proto_channel.v 33.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5 6
From osiris.channel Require Export channel.
From osiris.channel Require Import proto_model.
From iris.base_logic.lib Require Import invariants.
From iris.heap_lang Require Import proofmode notation.
From iris.algebra Require Import auth excl.
From osiris.utils Require Import auth_excl.
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8
Export action.
Robbert Krebbers's avatar
Robbert Krebbers committed
9

Robbert Krebbers's avatar
Robbert Krebbers committed
10 11 12 13
Definition start_chan : val := λ: "f",
  let: "cc" := new_chan #() in
  Fork ("f" (Snd "cc"));; Fst "cc".

Robbert Krebbers's avatar
Robbert Krebbers committed
14 15 16 17 18 19 20 21 22 23 24 25 26
(** Camera setup *)
Class proto_chanG Σ := {
  proto_chanG_chanG :> chanG Σ;
  proto_chanG_authG :> auth_exclG (laterO (proto val (iPreProp Σ) (iPreProp Σ))) Σ;
}.

Definition proto_chanΣ := #[
  chanΣ;
  GFunctor (authRF(optionURF (exclRF (laterOF (protoOF val idOF idOF)))))
].
Instance subG_chanΣ {Σ} : subG proto_chanΣ Σ  proto_chanG Σ.
Proof. intros [??%subG_auth_exclG]%subG_inv. constructor; apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
27
(** Types *)
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29 30 31
Definition iProto Σ := proto val (iProp Σ) (iProp Σ).
Delimit Scope proto_scope with proto.
Bind Scope proto_scope with iProto.

Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45
(** Operators *)
Definition iProto_end_def {Σ} : iProto Σ := proto_end.
Definition iProto_end_aux : seal (@iProto_end_def). by eexists. Qed.
Definition iProto_end := iProto_end_aux.(unseal).
Definition iProto_end_eq : @iProto_end = @iProto_end_def := iProto_end_aux.(seal_eq).
Arguments iProto_end {_}.

Program Definition iProto_message_def {Σ} {TT : tele} (a : action)
    (pc : TT  val * iProp Σ * iProto Σ) : iProto Σ :=
  proto_message a (λ v, λne f,  x : TT,
    (* Need the laters to make [iProto_message] contractive *)
     v = (pc x).1.1  
     (pc x).1.2 
    f (Next (pc x).2))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
46
Next Obligation. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
47 48 49 50 51 52
Definition iProto_message_aux : seal (@iProto_message_def). by eexists. Qed.
Definition iProto_message := iProto_message_aux.(unseal).
Definition iProto_message_eq : @iProto_message = @iProto_message_def := iProto_message_aux.(seal_eq).
Arguments iProto_message {_ _} _ _%proto.
Instance: Params (@iProto_message) 3.

53
Notation "< a > x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
54 55 56 57 58 59 60 61 62 63 64
  (iProto_message
    a
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, a at level 10, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "< a > x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    a
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, a at level 10, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
65
Notation "< a > 'MSG' v {{ P } } ; p" :=
66 67 68 69 70 71 72 73 74
  (iProto_message
    a
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, a at level 10, v at level 20, P, p at level 200) : proto_scope.
Notation "< a > 'MSG' v ; p" :=
  (iProto_message
    a
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, a at level 10, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76
Notation "<!> x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
77 78 79 80 81 82 83 84 85 86 87
  (iProto_message
    Send
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "<!> x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    Send
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
88
Notation "<!> 'MSG' v {{ P } } ; p" :=
89 90 91 92 93 94 95 96 97 98 99
  (iProto_message
    (TT:=TeleO)
    Send
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, v at level 20, P, p at level 200) : proto_scope.
Notation "<!> 'MSG' v ; p" :=
  (iProto_message
    (TT:=TeleO)
    Send
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
100

101
Notation "<?> x1 .. xn , 'MSG' v {{ P } } ; p" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
102 103 104 105 106 107 108 109 110 111 112
  (iProto_message
    Receive
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope.
Notation "<?> x1 .. xn , 'MSG' v ; p" :=
  (iProto_message
    Receive
    (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..))
  (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope.
113
Notation "<?> 'MSG' v {{ P } } ; p" :=
114 115 116 117 118 119 120 121 122
  (iProto_message
    Receive
    (tele_app (TT:=TeleO) (v%V,P%I,p%proto)))
  (at level 20, v at level 20, P, p at level 200) : proto_scope.
Notation "<?> 'MSG' v ; p" :=
  (iProto_message
    Receive
    (tele_app (TT:=TeleO) (v%V,True%I,p%proto)))
  (at level 20, v at level 20, p at level 200) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
123 124

Notation "'END'" := iProto_end : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
125

Robbert Krebbers's avatar
Robbert Krebbers committed
126
(** Dual *)
Robbert Krebbers's avatar
Robbert Krebbers committed
127
Definition iProto_dual {Σ} (p : iProto Σ) : iProto Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
128
  proto_map action_dual cid cid p.
Robbert Krebbers's avatar
Robbert Krebbers committed
129 130 131 132 133 134
Arguments iProto_dual {_} _%proto.
Instance: Params (@iProto_dual) 1.
Definition iProto_dual_if {Σ} (d : bool) (p : iProto Σ) : iProto Σ :=
  if d then iProto_dual p else p.
Arguments iProto_dual_if {_} _ _%proto.
Instance: Params (@iProto_dual_if) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
135

Robbert Krebbers's avatar
Robbert Krebbers committed
136
(** Branching *)
137 138 139
Definition iProto_branch {Σ} (a : action) (P1 P2 : iProp Σ)
    (p1 p2 : iProto Σ) : iProto Σ :=
  (<a> (b : bool), MSG #b {{ if b then P1 else P2 }}; if b then p1 else p2)%proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
Typeclasses Opaque iProto_branch.
141
Arguments iProto_branch {_} _ _%I _%I _%proto _%proto.
142
Instance: Params (@iProto_branch) 2.
143 144 145 146 147 148 149 150
Infix "<{ P1 }+{ P2 }>" := (iProto_branch Send P1 P2) (at level 85) : proto_scope.
Infix "<{ P1 }&{ P2 }>" := (iProto_branch Receive P1 P2) (at level 85) : proto_scope.
Infix "<+{ P2 }>" := (iProto_branch Send True P2) (at level 85) : proto_scope.
Infix "<&{ P2 }>" := (iProto_branch Receive True P2) (at level 85) : proto_scope.
Infix "<{ P1 }+>" := (iProto_branch Send P1 True) (at level 85) : proto_scope.
Infix "<{ P1 }&>" := (iProto_branch Receive P1 True) (at level 85) : proto_scope.
Infix "<+>" := (iProto_branch Send True True) (at level 85) : proto_scope.
Infix "<&>" := (iProto_branch Receive True True) (at level 85) : proto_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
151

