers committed
220
  | v :: vs =>  pc p2',
221 222
     p2  proto_message Receive pc 
     pc v (proto_eq_next p2') 
jihgfee's avatar
jihgfee committed
223
      proto_interp vs p1 p2'
Robbert Krebbers's avatar
Robbert Krebbers committed
224
  end%I.
225
Arguments proto_interp {_} _ _%proto _%proto : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227 228 229 230 231 232

Record proto_name := ProtName {
  proto_c_name : chan_name;
  proto_l_name : gname;
  proto_r_name : gname
}.

233
Definition to_proto_auth_excl {Σ} (p : iProto Σ) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  to_auth_excl (Next (proto_map id iProp_fold iProp_unfold p)).

Definition proto_own_frag `{!proto_chanG Σ} (γ : proto_name) (s : side)
    (p : iProto Σ) : iProp Σ :=
  own (side_elim s proto_l_name proto_r_name γ) ( to_proto_auth_excl p)%I.

Definition proto_own_auth `{!proto_chanG Σ} (γ : proto_name) (s : side)
    (p : iProto Σ) : iProp Σ :=
  own (side_elim s proto_l_name proto_r_name γ) ( to_proto_auth_excl p)%I.

Definition proto_inv `{!proto_chanG Σ} (γ : proto_name) : iProp Σ :=
  ( l r pl pr,
    chan_own (proto_c_name γ) Left l 
    chan_own (proto_c_name γ) Right r 
    proto_own_auth γ Left pl 
    proto_own_auth γ Right pr 
jihgfee's avatar
jihgfee committed
250 251
     ((r = []  proto_interp l pl pr) 
       (l = []  proto_interp r pr pl)))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
252

Robbert Krebbers's avatar
Robbert Krebbers committed
253 254
Definition protoN := nroot .@ "proto".

Robbert Krebbers's avatar
Robbert Krebbers committed
255
(** * The connective for ownership of channel ends *)
Robbert Krebbers's avatar
Robbert Krebbers committed
256
Definition mapsto_proto_def `{!proto_chanG Σ, !heapG Σ}
Robbert Krebbers's avatar
Robbert Krebbers committed
257
    (c : val) (p : iProto Σ) : iProp Σ :=
258
  ( s (c1 c2 : val) γ p',
Robbert Krebbers's avatar
Robbert Krebbers committed
259
     c = side_elim s c1 c2  
260
    iProto_le p' p 
261 262 263
    proto_own_frag γ s p' 
    is_chan protoN (proto_c_name γ) c1 c2 
    inv protoN (proto_inv γ))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
264 265 266
Definition mapsto_proto_aux : seal (@mapsto_proto_def). by eexists. Qed.
Definition mapsto_proto {Σ pΣ hΣ} := mapsto_proto_aux.(unseal) Σ pΣ hΣ.
Definition mapsto_proto_eq : @mapsto_proto = @mapsto_proto_def := mapsto_proto_aux.(seal_eq).
Robbert Krebbers's avatar
Robbert Krebbers committed
267 268
Arguments mapsto_proto {_ _ _} _ _%proto.
Instance: Params (@mapsto_proto) 4 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
269

Robbert Krebbers's avatar
Robbert Krebbers committed
270 271
Notation "c ↣ p" := (mapsto_proto c p)
  (at level 20, format "c  ↣  p").
Robbert Krebbers's avatar
Robbert Krebbers committed
272

Robbert Krebbers's avatar
Robbert Krebbers committed
273
(** * Proofs *)
Robbert Krebbers's avatar
Robbert Krebbers committed
274
Section proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
275
  Context `{!proto_chanG Σ, !heapG Σ}.
Robbert Krebbers's avatar
Robbert Krebbers committed
276 277 278
  Implicit Types p : iProto Σ.
  Implicit Types TT : tele.

Robbert Krebbers's avatar
Robbert Krebbers committed
279
  (** ** Non-expansiveness of operators *)
Robbert Krebbers's avatar
Robbert Krebbers committed
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
  Lemma iProto_message_contractive {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) n :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, dist_later n ((pc1 x).1.2) ((pc2 x).1.2)) 
    (.. x, dist_later n ((pc1 x).2) ((pc2 x).2)) 
    iProto_message a pc1 {n} iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp.
    rewrite iProto_message_eq /iProto_message_def.
    f_equiv=> v f /=. apply bi.exist_ne=> x.
    repeat (apply Hv || apply HP || apply Hp || f_contractive || f_equiv).
  Qed.
  Lemma iProto_message_ne {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) n :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, (pc1 x).1.2 {n} (pc2 x).1.2) 
    (.. x, (pc1 x).2 {n} (pc2 x).2) 
    iProto_message a pc1 {n} iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp.
    apply iProto_message_contractive; apply tforall_forall; eauto using dist_dist_later.
  Qed.
  Lemma iProto_message_proper {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, (pc1 x).1.2  (pc2 x).1.2) 
    (.. x, (pc1 x).2  (pc2 x).2) 
    iProto_message a pc1  iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp. apply equiv_dist => n.
    apply iProto_message_ne; apply tforall_forall=> x; by try apply equiv_dist.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
312

Robbert Krebbers's avatar
Robbert Krebbers committed
313
  Global Instance iProto_branch_contractive n a :
314 315
    Proper (dist_later n ==> dist_later n ==>
            dist_later n ==> dist_later n ==> dist n) (@iProto_branch Σ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
316
  Proof.
317
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
Robbert Krebbers's avatar
Robbert Krebbers committed
318 319
    apply iProto_message_contractive=> /= -[] //.
  Qed.
320 321
  Global Instance iProto_branch_ne n a :
    Proper (dist n ==> dist n ==> dist n ==> dist n ==> dist n) (@iProto_branch Σ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
322
  Proof.
323 324
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
    by apply iProto_message_ne=> /= -[].
Robbert Krebbers's avatar
Robbert Krebbers committed
325 326
  Qed.
  Global Instance iProto_branch_proper a :
327 328 329 330 331
    Proper (() ==> () ==> () ==> () ==> ()) (@iProto_branch Σ a).
  Proof.
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
    by apply iProto_message_proper=> /= -[].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
332

Robbert Krebbers's avatar
Robbert Krebbers committed
333
  (** ** Dual *)
Robbert Krebbers's avatar
Robbert Krebbers committed
334
  Global Instance iProto_dual_ne : NonExpansive (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
335
  Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
336
  Global Instance iProto_dual_proper : Proper (() ==> ()) (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
337
  Proof. apply (ne_proper _). Qed.
338 339 340 341
  Global Instance iProto_dual_if_ne d : NonExpansive (@iProto_dual_if Σ d).
  Proof. solve_proper. Qed.
  Global Instance iProto_dual_if_proper d : Proper (() ==> ()) (@iProto_dual_if Σ d).
  Proof. apply (ne_proper _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
342 343

  Global Instance iProto_dual_involutive : Involutive () (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
344
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
345
    intros p. rewrite /iProto_dual -proto_map_compose -{2}(proto_map_id p).
Robbert Krebbers's avatar
Robbert Krebbers committed
346 347
    apply: proto_map_ext=> //. by intros [].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
348 349 350 351 352 353 354 355 356 357 358

  Lemma iProto_dual_end : iProto_dual (Σ:=Σ) END  END%proto.
  Proof. by rewrite iProto_end_eq /iProto_dual proto_map_end. Qed.
  Lemma iProto_dual_message {TT} a (pc : TT  val * iProp Σ * iProto Σ) :
    iProto_dual (iProto_message a pc)
     iProto_message (action_dual a) (prod_map id iProto_dual  pc).
  Proof.
    rewrite /iProto_dual iProto_message_eq /iProto_message_def proto_map_message.
    by f_equiv=> v f /=.
  Qed.

359 360 361
  Lemma iProto_dual_branch a P1 P2 p1 p2 :
    iProto_dual (iProto_branch a P1 P2 p1 p2)
     iProto_branch (action_dual a) P1 P2 (iProto_dual p1) (iProto_dual p2).
Robbert Krebbers's avatar
Robbert Krebbers committed
362 363 364 365 366
  Proof.
    rewrite /iProto_branch iProto_dual_message /=.
    by apply iProto_message_proper=> /= -[].
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
367
  (** ** Append *)
Robbert Krebbers's avatar
Robbert Krebbers committed
368 369 370 371 372 373 374 375 376 377 378 379 380
  Global Instance iProto_app_ne : NonExpansive2 (@iProto_app Σ).
  Proof. apply _. Qed.
  Global Instance iProto_app_proper : Proper (() ==> () ==> ()) (@iProto_app Σ).
  Proof. apply (ne_proper_2 _). Qed.

  Lemma iProto_app_message {TT} a (pc : TT  val * iProp Σ * iProto Σ) p2 :
    (iProto_message a pc <++> p2)%proto  iProto_message a (prod_map id (flip iProto_app p2)  pc).
  Proof.
    rewrite /iProto_app iProto_message_eq /iProto_message_def proto_app_message.
    by f_equiv=> v f /=.
  Qed.

  Global Instance iProto_app_end_l : LeftId () END%proto (@iProto_app Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
381
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
382 383 384
    intros p. by rewrite iProto_end_eq /iProto_end_def /iProto_app proto_app_end_l.
  Qed.
  Global Instance iProto_app_end_r : RightId () END%proto (@iProto_app Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
385
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
    intros p. by rewrite iProto_end_eq /iProto_end_def /iProto_app proto_app_end_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
388 389 390
  Global Instance iProto_app_assoc : Assoc () (@iProto_app Σ).
  Proof. intros p1 p2 p3. by rewrite /iProto_app proto_app_assoc. Qed.