Robbert Krebbers's avatar
Robbert Krebbers committed
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
(** Append *)
Definition iProto_app {Σ} (p1 p2 : iProto Σ) : iProto Σ := proto_app p1 p2.
Arguments iProto_app {_} _%proto _%proto.
Instance: Params (@iProto_app) 1.
Infix "<++>" := iProto_app (at level 60) : proto_scope.

(** Classes *)
Class ActionDualIf (d : bool) (a1 a2 : action) :=
  dual_action_if : a2 = if d then action_dual a1 else a1.
Hint Mode ActionDualIf ! ! - : typeclass_instances.

Instance action_dual_if_false a : ActionDualIf false a a := eq_refl.
Instance action_dual_if_true_send : ActionDualIf true Send Receive := eq_refl.
Instance action_dual_if_true_receive : ActionDualIf true Receive Send := eq_refl.

Class ProtoNormalize {Σ} (d : bool) (p : iProto Σ)
    (pas : list (bool * iProto Σ)) (q : iProto Σ) :=
  proto_normalize :
    q  (iProto_dual_if d p <++>
         foldr (iProto_app  curry iProto_dual_if) END pas)%proto.
Hint Mode ProtoNormalize ! ! ! ! - : typeclass_instances.
Arguments ProtoNormalize {_} _ _%proto _%proto _%proto.

Class ProtoContNormalize {Σ TT} (d : bool) (pc : TT  val * iProp Σ * iProto Σ)
    (pas : list (bool * iProto Σ)) (qc : TT  val * iProp Σ * iProto Σ) :=
  proto_cont_normalize x :
    (qc x).1.1 = (pc x).1.1 
    (qc x).1.2  (pc x).1.2 
    ProtoNormalize d ((pc x).2) pas ((qc x).2).
Hint Mode ProtoContNormalize ! ! ! ! ! - : typeclass_instances.

(** Auxiliary definitions and invariants *)
Robbert Krebbers's avatar
Robbert Krebbers committed
184 185
Fixpoint proto_eval `{!proto_chanG Σ} (vs : list val) (p1 p2 : iProto Σ) : iProp Σ :=
  match vs with
Robbert Krebbers's avatar
Robbert Krebbers committed
186
  | [] => p1  iProto_dual p2
Robbert Krebbers's avatar
Robbert Krebbers committed
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  | v :: vs =>  pc p2',
     p2  (proto_message Receive pc)%proto 
     ( f : laterO (iProto Σ) -n> iProp Σ, f (Next p2') - pc v f) 
      proto_eval vs p1 p2'
  end%I.
Arguments proto_eval {_ _} _ _%proto _%proto : simpl nomatch.

Record proto_name := ProtName {
  proto_c_name : chan_name;
  proto_l_name : gname;
  proto_r_name : gname
}.

Definition to_proto_auth_excl `{!proto_chanG Σ} (p : iProto Σ) :=
  to_auth_excl (Next (proto_map id iProp_fold iProp_unfold p)).

Definition proto_own_frag `{!proto_chanG Σ} (γ : proto_name) (s : side)
    (p : iProto Σ) : iProp Σ :=
  own (side_elim s proto_l_name proto_r_name γ) ( to_proto_auth_excl p)%I.

Definition proto_own_auth `{!proto_chanG Σ} (γ : proto_name) (s : side)
    (p : iProto Σ) : iProp Σ :=
  own (side_elim s proto_l_name proto_r_name γ) ( to_proto_auth_excl p)%I.

Definition proto_inv `{!proto_chanG Σ} (γ : proto_name) : iProp Σ :=
  ( l r pl pr,
    chan_own (proto_c_name γ) Left l 
    chan_own (proto_c_name γ) Right r 
    proto_own_auth γ Left pl 
    proto_own_auth γ Right pr 
     ((r = []  proto_eval l pl pr) 
       (l = []  proto_eval r pr pl)))%I.

Robbert Krebbers's avatar
Robbert Krebbers committed
220
Definition mapsto_proto_def `{!proto_chanG Σ, !heapG Σ} (N : namespace)
Robbert Krebbers's avatar
Robbert Krebbers committed
221 222 223 224
    (c : val) (p : iProto Σ) : iProp Σ :=
  ( s (c1 c2 : val) γ,
     c = side_elim s c1 c2  
    proto_own_frag γ s p  is_chan N (proto_c_name γ) c1 c2  inv N (proto_inv γ))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
225 226 227 228 229
Definition mapsto_proto_aux : seal (@mapsto_proto_def). by eexists. Qed.
Definition mapsto_proto {Σ pΣ hΣ} := mapsto_proto_aux.(unseal) Σ pΣ hΣ.
Definition mapsto_proto_eq : @mapsto_proto = @mapsto_proto_def := mapsto_proto_aux.(seal_eq).
Arguments mapsto_proto {_ _ _} _ _ _%proto.
Instance: Params (@mapsto_proto) 5 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
230

Robbert Krebbers's avatar
Robbert Krebbers committed
231
Notation "c ↣ p @ N" := (mapsto_proto N c p)
Robbert Krebbers's avatar
Robbert Krebbers committed
232 233 234 235
  (at level 20, N at level 50, format "c  ↣  p  @  N").

Section proto.
  Context `{!proto_chanG Σ, !heapG Σ} (N : namespace).
Robbert Krebbers's avatar
Robbert Krebbers committed
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  Implicit Types p : iProto Σ.
  Implicit Types TT : tele.

  (** Non-expansiveness of operators *)
  Lemma iProto_message_contractive {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) n :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, dist_later n ((pc1 x).1.2) ((pc2 x).1.2)) 
    (.. x, dist_later n ((pc1 x).2) ((pc2 x).2)) 
    iProto_message a pc1 {n} iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp.
    rewrite iProto_message_eq /iProto_message_def.
    f_equiv=> v f /=. apply bi.exist_ne=> x.
    repeat (apply Hv || apply HP || apply Hp || f_contractive || f_equiv).
  Qed.
  Lemma iProto_message_ne {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) n :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, (pc1 x).1.2 {n} (pc2 x).1.2) 
    (.. x, (pc1 x).2 {n} (pc2 x).2) 
    iProto_message a pc1 {n} iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp.
    apply iProto_message_contractive; apply tforall_forall; eauto using dist_dist_later.
  Qed.
  Lemma iProto_message_proper {TT} a
      (pc1 pc2 : TT  val * iProp Σ * iProto Σ) :
    (.. x, (pc1 x).1.1 = (pc2 x).1.1) 
    (.. x, (pc1 x).1.2  (pc2 x).1.2) 
    (.. x, (pc1 x).2  (pc2 x).2) 
    iProto_message a pc1  iProto_message a pc2.
  Proof.
    rewrite !tforall_forall=> Hv HP Hp. apply equiv_dist => n.
    apply iProto_message_ne; apply tforall_forall=> x; by try apply equiv_dist.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
272

Robbert Krebbers's avatar
Robbert Krebbers committed
273
  Global Instance iProto_branch_contractive n a :
274 275
    Proper (dist_later n ==> dist_later n ==>
            dist_later n ==> dist_later n ==> dist n) (@iProto_branch Σ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
276
  Proof.
277
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
Robbert Krebbers's avatar
Robbert Krebbers committed
278 279
    apply iProto_message_contractive=> /= -[] //.
  Qed.
280 281
  Global Instance iProto_branch_ne n a :
    Proper (dist n ==> dist n ==> dist n ==> dist n ==> dist n) (@iProto_branch Σ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
282
  Proof.
283 284
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
    by apply iProto_message_ne=> /= -[].
Robbert Krebbers's avatar
Robbert Krebbers committed
285 286
  Qed.
  Global Instance iProto_branch_proper a :
287 288 289 290 291
    Proper (() ==> () ==> () ==> () ==> ()) (@iProto_branch Σ a).
  Proof.
    intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2.
    by apply iProto_message_proper=> /= -[].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
292 293 294

  (** Dual *)
  Global Instance iProto_dual_ne : NonExpansive (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
295
  Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
296
  Global Instance iProto_dual_proper : Proper (() ==> ()) (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
297
  Proof. apply (ne_proper _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
298 299

  Global Instance iProto_dual_involutive : Involutive () (@iProto_dual Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
300
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
    intros p. rewrite /iProto_dual -proto_map_compose -{2}(proto_map_id p).
Robbert Krebbers's avatar
Robbert Krebbers committed
302 303
    apply: proto_map_ext=> //. by intros [].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
304 305 306 307 308 309 310 311 312 313 314

  Lemma iProto_dual_end : iProto_dual (Σ:=Σ) END  END%proto.
  Proof. by rewrite iProto_end_eq /iProto_dual proto_map_end. Qed.
  Lemma iProto_dual_message {TT} a (pc : TT  val * iProp Σ * iProto Σ) :
    iProto_dual (iProto_message a pc)
     iProto_message (action_dual a) (prod_map id iProto_dual  pc).
  Proof.
    rewrite /iProto_dual iProto_message_eq /iProto_message_def proto_map_message.
    by f_equiv=> v f /=.
  Qed.

315 316 317
  Lemma iProto_dual_branch a P1 P2 p1 p2 :
    iProto_dual (iProto_branch a P1 P2 p1 p2)
     iProto_branch (action_dual a) P1 P2 (iProto_dual p1) (iProto_dual p2).
Robbert Krebbers's avatar
Robbert Krebbers committed
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
  Proof.
    rewrite /iProto_branch iProto_dual_message /=.
    by apply iProto_message_proper=> /= -[].
  Qed.

  (** Append *)
  Global Instance iProto_app_ne : NonExpansive2 (@iProto_app Σ).
  Proof. apply _. Qed.
  Global Instance iProto_app_proper : Proper (() ==> () ==> ()) (@iProto_app Σ).
  Proof. apply (ne_proper_2 _). Qed.

  Lemma iProto_app_message {TT} a (pc : TT  val * iProp Σ * iProto Σ) p2 :
    (iProto_message a pc <++> p2)%proto  iProto_message a (prod_map id (flip iProto_app p2)  pc).
  Proof.
    rewrite /iProto_app iProto_message_eq /iProto_message_def proto_app_message.
    by f_equiv=> v f /=.
  Qed.

  Global Instance iProto_app_end_l : LeftId () END%proto (@iProto_app Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
337
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
338 339 340
    intros p. by rewrite iProto_end_eq /iProto_end_def /iProto_app proto_app_end_l.
  Qed.
  Global Instance iProto_app_end_r : RightId () END%proto (@iProto_app Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
341
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
342
    intros p. by rewrite iProto_end_eq /iProto_end_def /iProto_app proto_app_end_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
343
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
344 345 346
  Global Instance iProto_app_assoc : Assoc () (@iProto_app Σ).
  Proof. intros p1 p2 p3. by rewrite /iProto_app proto_app_assoc. Qed.

347 348 349
  Lemma iProto_app_branch a P1 P2 p1 p2 q :
    (iProto_branch a P1 P2 p1 p2 <++> q)%proto
     (iProto_branch a P1 P2 (p1 <++> q) (p2 <++> q))%proto.
Robbert Krebbers's avatar
Robbert Krebbers committed
350 351 352 353 354
  Proof.
    rewrite /iProto_branch iProto_app_message.
    by apply iProto_message_proper=> /= -[].
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
355 356 357 358 359 360 361 362 363 364
  Lemma iProto_dual_app p1 p2 :
    iProto_dual (p1 <++> p2)  (iProto_dual p1 <++> iProto_dual p2)%proto.
  Proof. by rewrite /iProto_dual /iProto_app proto_map_app. Qed.