391 392 393
  Lemma iProto_app_branch a P1 P2 p1 p2 q :
    (iProto_branch a P1 P2 p1 p2 <++> q)%proto
     (iProto_branch a P1 P2 (p1 <++> q) (p2 <++> q))%proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
394 395 396 397 398
  Proof.
    rewrite /iProto_branch iProto_app_message.
    by apply iProto_message_proper=> /= -[].
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
399 400 401 402
  Lemma iProto_dual_app p1 p2 :
    iProto_dual (p1 <++> p2)  (iProto_dual p1 <++> iProto_dual p2)%proto.
  Proof. by rewrite /iProto_dual /iProto_app proto_map_app. Qed.

403
  (** ** Protocol entailment **)
404
  Global Instance iProto_le_ne : NonExpansive2 (@iProto_le Σ _).
405
  Proof. solve_proper. Qed.
406
  Global Instance iProto_le_proper : Proper (() ==> () ==> ()) (@iProto_le Σ _).
407 408 409 410 411 412 413 414 415 416 417
  Proof. solve_proper. Qed.

  Lemma iProto_le_unfold p1 p2 :
    iProto_le p1 p2  iProto_le_aux (fixpoint iProto_le_aux) p1 p2.
  Proof. apply: (fixpoint_unfold iProto_le_aux). Qed.

  Lemma iProto_le_refl p : iProto_le p p.
  Proof.
    iLöb as "IH" forall (p). destruct (proto_case p) as [->|([]&pc&->)].
    - rewrite iProto_le_unfold. iLeft; by auto.
    - rewrite iProto_le_unfold. iRight; iLeft. iExists _, _; do 2 (iSplit; [done|]).
418
      iIntros (v p') "Hpc". iExists p'. iIntros "{$Hpc} !> !>". iApply "IH".
419
    - rewrite iProto_le_unfold. iRight; iRight. iExists _, _; do 2 (iSplit; [done|]).
420
      iIntros (v p') "Hpc". iExists p'. iIntros "{$Hpc} !> !>". iApply "IH".
421 422 423 424 425 426 427 428 429 430 431 432
  Qed.

  Lemma iProto_le_end_inv p : iProto_le p proto_end - p  proto_end.
  Proof.
    rewrite iProto_le_unfold. iIntros "[[Hp _]|H] //".
    iDestruct "H" as "[H|H]"; iDestruct "H" as (pc1 pc2) "(_ & Heq & _)";
      by rewrite proto_end_message_equivI.
  Qed.

  Lemma iProto_le_send_inv p1 pc2 :
    iProto_le p1 (proto_message Send pc2) -  pc1,
      p1  proto_message Send pc1 
433
       v p2', pc2 v (proto_eq_next p2') ={}=
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
         p1',  iProto_le p1' p2'  pc1 v (proto_eq_next p1').
  Proof.
    rewrite iProto_le_unfold. iIntros "[[_ Heq]|[H|H]]".
    - by rewrite proto_message_end_equivI.
    - iDestruct "H" as (pc1 pc2') "(Hp1 & Heq & H)".
      iDestruct (proto_message_equivI with "Heq") as "[_ #Heq]".
      iExists pc1. iIntros "{$Hp1}" (v p2') "Hpc".
      iSpecialize ("Heq" $! v). iDestruct (bi.ofe_morO_equivI with "Heq") as "Heq'".
      iRewrite ("Heq'" $! (proto_eq_next p2')) in "Hpc". by iApply "H".
    - iDestruct "H" as (pc1 pc2') "(_ & Heq & _)".
      by iDestruct (proto_message_equivI with "Heq") as "[% ?]".
  Qed.

  Lemma iProto_le_recv_inv p1 pc2 :
    iProto_le p1 (proto_message Receive pc2) -  pc1,
      p1  proto_message Receive pc1 
450
       v p1', pc1 v (proto_eq_next p1') ={}=
451 452 453 454 455 456 457 458 459 460
         p2',  iProto_le p1' p2'  pc2 v (proto_eq_next p2').
  Proof.
    rewrite iProto_le_unfold. iIntros "[[_ Heq]|[H|H]]".
    - by rewrite proto_message_end_equivI.
    - iDestruct "H" as (pc1 pc2') "(_ & Heq & _)".
      by iDestruct (proto_message_equivI with "Heq") as "[% ?]".
    - iDestruct "H" as (pc1 pc2') "(Hp1 & Heq & H)".
      iDestruct (proto_message_equivI with "Heq") as "[_ #Heq]".
      iExists pc1. iIntros "{$Hp1}" (v p1') "Hpc".
      iSpecialize ("Heq" $! v). iDestruct (bi.ofe_morO_equivI with "Heq") as "Heq'".
461
      iMod ("H" with "Hpc") as (p2') "[Hle Hpc]". iModIntro.
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
      iExists p2'. iFrame "Hle". by iRewrite ("Heq'" $! (proto_eq_next p2')).
  Qed.