  (** Classes *)
  Global Instance proto_normalize_done p : ProtoNormalize false p [] p | 0.
  Proof. by rewrite /ProtoNormalize /= right_id. Qed. 
  Global Instance proto_normalize_done_dual p :
    ProtoNormalize true p [] (iProto_dual p) | 0.
  Proof. by rewrite /ProtoNormalize /= right_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
365 366 367
  Global Instance proto_normalize_done_dual_end :
    ProtoNormalize (Σ:=Σ) true END [] END | 0.
  Proof. by rewrite /ProtoNormalize /= right_id iProto_dual_end. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

  Global Instance proto_normalize_dual d p pas q :
    ProtoNormalize (negb d) p pas q 
    ProtoNormalize d (iProto_dual p) pas q.
  Proof. rewrite /ProtoNormalize=> ->. by destruct d; rewrite /= ?involutive. Qed.

  Global Instance proto_normalize_app_l d p1 p2 pas q :
    ProtoNormalize d p1 ((d,p2) :: pas) q 
    ProtoNormalize d (p1 <++> p2) pas q.
  Proof.
    rewrite /ProtoNormalize=> -> /=. rewrite assoc.
    by destruct d; by rewrite /= ?iProto_dual_app.
  Qed.

  Global Instance proto_normalize_end d d' p pas q :
    ProtoNormalize d p pas q 
    ProtoNormalize d' END ((d,p) :: pas) q | 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
385
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
386 387
    rewrite /ProtoNormalize=> -> /=.
    destruct d'; by rewrite /= ?iProto_dual_end left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
388 389
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  Global Instance proto_normalize_app_r d p1 p2 pas q :
    ProtoNormalize d p2 pas q 
    ProtoNormalize false p1 ((d,p2) :: pas) (p1 <++> q) | 10.
  Proof. by rewrite /ProtoNormalize=> -> /=. Qed.

  Global Instance proto_normalize_app_r_dual d p1 p2 pas q :
    ProtoNormalize d p2 pas q 
    ProtoNormalize true p1 ((d,p2) :: pas) (iProto_dual p1 <++> q) | 10.
  Proof. by rewrite /ProtoNormalize=> -> /=. Qed.

  Global Instance proto_cont_normalize_O d v P p q pas :
    ProtoNormalize d p pas q 
    ProtoContNormalize d (tele_app (TT:=TeleO) (v,P,p)) pas
                         (tele_app (TT:=TeleO) (v,P,q)).
  Proof. rewrite /ProtoContNormalize=> ?. by apply tforall_forall. Qed.

  Global Instance proto_cont_normalize_S {A} {TT : A  tele} d
      (pc qc :  a, TT a -t> val * iProp Σ * iProto Σ) pas :
    ( a, ProtoContNormalize d (tele_app (pc a)) pas (tele_app (qc a))) 
    ProtoContNormalize d (tele_app (TT:=TeleS TT) pc) pas (tele_app (TT:=TeleS TT) qc).
Robbert Krebbers's avatar
Robbert Krebbers committed
410
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
411 412
    rewrite /ProtoContNormalize=> H. apply tforall_forall=> /= x.
    apply tforall_forall, (H x).
Robbert Krebbers's avatar
Robbert Krebbers committed
413 414
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
  Global Instance proto_normalize_message {TT} d a1 a2
      (pc qc : TT  val * iProp Σ * iProto Σ) pas :
    ActionDualIf d a1 a2 
    ProtoContNormalize d pc pas qc 
    ProtoNormalize d (iProto_message a1 pc) pas
                     (iProto_message a2 qc).
  Proof.
    rewrite /ActionDualIf /ProtoContNormalize /ProtoNormalize=> -> H.
    destruct d; simpl.
    - rewrite iProto_dual_message iProto_app_message.
      apply iProto_message_proper; apply tforall_forall=> x /=; apply H.
    - rewrite iProto_app_message.
      apply iProto_message_proper; apply tforall_forall=> x /=; apply H.
  Qed.

430
  Global Instance proto_normalize_branch d a1 a2 P1 P2 p1 p2 q1 q2 pas :
Robbert Krebbers's avatar
Robbert Krebbers committed
431 432
    ActionDualIf d a1 a2 
    ProtoNormalize d p1 pas q1  ProtoNormalize d p2 pas q2 
433 434
    ProtoNormalize d (iProto_branch a1 P1 P2 p1 p2) pas
                     (iProto_branch a2 P1 P2 q1 q2).
Robbert Krebbers's avatar
Robbert Krebbers committed
435 436 437 438 439
  Proof.
    rewrite /ActionDualIf /ProtoNormalize=> -> -> ->.
    destruct d; by rewrite /= -?iProto_app_branch -?iProto_dual_branch.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
440
  (** Auxiliary definitions and invariants *)
Robbert Krebbers's avatar
Robbert Krebbers committed
441 442 443 444 445 446 447 448 449
  Global Instance proto_eval_ne : NonExpansive2 (proto_eval vs).
  Proof. induction vs; solve_proper. Qed.
  Global Instance proto_eval_proper vs : Proper (() ==> () ==> ()) (proto_eval vs).
  Proof. apply (ne_proper_2 _). Qed.

  Global Instance to_proto_auth_excl_ne : NonExpansive to_proto_auth_excl.
  Proof. solve_proper. Qed.
  Global Instance proto_own_ne γ s : NonExpansive (proto_own_frag γ s).
  Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
450 451 452
  Global Instance mapsto_proto_ne c : NonExpansive (mapsto_proto N c).
  Proof. rewrite mapsto_proto_eq. solve_proper. Qed.
  Global Instance mapsto_proto_proper c : Proper (() ==> ()) (mapsto_proto N c).
Robbert Krebbers's avatar
Robbert Krebbers committed
453 454 455 456 457 458 459 460 461
  Proof. apply (ne_proper _). Qed.

  Lemma proto_own_auth_agree γ s p p' :
    proto_own_auth γ s p - proto_own_frag γ s p' -  (p  p').
  Proof.
    iIntros "Hauth Hfrag".
    iDestruct (own_valid_2 with "Hauth Hfrag") as "Hvalid".
    iDestruct (to_auth_excl_valid with "Hvalid") as "Hvalid".
    iDestruct (bi.later_eq_1 with "Hvalid") as "Hvalid"; iNext.
Robbert Krebbers's avatar
Robbert Krebbers committed
462
    assert ( p,
Robbert Krebbers's avatar
Robbert Krebbers committed
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
      proto_map id iProp_unfold iProp_fold (proto_map id iProp_fold iProp_unfold p)  p) as help.
    { intros p''. rewrite -proto_map_compose -{2}(proto_map_id p'').
      apply proto_map_ext=> // pc /=; by rewrite iProp_fold_unfold. }
    rewrite -{2}(help p). iRewrite "Hvalid". by rewrite help.
  Qed.