  Lemma iProto_le_trans p1 p2 p3 :
    iProto_le p1 p2 - iProto_le p2 p3 - iProto_le p1 p3.
  Proof.
    iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3).
    destruct (proto_case p3) as [->|([]&pc3&->)].
    - rewrite iProto_le_end_inv. by iRewrite "H2" in "H1".
    - iDestruct (iProto_le_send_inv with "H2") as (pc2) "[Hp2 H3]".
      iRewrite "Hp2" in "H1".
      iDestruct (iProto_le_send_inv with "H1") as (pc1) "[Hp1 H2]".
      iRewrite "Hp1". rewrite iProto_le_unfold; iRight; iLeft.
      iExists _, _; do 2 (iSplit; [done|]).
      iIntros (v p3') "Hpc".
477 478
      iMod ("H3" with "Hpc") as (p2') "[Hle Hpc]".
      iMod ("H2" with "Hpc") as (p1') "[Hle' Hpc]".
479 480 481 482 483 484 485
      iExists p1'. iIntros "{$Hpc} !>". by iApply ("IH" with "Hle'").
    - iDestruct (iProto_le_recv_inv with "H2") as (pc2) "[Hp2 H3]".
      iRewrite "Hp2" in "H1".
      iDestruct (iProto_le_recv_inv with "H1") as (pc1) "[Hp1 H2]".
      iRewrite "Hp1". rewrite iProto_le_unfold; iRight; iRight.
      iExists _, _; do 2 (iSplit; [done|]).
      iIntros (v p1') "Hpc".
486 487
      iMod ("H2" with "Hpc") as (p2') "[Hle Hpc]".
      iMod ("H3" with "Hpc") as (p3') "[Hle' Hpc]".
488 489 490 491 492
      iExists p3'. iIntros "{$Hpc} !>". by iApply ("IH" with "Hle").
  Qed.

  Lemma iProto_send_le {TT1 TT2} (pc1 : TT1  val * iProp Σ * iProto Σ)
      (pc2 : TT2  val * iProp Σ * iProto Σ) :
493
    (.. x2 : TT2,  (pc2 x2).1.2 ={}= .. x1 : TT1,
494
      (pc1 x1).1.1 = (pc2 x2).1.1 
495 496
       (pc1 x1).1.2 
       iProto_le (pc1 x1).2 (pc2 x2).2) -
497 498 499 500
    iProto_le (iProto_message Send pc1) (iProto_message Send pc2).
  Proof.
    iIntros "H". rewrite iProto_le_unfold iProto_message_eq. iRight; iLeft.
    iExists _, _; do 2 (iSplit; [done|]).
501 502 503 504
    iIntros (v p2') "/=". iDestruct 1 as (x2 ->) "[Hpc #Heq]".
    iMod ("H" with "Hpc") as (x1 ?) "[Hpc Hle]".
    iExists (pc1 x1).2. iSplitL "Hle".
    { iIntros "!> !>". change (fixpoint iProto_le_aux ?p1 ?p2) with (iProto_le p1 p2).
505
      by iRewrite "Heq". }
506
    iModIntro. iExists x1. iSplit; [done|]. iSplit; [by iApply "Hpc"|done].
507 508 509 510
  Qed.

  Lemma iProto_recv_le {TT1 TT2} (pc1 : TT1  val * iProp Σ * iProto Σ)
      (pc2 : TT2  val * iProp Σ * iProto Σ) :
511
    (.. x1 : TT1,  (pc1 x1).1.2 ={}= .. x2 : TT2,
512
      (pc1 x1).1.1 = (pc2 x2).1.1 
513 514
       (pc2 x2).1.2 
       iProto_le (pc1 x1).2 (pc2 x2).2) -
515 516 517 518
    iProto_le (iProto_message Receive pc1) (iProto_message Receive pc2).
  Proof.
    iIntros "H". rewrite iProto_le_unfold iProto_message_eq. iRight; iRight.
    iExists _, _; do 2 (iSplit; [done|]).
519 520 521
    iIntros (v p1') "/=". iDestruct 1 as (x1 ->) "[Hpc #Heq]".
    iMod ("H" with "Hpc") as (x2 ?) "[Hpc Hle]". iExists (pc2 x2).2. iSplitL "Hle".
    { iIntros "!> !>". change (fixpoint iProto_le_aux ?p1 ?p2) with (iProto_le p1 p2).
522
      by iRewrite "Heq". }
523
    iModIntro. iExists x2. iSplit; [done|]. iSplit; [by iApply "Hpc"|done].
524 525 526 527 528 529 530 531 532
  Qed.