  Lemma proto_own_auth_update γ s p p' p'' :
    proto_own_auth γ s p - proto_own_frag γ s p' ==
    proto_own_auth γ s p''  proto_own_frag γ s p''.
  Proof.
    iIntros "Hauth Hfrag".
    iDestruct (own_update_2 with "Hauth Hfrag") as "H".
    { eapply (auth_update _ _ (to_proto_auth_excl p'') (to_proto_auth_excl p'')).
      apply option_local_update. by apply exclusive_local_update. }
    by rewrite own_op.
  Qed.

  Lemma proto_eval_send v vs pc p1 p2 :
    proto_eval vs (proto_message Send pc) p2 -
    ( f : laterO (iProto Σ) -n> iProp Σ, f (Next p1) - pc v f) -
    proto_eval (vs ++ [v]) p1 p2.
  Proof.
    iIntros "Heval Hc". iInduction vs as [|v' vs] "IH" forall (p2); simpl.
    - iDestruct "Heval" as "#Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
487 488 489
      iExists _, (iProto_dual p1). iSplit.
      { rewrite -{2}(involutive iProto_dual p2). iRewrite -"Heval".
        rewrite /iProto_dual. by rewrite proto_map_message. }
Robbert Krebbers's avatar
Robbert Krebbers committed
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
      iSplit.
      { iIntros (f) "Hf /=". by iApply "Hc". }
      by rewrite involutive.
    - iDestruct "Heval" as (pc' p2') "(Heq & Hc' & Heval)".
      iExists pc', p2'. iFrame "Heq Hc'". iNext. iApply ("IH" with "Heval Hc").
  Qed.

  Lemma proto_eval_recv v vs p1 pc :
     proto_eval (v :: vs) p1 (proto_message Receive pc) -  p2,
       ( f : laterO (iProto Σ) -n> iProp Σ, f (Next p2) - pc v f) 
        proto_eval vs p1 p2.
  Proof.
    simpl. iDestruct 1 as (pc' p2) "(Heq & Hc & Hp2)". iExists p2. iFrame "Hp2".
    iDestruct (@proto_message_equivI with "Heq") as "[_ Heq]".
    iSpecialize ("Heq" $! v). rewrite bi.ofe_morO_equivI.
    iIntros (f) "Hfp2". iRewrite ("Heq" $! f). by iApply "Hc".
  Qed.

  Lemma proto_eval_False p pc v vs :
    proto_eval (v :: vs) p (proto_message Send pc) - False.
  Proof.
    simpl. iDestruct 1 as (pc' p2') "[Heq _]".
    by iDestruct (@proto_message_equivI with "Heq") as "[% _]".
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
515
  Lemma proto_eval_nil p1 p2 : proto_eval [] p1 p2 - p1  iProto_dual p2.
Robbert Krebbers's avatar
Robbert Krebbers committed
516 517 518 519
  Proof. done. Qed.

  Arguments proto_eval : simpl never.

Robbert Krebbers's avatar
Robbert Krebbers committed
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  (** Automatically perform normalization of protocols in the proof mode *)
  Global Instance mapsto_proto_from_assumption q c p1 p2 :
    ProtoNormalize false p1 [] p2 
    FromAssumption q (c  p1 @ N) (c  p2 @ N).
  Proof.
    rewrite /FromAssumption /ProtoNormalize=> ->.
    by rewrite /= right_id bi.intuitionistically_if_elim.
  Qed.
  Global Instance mapsto_proto_from_frame q c p1 p2 :
    ProtoNormalize false p1 [] p2 
    Frame q (c  p1 @ N) (c  p2 @ N) True.
  Proof.
    rewrite /Frame /ProtoNormalize=> ->.
    by rewrite /= !right_id bi.intuitionistically_if_elim.
  Qed.