  Lemma iProto_mapsto_le c p1 p2 : c  p1 - iProto_le p1 p2 - c  p2.
  Proof.
    rewrite mapsto_proto_eq. iDestruct 1 as (s c1 c2 γ p1' ->) "[Hle H]".
    iIntros "Hle'". iExists s, c1, c2, γ, p1'. iSplit; first done. iFrame "H".
    by iApply (iProto_le_trans with "Hle").
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
533
  (** ** Auxiliary definitions and invariants *)
534
  Global Instance proto_interp_ne : NonExpansive2 (proto_interp (Σ:=Σ) vs).
Robbert Krebbers's avatar
Robbert Krebbers committed
535
  Proof. induction vs; solve_proper. Qed.
536 537
  Global Instance proto_interp_proper vs :
    Proper (() ==> () ==> ()) (proto_interp (Σ:=Σ) vs).
Robbert Krebbers's avatar
Robbert Krebbers committed
538 539
  Proof. apply (ne_proper_2 _). Qed.

540
  Global Instance to_proto_auth_excl_ne : NonExpansive (to_proto_auth_excl (Σ:=Σ)).
Robbert Krebbers's avatar
Robbert Krebbers committed
541 542 543
  Proof. solve_proper. Qed.
  Global Instance proto_own_ne γ s : NonExpansive (proto_own_frag γ s).
  Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
544
  Global Instance mapsto_proto_ne c : NonExpansive (mapsto_proto c).
Robbert Krebbers's avatar
Robbert Krebbers committed
545
  Proof. rewrite mapsto_proto_eq. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
546
  Global Instance mapsto_proto_proper c : Proper (() ==> ()) (mapsto_proto c).
Robbert Krebbers's avatar
Robbert Krebbers committed
547 548 549 550 551 552 553 554 555
  Proof. apply (ne_proper _). Qed.

  Lemma proto_own_auth_agree γ s p p' :
    proto_own_auth γ s p - proto_own_frag γ s p' -  (p  p').
  Proof.
    iIntros "Hauth Hfrag".
    iDestruct (own_valid_2 with "Hauth Hfrag") as "Hvalid".
    iDestruct (to_auth_excl_valid with "Hvalid") as "Hvalid".
    iDestruct (bi.later_eq_1 with "Hvalid") as "Hvalid"; iNext.
Robbert Krebbers's avatar
Robbert Krebbers committed
556
    assert ( p,
Robbert Krebbers's avatar
Robbert Krebbers committed
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
      proto_map id iProp_unfold iProp_fold (proto_map id iProp_fold iProp_unfold p)  p) as help.
    { intros p''. rewrite -proto_map_compose -{2}(proto_map_id p'').
      apply proto_map_ext=> // pc /=; by rewrite iProp_fold_unfold. }
    rewrite -{2}(help p). iRewrite "Hvalid". by rewrite help.
  Qed.

  Lemma proto_own_auth_update γ s p p' p'' :
    proto_own_auth γ s p - proto_own_frag γ s p' ==
    proto_own_auth γ s p''  proto_own_frag γ s p''.
  Proof.
    iIntros "Hauth Hfrag".
    iDestruct (own_update_2 with "Hauth Hfrag") as "H".
    { eapply (auth_update _ _ (to_proto_auth_excl p'') (to_proto_auth_excl p'')).
      apply option_local_update. by apply exclusive_local_update. }
    by rewrite own_op.
  Qed.

574 575 576 577 578 579 580 581 582 583 584
  Lemma proto_eq_next_dual p :
    ofe_mor_map (laterO_map (proto_map action_dual cid cid)) cid (proto_eq_next (iProto_dual p)) 
    proto_eq_next p.
  Proof.
    intros lp. iSplit; iIntros "Hlp /="; last by iRewrite -"Hlp".
    destruct (Next_uninj lp) as [p' ->].
    rewrite /later_map /= !bi.later_equivI. iNext.
    rewrite -{2}(involutive iProto_dual p) -{2}(involutive iProto_dual p').
    by iRewrite "Hlp".
  Qed.

jihgfee's avatar
jihgfee committed
585 586
  Lemma proto_interp_send v vs pc p1 p2 :
    proto_interp vs (proto_message Send pc) p2 -
587
    pc v (proto_eq_next p1) -
jihgfee's avatar
jihgfee committed
588
    proto_interp (vs ++ [v]) p1 p2.
Robbert Krebbers's avatar
Robbert Krebbers committed
589 590 591
  Proof.
    iIntros "Heval Hc". iInduction vs as [|v' vs] "IH" forall (p2); simpl.
    - iDestruct "Heval" as "#Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
592
      iExists _, (iProto_dual p1). iSplit.
593 594
      { iRewrite -"Heval". by rewrite /iProto_dual proto_map_message. }
      rewrite /= proto_eq_next_dual; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
595 596 597 598
    - iDestruct "Heval" as (pc' p2') "(Heq & Hc' & Heval)".
      iExists pc', p2'. iFrame "Heq Hc'". iNext. iApply ("IH" with "Heval Hc").
  Qed.

jihgfee's avatar
jihgfee committed
599 600
  Lemma proto_interp_recv v vs p1 pc :
     proto_interp (v :: vs) p1 (proto_message Receive pc) -  p2,
601
       pc v (proto_eq_next p2) 
jihgfee's avatar
jihgfee committed
602
        proto_interp vs p1 p2.
Robbert Krebbers's avatar
Robbert Krebbers committed
603 604 605 606
  Proof.
    simpl. iDestruct 1 as (pc' p2) "(Heq & Hc & Hp2)". iExists p2. iFrame "Hp2".
    iDestruct (@proto_message_equivI with "Heq") as "[_ Heq]".
    iSpecialize ("Heq" $! v). rewrite bi.ofe_morO_equivI.
607
    by iRewrite ("Heq" $! (proto_eq_next p2)).
Robbert Krebbers's avatar
Robbert Krebbers committed
608 609
  Qed.

jihgfee's avatar
jihgfee committed
610 611
  Lemma proto_interp_False p pc v vs :
    proto_interp (v :: vs) p (proto_message Send pc) - False.
Robbert Krebbers's avatar
Robbert Krebbers committed
612 613 614 615 616
  Proof.
    simpl. iDestruct 1 as (pc' p2') "[Heq _]".
    by iDestruct (@proto_message_equivI with "Heq") as "[% _]".
  Qed.

jihgfee's avatar
jihgfee committed
617
  Lemma proto_interp_nil p1 p2 : proto_interp [] p1 p2 - p1  iProto_dual p2.
618
  Proof. iIntros "#H /=". iRewrite -"H". by rewrite involutive. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
619

jihgfee's avatar
jihgfee committed
620
  Arguments proto_interp : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
621