  (** The actual specs *)
Robbert Krebbers's avatar
Robbert Krebbers committed
537 538 539
  Lemma proto_init E cγ c1 c2 p :
    is_chan N cγ c1 c2 -
    chan_own cγ Left [] - chan_own cγ Right [] ={E}=
Robbert Krebbers's avatar
Robbert Krebbers committed
540
    c1  p @ N  c2  iProto_dual p @ N.
Robbert Krebbers's avatar
Robbert Krebbers committed
541 542 543 544 545
  Proof.
    iIntros "#Hcctx Hcol Hcor".
    iMod (own_alloc ( (to_proto_auth_excl p) 
                      (to_proto_auth_excl p))) as (lγ) "[Hlsta Hlstf]".
    { by apply auth_both_valid_2. }
Robbert Krebbers's avatar
Robbert Krebbers committed
546 547
    iMod (own_alloc ( (to_proto_auth_excl (iProto_dual p)) 
                      (to_proto_auth_excl (iProto_dual p)))) as (rγ) "[Hrsta Hrstf]".
Robbert Krebbers's avatar
Robbert Krebbers committed
548 549 550 551
    { by apply auth_both_valid_2. }
    pose (ProtName cγ lγ rγ) as pγ.
    iMod (inv_alloc N _ (proto_inv pγ) with "[-Hlstf Hrstf Hcctx]") as "#Hinv".
    { iNext. rewrite /proto_inv. eauto 10 with iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
552
    iModIntro. rewrite mapsto_proto_eq. iSplitL "Hlstf".
Robbert Krebbers's avatar
Robbert Krebbers committed
553 554 555 556
    - iExists Left, c1, c2, pγ; iFrame; auto.
    - iExists Right, c1, c2, pγ; iFrame; auto.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
557 558
  (** Accessor style lemmas *)
  Lemma proto_send_acc {TT} E c (pc : TT  val * iProp Σ * iProto Σ) :
Robbert Krebbers's avatar
Robbert Krebbers committed
559
    N  E 
Robbert Krebbers's avatar
Robbert Krebbers committed
560
    c  iProto_message Send pc @ N -  s c1 c2 γ,
Robbert Krebbers's avatar
Robbert Krebbers committed
561 562 563
       c = side_elim s c1 c2  
      is_chan N (proto_c_name γ) c1 c2  |={E,E∖↑N}=>  vs,
        chan_own (proto_c_name γ) s vs 
Robbert Krebbers's avatar
Robbert Krebbers committed
564 565 566 567
          (x : TT),
           (pc x).1.2 -
           chan_own (proto_c_name γ) s (vs ++ [(pc x).1.1]) ={E∖↑N,E}=
           c  (pc x).2 @ N.
Robbert Krebbers's avatar
Robbert Krebbers committed
568
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
569 570
    iIntros (?). rewrite {1}mapsto_proto_eq iProto_message_eq.
    iDestruct 1 as (s c1 c2 γ ->) "[Hstf #[Hcctx Hinv]]".
Robbert Krebbers's avatar
Robbert Krebbers committed
571 572 573 574 575 576 577 578
    iExists s, c1, c2, γ. iSplit; first done. iFrame "Hcctx".
    iInv N as (l r pl pr) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose".
    (* TODO: refactor to avoid twice nearly the same proof *)
    iModIntro. destruct s.
    - iExists _.
      iIntros "{$Hclf} !>" (x) "HP Hclf".
      iRename "Hstf" into "Hstlf".
      iDestruct (proto_own_auth_agree with "Hstla Hstlf") as "#Heq".
Robbert Krebbers's avatar
Robbert Krebbers committed
579
      iMod (proto_own_auth_update _ _ _ _ (pc x).2
Robbert Krebbers's avatar
Robbert Krebbers committed
580 581 582 583 584 585 586 587 588 589 590 591 592
        with "Hstla Hstlf") as "[Hstla Hstlf]".
      iMod ("Hclose" with "[-Hstlf]") as "_".
      { iNext. iExists _,_,_,_. iFrame "Hcrf Hstra Hstla Hclf". iLeft.
        iRewrite "Heq" in "Hinv'".
        iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]".
        { iSplit=> //. iApply (proto_eval_send with "Heval [HP]").
          iIntros (f) "Hf /=". iExists x. by iFrame. }
        destruct r as [|vr r]; last first.
        { iDestruct (proto_eval_False with "Heval") as %[]. }
        iSplit; first done; simpl. iRewrite (proto_eval_nil with "Heval").
        iApply (proto_eval_send _ [] with "[] [HP]").
        { by rewrite /proto_eval involutive. }
        iIntros (f) "Hf /=". iExists x. by iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
593
      iModIntro. rewrite mapsto_proto_eq. iExists Left, c1, c2, γ. iFrame; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
594 595 596 597
    - iExists _.
      iIntros "{$Hcrf} !>" (x) "HP Hcrf".
      iRename "Hstf" into "Hstrf".
      iDestruct (proto_own_auth_agree with "Hstra Hstrf") as "#Heq".
Robbert Krebbers's avatar
Robbert Krebbers committed
598
      iMod (proto_own_auth_update _ _ _ _ (pc x).2
Robbert Krebbers's avatar
Robbert Krebbers committed
599 600 601 602 603 604 605 606 607 608 609 610 611
        with "Hstra Hstrf") as "[Hstra Hstrf]".
      iMod ("Hclose" with "[-Hstrf]") as "_".
      { iNext. iExists _, _, _, _. iFrame "Hcrf Hstra Hstla Hclf". iRight.
        iRewrite "Heq" in "Hinv'".
        iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]"; last first.
        { iSplit=> //. iApply (proto_eval_send with "Heval [HP]").
          iIntros (f) "Hf /=". iExists x. by iFrame. }
        destruct l as [|vl l]; last first.
        { iDestruct (proto_eval_False with "Heval") as %[]. }
        iSplit; first done; simpl. iRewrite (proto_eval_nil with "Heval").
        iApply (proto_eval_send _ [] with "[] [HP]").
        { by rewrite /proto_eval involutive. }
        iIntros (f) "Hf /=". iExists x. by iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
612
      iModIntro. rewrite mapsto_proto_eq. iExists Right, c1, c2, γ. iFrame; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
613 614
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
615
  Lemma proto_recv_acc {TT} E c (pc : TT  val * iProp Σ * iProto Σ) :
Robbert Krebbers's avatar
Robbert Krebbers committed
616
    N  E 
Robbert Krebbers's avatar
Robbert Krebbers committed
617
    c  iProto_message Receive pc @ N -  s c1 c2 γ,
Robbert Krebbers's avatar
Robbert Krebbers committed
618 619 620 621
       c = side_elim s c2 c1  
      is_chan N (proto_c_name γ) c1 c2  |={E,E∖↑N}=>  vs,
        chan_own (proto_c_name γ) s vs 
         ((chan_own (proto_c_name γ) s vs ={E∖↑N,E}=
Robbert Krebbers's avatar
Robbert Krebbers committed
622
             c  iProto_message Receive pc @ N) 
Robbert Krebbers's avatar
Robbert Krebbers committed
623 624
           ( v vs',
              vs = v :: vs'  -
Robbert Krebbers's avatar
Robbert Krebbers committed
625 626
             chan_own (proto_c_name γ) s vs' ={E∖↑N,E}=    x : TT,
              v = (pc x).1.1   c  (pc x).2 @ N  (pc x).1.2)).
Robbert Krebbers's avatar
Robbert Krebbers committed
627
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
628 629
    iIntros (?). rewrite {1}mapsto_proto_eq iProto_message_eq.
    iDestruct 1 as (s c1 c2 γ ->) "[Hstf #[Hcctx Hinv]]".
Robbert Krebbers's avatar
Robbert Krebbers committed
630 631 632 633 634 635 636 637 638 639 640 641 642
    iExists (side_elim s Right Left), c1, c2, γ. iSplit; first by destruct s.
    iFrame "Hcctx".
    iInv N as (l r pl pr) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose".
    iExists (side_elim s r l). iModIntro.
    (* TODO: refactor to avoid twice nearly the same proof *)
    destruct s; simpl.
    - iIntros "{$Hcrf} !>".
      iRename "Hstf" into "Hstlf".
      iDestruct (proto_own_auth_agree with "Hstla Hstlf") as "#Heq".
      iSplit.
      + iIntros "Hown".
        iMod ("Hclose" with "[-Hstlf]") as "_".
        { iNext. iExists l, r, _, _. iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
643 644
        iModIntro. rewrite mapsto_proto_eq.
        iExists Left, c1, c2, γ. by iFrame "Hcctx ∗ Hinv".
Robbert Krebbers's avatar
Robbert Krebbers committed
645 646
      + iIntros (v vs ->) "Hown".
        iDestruct "Hinv'" as "[[>% _]|[> -> Heval]]"; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
647 648
        iAssert ( proto_eval (v :: vs) pr (iProto_message_def Receive pc))%I
          with "[Heval]" as "Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
649 650 651 652 653 654
        { iNext. by iRewrite "Heq" in "Heval". }
        iDestruct (proto_eval_recv with "Heval") as (q) "[Hf Heval]".
        iMod (proto_own_auth_update _ _ _ _ q with "Hstla Hstlf") as "[Hstla Hstlf]".
        iMod ("Hclose" with "[-Hstlf Hf]") as %_.
        { iExists _, _,_ ,_. eauto 10 with iFrame. }
        iIntros "!> !>".
Robbert Krebbers's avatar
Robbert Krebbers committed
655
        set (f lp := ( q, lp  Next q  c1  q @ N)%I).
Robbert Krebbers's avatar
Robbert Krebbers committed
656
        assert (NonExpansive f) by solve_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
657 658 659 660 661
        iDestruct ("Hf" $! (OfeMor f) with "[Hstlf]") as (x) "(Hv & HP & Hf) /=".
        { iExists q. iSplit; first done. rewrite mapsto_proto_eq.
          iExists Left, c1, c2, γ. iFrame; auto. }
        iDestruct "Hf" as (q') "[#Hq Hc]". iModIntro.
        iExists x. iFrame "Hv HP". by iRewrite "Hq".
Robbert Krebbers's avatar
Robbert Krebbers committed
662 663 664 665 666 667 668
    - iIntros "{$Hclf} !>".
      iRename "Hstf" into "Hstrf".
      iDestruct (proto_own_auth_agree with "Hstra Hstrf") as "#Heq".
      iSplit.
      + iIntros "Hown".
        iMod ("Hclose" with "[-Hstrf]") as "_".
        { iNext. iExists l, r, _, _. iFrame. }
Robbert Krebbers's avatar
Robbert Krebbers committed
669 670
        iModIntro. rewrite mapsto_proto_eq.
        iExists Right, c1, c2, γ. by iFrame "Hcctx ∗ Hinv".
Robbert Krebbers's avatar
Robbert Krebbers committed
671 672
      + iIntros (v vs ->) "Hown".
        iDestruct "Hinv'" as "[[>-> Heval]|[>% _]]"; last done.
Robbert Krebbers's avatar
Robbert Krebbers committed
673 674
        iAssert ( proto_eval (v :: vs) pl (iProto_message_def Receive pc))%I
          with "[Heval]" as "Heval".
Robbert Krebbers's avatar
Robbert Krebbers committed
675 676 677 678 679 680
        { iNext. by iRewrite "Heq" in "Heval". }
        iDestruct (proto_eval_recv with "Heval") as (q) "[Hf Heval]".
        iMod (proto_own_auth_update _ _ _ _ q with "Hstra Hstrf") as "[Hstra Hstrf]".
        iMod ("Hclose" with "[-Hstrf Hf]") as %_.
        { iExists _, _, _, _. eauto 10 with iFrame. }
        iIntros "!> !>".
Robbert Krebbers's avatar
Robbert Krebbers committed
681
        set (f lp := ( q, lp  Next q  c2  q @ N)%I).
Robbert Krebbers's avatar
Robbert Krebbers committed
682
        assert (NonExpansive f) by solve_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
683 684 685 686 687
        iDestruct ("Hf" $! (OfeMor f) with "[Hstrf]") as (x) "(Hv & HP & Hf) /=".
        { iExists q. iSplit; first done. rewrite mapsto_proto_eq.
          iExists Right, c1, c2, γ. iFrame; auto. }
        iDestruct "Hf" as (q') "[#Hq Hc]". iModIntro.
        iExists x. iFrame "Hv HP". by iRewrite "Hq".
Robbert Krebbers's avatar
Robbert Krebbers committed
688 689
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
690 691
  (** Specifications of send and receive *)
  Lemma new_chan_proto_spec p :
Robbert Krebbers's avatar
Robbert Krebbers committed
692 693
    {{{ True }}}
      new_chan #()
Robbert Krebbers's avatar
Robbert Krebbers committed
694
    {{{ c1 c2, RET (c1,c2); c1  p @ N  c2  iProto_dual p @ N }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
695
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
696
    iIntros (Ψ _) "HΨ". iApply wp_fupd. wp_apply new_chan_spec=> //.
Robbert Krebbers's avatar
Robbert Krebbers committed
697
    iIntros (c1 c2 γ) "(Hc & Hl & Hr)".
Robbert Krebbers's avatar
Robbert Krebbers committed
698 699
    iMod (proto_init  γ c1 c2 p with "Hc Hl Hr") as "[Hp Hdp]".
    iApply "HΨ". by iFrame.
Robbert Krebbers's avatar
Robbert Krebbers committed
700 701
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
702 703 704 705 706 707 708 709 710 711 712 713
  Lemma start_chan_proto_spec p Ψ (f : val) :
     ( c, c  iProto_dual p @ N - WP f c {{ _, True }}) -
     ( c, c  p @ N - Ψ c) -
    WP start_chan f {{ Ψ }}.
  Proof.
    iIntros "Hfork HΨ". wp_lam.
    wp_apply (new_chan_proto_spec p with "[//]"); iIntros (c1 c2) "[Hc1 Hc2]".
    wp_apply (wp_fork with "[Hfork Hc2]").
    { iNext. wp_apply ("Hfork" with "Hc2"). }
    wp_pures. iApply ("HΨ" with "Hc1").
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
714 715 716 717
  Lemma send_proto_spec_packed {TT} c (pc : TT  val * iProp Σ * iProto Σ) (x : TT) :
    {{{ c  iProto_message Send pc @ N  (pc x).1.2 }}}
      send c (pc x).1.1
    {{{ RET #(); c  (pc x).2 @ N }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
718 719 720 721 722 723 724 725 726
  Proof.
    iIntros (Ψ) "[Hp Hf] HΨ".
    iDestruct (proto_send_acc  with "Hp") as (γ s c1 c2 ->) "[#Hc Hvs]"; first done.
    iApply (send_spec with "[$]"). iMod "Hvs" as (vs) "[Hch H]".
    iModIntro. iExists vs. iFrame "Hch".
    iIntros "!> Hvs". iApply "HΨ".
    iMod ("H" $! x with "Hf Hvs"); auto.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
727 728
  Lemma send_proto_spec {TT} Ψ c v (pc : TT  val * iProp Σ * iProto Σ) :
    c  iProto_message Send pc @ N -
Robbert Krebbers's avatar
Robbert Krebbers committed
729 730
    (.. x : TT,
       v = (pc x).1.1   (pc x).1.2   (c  (pc x).2 @ N - Ψ #())) -
Robbert Krebbers's avatar
Robbert Krebbers committed
731 732 733 734 735 736
    WP send c v {{ Ψ }}.
  Proof.
    iIntros "Hc H". iDestruct (bi_texist_exist with "H") as (x ->) "[HP HΨ]".
    by iApply (send_proto_spec_packed with "[$]").
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
737 738
  Lemma try_recv_proto_spec_packed {TT} c (pc : TT  val * iProp Σ * iProto Σ) :
    {{{ c  iProto_message Receive pc @ N }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
739
      try_recv c
Robbert Krebbers's avatar
Robbert Krebbers committed
740 741
    {{{ v, RET v; (v = NONEV  c  iProto_message Receive pc @ N) 
                  ( x : TT, v = SOMEV ((pc x).1.1)  c  (pc x).2 @ N  (pc x).1.2) }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
742 743 744 745 746 747 748 749
  Proof.
    iIntros (Ψ) "Hp HΨ".
    iDestruct (proto_recv_acc  with "Hp") as (γ s c1 c2 ->) "[#Hc Hvs]"; first done.
    wp_apply (try_recv_spec with "[$]"). iSplit.
    - iMod "Hvs" as (vs) "[Hch [H _]]".
      iIntros "!> !>". iMod ("H" with "Hch") as "Hch". iApply "HΨ"; auto.
    - iMod "Hvs" as (vs) "[Hch [_ H]]".
      iIntros "!>". iExists vs. iIntros "{$Hch} !>" (v vs' ->) "Hch".
Robbert Krebbers's avatar
Robbert Krebbers committed
750 751
      iMod ("H" with "[//] Hch") as "H". iIntros "!> !> !>".
      iDestruct "H" as (x ->) "H". iApply "HΨ"; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
752 753
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
754 755
  Lemma recv_proto_spec_packed {TT} c (pc : TT  val * iProp Σ * iProto Σ) :
    {{{ c  iProto_message Receive pc @ N }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
756
      recv c
Robbert Krebbers's avatar
Robbert Krebbers committed
757
    {{{ x, RET (pc x).1.1; c  (pc x).2 @ N  (pc x).1.2 }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
758 759 760 761 762
  Proof.
    iIntros (Ψ) "Hp HΨ".
    iDestruct (proto_recv_acc  with "Hp") as (γ s c1 c2 ->) "[#Hc Hvs]"; first done.
    wp_apply (recv_spec with "[$]"). iMod "Hvs" as (vs) "[Hch [_ H]]".
    iModIntro. iExists vs. iFrame "Hch". iIntros "!>" (v vs' ->) "Hvs'".
Robbert Krebbers's avatar
Robbert Krebbers committed
763 764
    iMod ("H" with "[//] Hvs'") as "H"; iIntros "!> !> !>".
    iDestruct "H" as (x ->) "H". by iApply "HΨ".
Robbert Krebbers's avatar
Robbert Krebbers committed
765 766
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
767 768
  Lemma recv_proto_spec {TT} Ψ c (pc : TT  val * iProp Σ * iProto Σ) :
    c  iProto_message Receive pc @ N -
Robbert Krebbers's avatar
Robbert Krebbers committed
769
     (.. x : TT, c  (pc x).2 @ N - (pc x).1.2 - Ψ (pc x).1.1) -
Robbert Krebbers's avatar
Robbert Krebbers committed
770 771 772 773 774 775
    WP recv c {{ Ψ }}.
  Proof.
    iIntros "Hc H". iApply (recv_proto_spec_packed with "[$]").
    iIntros "!>" (x) "[Hc HP]". iDestruct (bi_tforall_forall with "H") as "H".
    iApply ("H" with "[$] [$]").
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
776