Robbert Krebbers's avatar
Robbert Krebbers committed
622
  (** ** Initialization of a channel *)
Robbert Krebbers's avatar
Robbert Krebbers committed
623
  Lemma proto_init E cγ c1 c2 p :
Robbert Krebbers's avatar
Robbert Krebbers committed
624
    is_chan protoN cγ c1 c2 -
Robbert Krebbers's avatar
Robbert Krebbers committed
625
    chan_own cγ Left [] - chan_own cγ Right [] ={E}=
Robbert Krebbers's avatar
Robbert Krebbers committed
626
    c1  p  c2  iProto_dual p.
Robbert Krebbers's avatar
Robbert Krebbers committed
627 628 629 630 631
  Proof.
    iIntros "#Hcctx Hcol Hcor".
    iMod (own_alloc ( (to_proto_auth_excl p) 
                      (to_proto_auth_excl p))) as (lγ) "[Hlsta Hlstf]".
    { by apply auth_both_valid_2. }
Robbert Krebbers's avatar
Robbert Krebbers committed
632 633
    iMod (own_alloc ( (to_proto_auth_excl (iProto_dual p)) 
                      (to_proto_auth_excl (iProto_dual p)))) as (rγ) "[Hrsta Hrstf]".
Robbert Krebbers's avatar
Robbert Krebbers committed
634 635
    { by apply auth_both_valid_2. }
    pose (ProtName cγ lγ rγ) as pγ.
Robbert Krebbers's avatar
Robbert Krebbers committed
636
    iMod (inv_alloc protoN _ (proto_inv pγ) with "[-Hlstf Hrstf Hcctx]") as "#Hinv".
Robbert Krebbers's avatar
Robbert Krebbers committed
637
    { iNext. rewrite /proto_inv. eauto 10 with iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
638
    iModIntro. rewrite mapsto_proto_eq. iSplitL "Hlstf".
639 640 641 642
    - iExists Left, c1, c2, pγ, p.
      iFrame "Hlstf Hinv Hcctx". iSplit; [done|]. iApply iProto_le_refl.
    - iExists Right, c1, c2, pγ, (iProto_dual p).
      iFrame "Hrstf Hinv Hcctx". iSplit; [done|]. iApply iProto_le_refl.
Robbert Krebbers's avatar
Robbert Krebbers committed
643 644
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
645
  (** ** Accessor style lemmas *)
646 647 648 649
  Lemma proto_send_acc {TT} c (pc : TT  val * iProp Σ * iProto Σ) (x : TT) :
    c  iProto_message Send pc -
    (pc x).1.2 -
     s c1 c2 γ,
Robbert Krebbers's avatar
Robbert Krebbers committed
650
       c = side_elim s c1 c2  
651
      is_chan protoN (proto_c_name γ) c1 c2  |={,∖↑protoN}=>  vs,
Robbert Krebbers's avatar
Robbert Krebbers committed
652
        chan_own (proto_c_name γ) s vs 
653 654
         (chan_own (proto_c_name γ) s (vs ++ [(pc x).1.1]) ={∖↑protoN,}=
           c  (pc x).2).
Robbert Krebbers's avatar
Robbert Krebbers committed
655
  Proof.
656 657
    rewrite {1}mapsto_proto_eq iProto_message_eq. iIntros "Hc HP".
    iDestruct "Hc" as (s c1 c2 γ p ->) "(Hle & Hst & #[Hcctx Hinv])".
Robbert Krebbers's avatar
Robbert Krebbers committed
658
    iExists s, c1, c2, γ. iSplit; first done. iFrame "Hcctx".
659 660 661 662
    iDestruct (iProto_le_send_inv with "Hle") as (pc') "[Hp H] /=".
    iRewrite "Hp" in "Hst"; clear p.
    iMod ("H" with "[HP]") as (p1') "[Hle HP]".
    { iExists _. iFrame "HP". by iSplit. }
663
    iInv protoN as (l r pl pr) "(>Hcl & >Hcr & Hstla & Hstra & Hinv')" "Hclose".
Robbert Krebbers's avatar
Robbert Krebbers committed
664 665
    (* TODO: refactor to avoid twice nearly the same proof *)
    iModIntro. destruct s.
666
    - iExists _. iIntros "{$Hcl} !> Hcl".
667 668 669 670
      iDestruct (proto_own_auth_agree with "Hstla Hst") as "#Heq".
      iMod (proto_own_auth_update _ _ _ _ p1' with "Hstla Hst") as "[Hstla Hst]".
      iMod ("Hclose" with "[-Hst Hle]") as "_".
      { iNext. iExists _,_,_,_. iFrame "Hcr Hstra Hstla Hcl". iLeft.
Robbert Krebbers's avatar
Robbert Krebbers committed
671 672
        iRewrite "Heq" in "Hinv'".
        iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]".
673
        { iSplit=> //. by iApply (proto_interp_send with "Heval [HP]"). }
Robbert Krebbers's avatar
Robbert Krebbers committed
674
        destruct r as [|vr r]; last first.
jihgfee's avatar
jihgfee committed
675 676
        { iDestruct (proto_interp_False with "Heval") as %[]. }
        iSplit; first done; simpl. iRewrite (proto_interp_nil with "Heval").
677 678 679
        iApply (proto_interp_send _ [] with "[//] HP"). }
      iModIntro. rewrite mapsto_proto_eq. iExists Left, c1, c2, γ, p1'.
      by iFrame "Hcctx Hinv Hst Hle".
680
    - iExists _. iIntros "{$Hcr} !> Hcr".
681 682 683 684
      iDestruct (proto_own_auth_agree with "Hstra Hst") as "#Heq".
      iMod (proto_own_auth_update _ _ _ _ p1' with "Hstra Hst") as "[Hstra Hst]".
      iMod ("Hclose" with "[-Hst Hle]") as "_".
      { iNext. iExists _, _, _, _. iFrame "Hcl Hstra Hstla Hcr". iRight.
Robbert Krebbers's avatar
Robbert Krebbers committed
685 686
        iRewrite "Heq" in "Hinv'".
        iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]"; last first.
687
        { iSplit=> //. by iApply (proto_interp_send with "Heval [HP]"). }
Robbert Krebbers's avatar
Robbert Krebbers committed
688
        destruct l as [|vl l]; last first.
jihgfee's avatar
jihgfee committed
689 690
        { iDestruct (proto_interp_False with "Heval") as %[]. }
        iSplit; first done; simpl. iRewrite (proto_interp_nil with "Heval").
691 692 693
        iApply (proto_interp_send _ [] with "[//] HP"). }
      iModIntro. rewrite mapsto_proto_eq. iExists Right, c1, c2, γ, p1'.
      by iFrame "Hcctx Hinv Hst Hle".
Robbert Krebbers's avatar
Robbert Krebbers committed
694 695
  Qed.