Robbert Krebbers's avatar
Robbert Krebbers committed
777
  (** Branching *)
778 779
  Lemma select_spec c (b : bool) P1 P2 p1 p2 :
    {{{ c  p1 <{P1}+{P2}> p2 @ N  if b then P1 else P2 }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
780
      send c #b
781
    {{{ RET #(); c  (if b then p1 else p2) @ N }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
782
  Proof.
783
    rewrite /iProto_branch. iIntros (Ψ) "[Hc HP] HΨ".
Robbert Krebbers's avatar
Robbert Krebbers committed
784 785 786
    iApply (send_proto_spec with "Hc"); simpl; eauto with iFrame.
  Qed.

787 788
  Lemma branch_spec c P1 P2 p1 p2 :
    {{{ c  p1 <{P1}&{P2}> p2 @ N }}}
Robbert Krebbers's avatar
Robbert Krebbers committed
789
      recv c
790
    {{{ b, RET #b; c  if b : bool then p1 else p2 @ N  if b then P1 else P2 }}}.
Robbert Krebbers's avatar
Robbert Krebbers committed
791 792 793
  Proof.
    rewrite /iProto_branch. iIntros (Ψ) "Hc HΨ".
    iApply (recv_proto_spec with "Hc"); simpl.
794
    iIntros "!>" (b) "Hc HP". iApply "HΨ". iFrame.
Robbert Krebbers's avatar
Robbert Krebbers committed
795
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
796
End proto.