696 697 698
  Lemma proto_recv_acc {TT} c (pc : TT  val * iProp Σ * iProto Σ) :
    c  iProto_message Receive pc -
     s c1 c2 γ,
Robbert Krebbers's avatar
Robbert Krebbers committed
699
       c = side_elim s c2 c1  
700
      is_chan protoN (proto_c_name γ) c1 c2  |={,∖↑protoN}=>  vs,
Robbert Krebbers's avatar
Robbert Krebbers committed
701
        chan_own (proto_c_name γ) s vs 
702
         ((chan_own (proto_c_name γ) s vs ={∖↑protoN,}=
Robbert Krebbers's avatar
Robbert Krebbers committed
703
             c  iProto_message Receive pc) 
Robbert Krebbers's avatar
Robbert Krebbers committed
704 705
           ( v vs',
              vs = v :: vs'  -
706
             chan_own (proto_c_name γ) s vs' ={∖↑protoN,,}=   x : TT,
Robbert Krebbers's avatar
Robbert Krebbers committed
707
              v = (pc x).1.1   c  (pc x).2  (pc x).1.2)).
Robbert Krebbers's avatar
Robbert Krebbers committed
708
  Proof.
709
    rewrite {1}mapsto_proto_eq iProto_message_eq.
710
    iDestruct 1 as (s c1 c2 γ p ->) "(Hle & Hst & #[Hcctx Hinv])".
711 712
    iDestruct (iProto_le_recv_inv with "Hle") as (pc') "[Hp Hle] /=".
    iRewrite "Hp" in "Hst". clear p.
Robbert Krebbers's avatar
Robbert Krebbers committed
713 714
    iExists (side_elim s Right Left), c1, c2, γ. iSplit; first by destruct s.
    iFrame "Hcctx".
715
    iInv protoN as (l r pl pr) "(>Hcl & >Hcr & Hstla & Hstra & Hinv')" "Hclose".
Robbert Krebbers's avatar
Robbert Krebbers committed
716 717 718
    iExists (side_elim s r l). iModIntro.
    (* TODO: refactor to avoid twice nearly the same proof *)
    destruct s; simpl.
719
    - iIntros "{$Hcr} !>". 
720
      iDestruct (proto_own_auth_agree with "Hstla Hst") as "#Heq".
Robbert Krebbers's avatar
Robbert Krebbers committed
721
      iSplit.
722 723
      + iIntros "Hcr".
        iMod ("Hclose" with "[-Hst Hle]") as "_".
Robbert Krebbers's avatar
Robbert Krebbers committed
724
        { iNext. iExists l, r, _, _. iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
725
        iModIntro. rewrite mapsto_proto_eq.
726 727
        iExists Left, c1, c2, γ, (proto_message Receive pc').
        iFrame "Hcctx Hinv Hst". iSplit; first done.
728
        rewrite iProto_le_unfold. iRight; auto 10.
729
      + iIntros (v vs ->) "Hcr".
730
        iDestruct "Hinv'" as "[[>% _]|[>-> Heval]]"; first done.
731
        iAssert ( proto_interp (v :: vs) pr (proto_message Receive pc'))%I
Robbert Krebbers's avatar
Robbert Krebbers committed
732
          with "[Heval]" as "Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
733
        { iNext. by iRewrite "Heq" in "Heval". }
734 735 736 737
        iDestruct (proto_interp_recv with "Heval") as (q) "[Hpc Heval]".
        iMod (proto_own_auth_update _ _ _ _ q with "Hstla Hst") as "[Hstla Hst]".
        iMod ("Hclose" with "[-Hst Hpc Hle]") as %_.
        { iExists _, _,_ ,_; iFrame; eauto. }
738
        iIntros "!> !>". iMod ("Hle" with "Hpc") as (q') "[Hle H]".
739
        iDestruct "H" as (x) "(Hv & HP & #Hf) /=".
740
        iIntros "!> !>". iExists x. iFrame "Hv HP". iRewrite -"Hf".
741
        rewrite mapsto_proto_eq. iExists Left, c1, c2, γ, q. iFrame; auto.
742
    - iIntros "{$Hcl} !>".
743
      iDestruct (proto_own_auth_agree with "Hstra Hst") as "#Heq".
Robbert Krebbers's avatar
Robbert Krebbers committed
744
      iSplit.
745 746
      + iIntros "Hcl".
        iMod ("Hclose" with "[-Hst Hle]") as "_".
Robbert Krebbers's avatar
Robbert Krebbers committed
747
        { iNext. iExists l, r, _, _. iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
748
        iModIntro. rewrite mapsto_proto_eq.
749 750
        iExists Right, c1, c2, γ, (proto_message Receive pc').
        iFrame "Hcctx Hinv Hst". iSplit; first done.
751
        rewrite iProto_le_unfold. iRight; auto 10.
752
      + iIntros (v vs ->) "Hcl".
Robbert Krebbers's avatar
Robbert Krebbers committed
753
        iDestruct "Hinv'" as "[[>-> Heval]|[>% _]]"; last done.
754
        iAssert ( proto_interp (v :: vs) pl (proto_message Receive pc'))%I
Robbert Krebbers's avatar
Robbert Krebbers committed
755
          with "[Heval]" as "Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed