gmultiset.v 19.9 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
2 3
(* This file is distributed under the terms of the BSD license. *)
From stdpp Require Import gmap.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5 6

Record gmultiset A `{Countable A} := GMultiSet { gmultiset_car : gmap A nat }.
7 8
Arguments GMultiSet {_ _ _} _ : assert.
Arguments gmultiset_car {_ _ _} _ : assert.
Robbert Krebbers's avatar
Robbert Krebbers committed
9

10
Instance gmultiset_eq_dec `{Countable A} : EqDecision (gmultiset A).
Robbert Krebbers's avatar
Robbert Krebbers committed
11 12
Proof. solve_decision. Defined.

13
Program Instance gmultiset_countable `{Countable A} :
Robbert Krebbers's avatar
Robbert Krebbers committed
14 15 16 17 18 19 20 21 22 23
    Countable (gmultiset A) := {|
  encode X := encode (gmultiset_car X);  decode p := GMultiSet <$> decode p
|}.
Next Obligation. intros A ?? [X]; simpl. by rewrite decode_encode. Qed.

Section definitions.
  Context `{Countable A}.

  Definition multiplicity (x : A) (X : gmultiset A) : nat :=
    match gmultiset_car X !! x with Some n => S n | None => 0 end.
24
  Global Instance gmultiset_elem_of : ElemOf A (gmultiset A) := λ x X,
Robbert Krebbers's avatar
Robbert Krebbers committed
25
    0 < multiplicity x X.
26
  Global Instance gmultiset_subseteq : SubsetEq (gmultiset A) := λ X Y,  x,
Robbert Krebbers's avatar
Robbert Krebbers committed
27
    multiplicity x X  multiplicity x Y.
28 29
  Global Instance gmultiset_equiv : Equiv (gmultiset A) := λ X Y,  x,
    multiplicity x X = multiplicity x Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
30

31
  Global Instance gmultiset_elements : Elements A (gmultiset A) := λ X,
32
    let (X) := X in ''(x,n)  map_to_list X; replicate (S n) x.
33
  Global Instance gmultiset_size : Size (gmultiset A) := length  elements.
Robbert Krebbers's avatar
Robbert Krebbers committed
34

35 36
  Global Instance gmultiset_empty : Empty (gmultiset A) := GMultiSet .
  Global Instance gmultiset_singleton : Singleton A (gmultiset A) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
37
    GMultiSet {[ x := 0 ]}.
38
  Global Instance gmultiset_union : Union (gmultiset A) := λ X Y,
39 40 41 42 43 44 45
    let (X) := X in let (Y) := Y in
    GMultiSet $ union_with (λ x y, Some (x `max` y)) X Y.
  Global Instance gmultiset_intersection : Intersection (gmultiset A) := λ X Y,
    let (X) := X in let (Y) := Y in
    GMultiSet $ intersection_with (λ x y, Some (x `min` y)) X Y.
  (** Often called the "sum" *)
  Global Instance gmultiset_disj_union : DisjUnion (gmultiset A) := λ X Y,
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47
    let (X) := X in let (Y) := Y in
    GMultiSet $ union_with (λ x y, Some (S (x + y))) X Y.
48
  Global Instance gmultiset_difference : Difference (gmultiset A) := λ X Y,
Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51
    let (X) := X in let (Y) := Y in
    GMultiSet $ difference_with (λ x y,
      let z := x - y in guard (0 < z); Some (pred z)) X Y.
52

53
  Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X,
54
    let (X) := X in dom _ X.
55
End definitions. 
Robbert Krebbers's avatar
Robbert Krebbers committed
56

57 58 59
Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq.
Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty.
Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference.
60
Typeclasses Opaque gmultiset_dom.
61

Robbert Krebbers's avatar
Robbert Krebbers committed
62 63 64 65 66 67 68 69 70 71 72 73
Section lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.

Lemma gmultiset_eq X Y : X = Y   x, multiplicity x X = multiplicity x Y.
Proof.
  split; [by intros ->|intros HXY].
  destruct X as [X], Y as [Y]; f_equal; apply map_eq; intros x.
  specialize (HXY x); unfold multiplicity in *; simpl in *.
  repeat case_match; naive_solver.
Qed.
74 75
Global Instance gmultiset_leibniz : LeibnizEquiv (gmultiset A).
Proof. intros X Y. by rewrite gmultiset_eq. Qed.
76
Global Instance gmultiset_equiv_equivalence : Equivalence (@{gmultiset A}).
77
Proof. constructor; repeat intro; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
78 79 80 81 82 83 84 85 86

(* Multiplicity *)
Lemma multiplicity_empty x : multiplicity x  = 0.
Proof. done. Qed.
Lemma multiplicity_singleton x : multiplicity x {[ x ]} = 1.
Proof. unfold multiplicity; simpl. by rewrite lookup_singleton. Qed.
Lemma multiplicity_singleton_ne x y : x  y  multiplicity x {[ y ]} = 0.
Proof. intros. unfold multiplicity; simpl. by rewrite lookup_singleton_ne. Qed.
Lemma multiplicity_union X Y x :
87 88 89 90 91 92 93 94 95 96 97 98 99
  multiplicity x (X  Y) = multiplicity x X `max` multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_intersection X Y x :
  multiplicity x (X  Y) = multiplicity x X `min` multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_intersection_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_disj_union X Y x :
  multiplicity x (X  Y) = multiplicity x X + multiplicity x Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
100 101
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
Ralf Jung's avatar
Ralf Jung committed
102
  rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
103 104 105 106 107 108
Qed.
Lemma multiplicity_difference X Y x :
  multiplicity x (X  Y) = multiplicity x X - multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_difference_with.
Ralf Jung's avatar
Ralf Jung committed
109
  destruct (X !! _), (Y !! _); simplify_option_eq; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
110 111
Qed.

112
(* Set_ *)
113 114 115
Lemma elem_of_multiplicity x X : x  X  0 < multiplicity x X.
Proof. done. Qed.

116
Global Instance gmultiset_simple_set : SemiSet A (gmultiset A).
117 118
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
119
  - intros x. rewrite elem_of_multiplicity, multiplicity_empty. lia.
120 121 122 123
  - intros x y. destruct (decide (x = y)) as [->|].
    + rewrite elem_of_multiplicity, multiplicity_singleton. split; auto with lia.
    + rewrite elem_of_multiplicity, multiplicity_singleton_ne by done.
      by split; auto with lia.
Ralf Jung's avatar
Ralf Jung committed
124
  - intros X Y x. rewrite !elem_of_multiplicity, multiplicity_union. lia.
125
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
126
Global Instance gmultiset_elem_of_dec : RelDecision (@{gmultiset A}).
127
Proof. refine (λ x X, cast_if (decide (0 < multiplicity x X))); done. Defined.
128

129 130 131
Lemma gmultiset_elem_of_disj_union X Y x : x  X  Y  x  X  x  Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_disj_union. lia. Qed.

132 133 134
Global Instance set_unfold_gmultiset_disj_union x X Y P Q :
  SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
Proof.
135 136
  intros ??; constructor. rewrite gmultiset_elem_of_disj_union.
  by rewrite <-(set_unfold (x  X) P), <-(set_unfold (x  Y) Q).
137 138
Qed.

139
(* Algebraic laws *)
140 141
(** For union *)
Global Instance gmultiset_union_comm : Comm (=@{gmultiset A}) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
142
Proof.
Ralf Jung's avatar
Ralf Jung committed
143
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_union; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
Qed.
145
Global Instance gmultiset_union_assoc : Assoc (=@{gmultiset A}) ().
Robbert Krebbers's avatar
Robbert Krebbers committed
146
Proof.
Ralf Jung's avatar
Ralf Jung committed
147
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_union; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
148
Qed.
149
Global Instance gmultiset_union_left_id : LeftId (=@{gmultiset A})  ().
Robbert Krebbers's avatar
Robbert Krebbers committed
150 151 152 153
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_union, multiplicity_empty.
Qed.
154
Global Instance gmultiset_union_right_id : RightId (=@{gmultiset A})  ().
Robbert Krebbers's avatar
Robbert Krebbers committed
155
Proof. intros X. by rewrite (comm_L ()), (left_id_L _ _). Qed.
156 157 158 159
Global Instance gmultiset_union_idemp : IdemP (=@{gmultiset A}) ().
Proof.
  intros X. apply gmultiset_eq; intros x. rewrite !multiplicity_union; lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
(** For intersection *)
Global Instance gmultiset_intersection_comm : Comm (=@{gmultiset A}) ().
Proof.
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_intersection; lia.
Qed.
Global Instance gmultiset_intersection_assoc : Assoc (=@{gmultiset A}) ().
Proof.
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_intersection; lia.
Qed.
Global Instance gmultiset_intersection_left_absorb : LeftAbsorb (=@{gmultiset A})  ().
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_intersection, multiplicity_empty.
Qed.
Global Instance gmultiset_intersection_right_absorb : RightAbsorb (=@{gmultiset A})  ().
Proof. intros X. by rewrite (comm_L ()), (left_absorb_L _ _). Qed.
Global Instance gmultiset_intersection_idemp : IdemP (=@{gmultiset A}) ().
Proof.
  intros X. apply gmultiset_eq; intros x. rewrite !multiplicity_intersection; lia.
Qed.

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
Lemma gmultiset_union_intersection_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_union, !multiplicity_intersection, !multiplicity_union. lia.
Qed.
Lemma gmultiset_union_intersection_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_union_intersection_l. Qed.
Lemma gmultiset_intersection_union_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_union, !multiplicity_intersection, !multiplicity_union. lia.
Qed.
Lemma gmultiset_intersection_union_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_intersection_union_l. Qed.

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
(** For disjoint union (aka sum) *)
Global Instance gmultiset_disj_union_comm : Comm (=@{gmultiset A}) ().
Proof.
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_disj_union; lia.
Qed.
Global Instance gmultiset_disj_union_assoc : Assoc (=@{gmultiset A}) ().
Proof.
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_disj_union; lia.
Qed.
Global Instance gmultiset_disj_union_left_id : LeftId (=@{gmultiset A})  ().
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_disj_union, multiplicity_empty.
Qed.
Global Instance gmultiset_disj_union_right_id : RightId (=@{gmultiset A})  ().
Proof. intros X. by rewrite (comm_L ()), (left_id_L _ _). Qed.

Global Instance gmultiset_disj_union_inj_1 X : Inj (=) (=) (X ).
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216
Proof.
  intros Y1 Y2. rewrite !gmultiset_eq. intros HX x; generalize (HX x).
217
  rewrite !multiplicity_disj_union. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
218
Qed.
219
Global Instance gmultiset_disj_union_inj_2 X : Inj (=) (=) ( X).
Robbert Krebbers's avatar
Robbert Krebbers committed
220 221
Proof. intros Y1 Y2. rewrite <-!(comm_L _ X). apply (inj _). Qed.

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
Lemma gmultiset_disj_union_intersection_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_disj_union, !multiplicity_intersection,
    !multiplicity_disj_union. lia.
Qed.
Lemma gmultiset_disj_union_intersection_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_disj_union_intersection_l. Qed.

Lemma gmultiset_disj_union_union_l X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
Proof.
  apply gmultiset_eq; intros y.
  rewrite multiplicity_disj_union, !multiplicity_union,
    !multiplicity_disj_union. lia.
Qed.
Lemma gmultiset_disj_union_union_r X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
Proof. by rewrite <-!(comm_L _ Z), gmultiset_disj_union_union_l. Qed.

240
(** Misc *)
241
Lemma gmultiset_non_empty_singleton x : {[ x ]} @{gmultiset A} .
Robbert Krebbers's avatar
Robbert Krebbers committed
242
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244
  rewrite gmultiset_eq. intros Hx; generalize (Hx x).
  by rewrite multiplicity_singleton, multiplicity_empty.
Robbert Krebbers's avatar
Robbert Krebbers committed
245 246
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
247 248 249 250 251 252 253 254
(* Properties of the elements operation *)
Lemma gmultiset_elements_empty : elements ( : gmultiset A) = [].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_empty.
Qed.
Lemma gmultiset_elements_empty_inv X : elements X = []  X = .
Proof.
  destruct X as [X]; unfold elements, gmultiset_elements; simpl.
255 256 257
  intros; apply (f_equal GMultiSet). destruct (map_to_list X) as [|[]] eqn:?.
  - by apply map_to_list_empty_inv.
  - naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
258 259 260 261 262 263 264 265 266 267
Qed.
Lemma gmultiset_elements_empty' X : elements X = []  X = .
Proof.
  split; intros HX; [by apply gmultiset_elements_empty_inv|].
  by rewrite HX, gmultiset_elements_empty.
Qed.
Lemma gmultiset_elements_singleton x : elements ({[ x ]} : gmultiset A) = [ x ].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_singleton.
Qed.
268 269
Lemma gmultiset_elements_disj_union X Y :
  elements (X  Y)  elements X ++ elements Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
270 271 272 273
Proof.
  destruct X as [X], Y as [Y]; unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  revert Y; induction X as [|x n X HX IH] using map_ind; intros Y.
274
  { by rewrite (left_id_L _ _ Y), map_to_list_empty. }
Robbert Krebbers's avatar
Robbert Krebbers committed
275 276 277 278 279 280
  destruct (Y !! x) as [n'|] eqn:HY.
  - rewrite <-(insert_id Y x n'), <-(insert_delete Y) by done.
    erewrite <-insert_union_with by done.
    rewrite !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
    rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
281 282
    rewrite (assoc_L _). f_equiv.
    rewrite (comm _); simpl. by rewrite replicate_plus, Permutation_middle.
Robbert Krebbers's avatar
Robbert Krebbers committed
283 284 285 286 287 288 289 290 291 292 293
  - rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?HX, ?HY).
    by rewrite <-(assoc_L (++)), <-IH.
Qed.
Lemma gmultiset_elem_of_elements x X : x  elements X  x  X.
Proof.
  destruct X as [X]. unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  unfold elem_of at 2, gmultiset_elem_of, multiplicity; simpl.
  rewrite elem_of_list_bind. split.
  - intros [[??] [[<- ?]%elem_of_replicate ->%elem_of_map_to_list]]; lia.
Ralf Jung's avatar
Ralf Jung committed
294
  - intros. destruct (X !! x) as [n|] eqn:Hx; [|lia].
Robbert Krebbers's avatar
Robbert Krebbers committed
295
    exists (x,n); split; [|by apply elem_of_map_to_list].
Ralf Jung's avatar
Ralf Jung committed
296
    apply elem_of_replicate; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
Qed.
298 299 300 301
Lemma gmultiset_elem_of_dom x X : x  dom (gset A) X  x  X.
Proof.
  unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity.
  destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some.
Ralf Jung's avatar
Ralf Jung committed
302
  destruct (X !! x); naive_solver lia.
303
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

(* Properties of the size operation *)
Lemma gmultiset_size_empty : size ( : gmultiset A) = 0.
Proof. done. Qed.
Lemma gmultiset_size_empty_inv X : size X = 0  X = .
Proof.
  unfold size, gmultiset_size; simpl. rewrite length_zero_iff_nil.
  apply gmultiset_elements_empty_inv.
Qed.
Lemma gmultiset_size_empty_iff X : size X = 0  X = .
Proof.
  split; [apply gmultiset_size_empty_inv|].
  by intros ->; rewrite gmultiset_size_empty.
Qed.
Lemma gmultiset_size_non_empty_iff X : size X  0  X  .
Proof. by rewrite gmultiset_size_empty_iff. Qed.

Lemma gmultiset_choose_or_empty X : ( x, x  X)  X = .
Proof.
  destruct (elements X) as [|x l] eqn:HX; [right|left].
  - by apply gmultiset_elements_empty_inv.
  - exists x. rewrite <-gmultiset_elem_of_elements, HX. by left.
Qed.
Lemma gmultiset_choose X : X     x, x  X.
Proof. intros. by destruct (gmultiset_choose_or_empty X). Qed.
Lemma gmultiset_size_pos_elem_of X : 0 < size X   x, x  X.
Proof.
  intros Hsz. destruct (gmultiset_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, gmultiset_size_empty; lia.
Qed.

Lemma gmultiset_size_singleton x : size ({[ x ]} : gmultiset A) = 1.
Proof.
  unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_singleton.
Qed.
339
Lemma gmultiset_size_disj_union X Y : size (X  Y) = size X + size Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
340 341
Proof.
  unfold size, gmultiset_size; simpl.
342
  by rewrite gmultiset_elements_disj_union, app_length.
Robbert Krebbers's avatar
Robbert Krebbers committed
343
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
344 345

(* Order stuff *)
346
Global Instance gmultiset_po : PartialOrder (@{gmultiset A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
347 348 349 350 351 352 353
Proof.
  split; [split|].
  - by intros X x.
  - intros X Y Z HXY HYZ x. by trans (multiplicity x Y).
  - intros X Y HXY HYX; apply gmultiset_eq; intros x. by apply (anti_symm ()).
Qed.

354 355 356 357 358
Lemma gmultiset_subseteq_alt X Y :
  X  Y 
  map_relation () (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y).
Proof.
  apply forall_proper; intros x. unfold multiplicity.
Ralf Jung's avatar
Ralf Jung committed
359
  destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver lia.
360
Qed.
361
Global Instance gmultiset_subseteq_dec : RelDecision (@{gmultiset A}).
362
Proof.
363
 refine (λ X Y, cast_if (decide (map_relation ()
364 365 366 367
   (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y))));
   by rewrite gmultiset_subseteq_alt.
Defined.

Robbert Krebbers's avatar
Robbert Krebbers committed
368 369
Lemma gmultiset_subset_subseteq X Y : X  Y  X  Y.
Proof. apply strict_include. Qed.
Tej Chajed's avatar
Tej Chajed committed
370
Hint Resolve gmultiset_subset_subseteq : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
371 372

Lemma gmultiset_empty_subseteq X :   X.
Ralf Jung's avatar
Ralf Jung committed
373
Proof. intros x. rewrite multiplicity_empty. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
374 375

Lemma gmultiset_union_subseteq_l X Y : X  X  Y.
Ralf Jung's avatar
Ralf Jung committed
376
Proof. intros x. rewrite multiplicity_union. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
Lemma gmultiset_union_subseteq_r X Y : Y  X  Y.
Ralf Jung's avatar
Ralf Jung committed
378
Proof. intros x. rewrite multiplicity_union. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
379
Lemma gmultiset_union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
380 381 382 383
Proof.
  intros HX HY x. rewrite !multiplicity_union.
  specialize (HX x); specialize (HY x); lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
384 385 386 387
Lemma gmultiset_union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
Proof. intros. by apply gmultiset_union_mono. Qed.
Lemma gmultiset_union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Proof. intros. by apply gmultiset_union_mono. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
388

389 390 391 392 393 394 395 396 397 398 399
Lemma gmultiset_disj_union_subseteq_l X Y : X  X  Y.
Proof. intros x. rewrite multiplicity_disj_union. lia. Qed.
Lemma gmultiset_disj_union_subseteq_r X Y : Y  X  Y.
Proof. intros x. rewrite multiplicity_disj_union. lia. Qed.
Lemma gmultiset_disj_union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
Proof. intros ?? x. rewrite !multiplicity_disj_union. by apply Nat.add_le_mono. Qed.
Lemma gmultiset_disj_union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
Proof. intros. by apply gmultiset_disj_union_mono. Qed.
Lemma gmultiset_disj_union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Proof. intros. by apply gmultiset_disj_union_mono. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
400
Lemma gmultiset_subset X Y : X  Y  size X < size Y  X  Y.
Ralf Jung's avatar
Ralf Jung committed
401
Proof. intros. apply strict_spec_alt; split; naive_solver auto with lia. Qed.
402
Lemma gmultiset_disj_union_subset_l X Y : Y    X  X  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
403 404
Proof.
  intros HY%gmultiset_size_non_empty_iff.
405 406
  apply gmultiset_subset; auto using gmultiset_disj_union_subseteq_l.
  rewrite gmultiset_size_disj_union; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
407
Qed.
408 409
Lemma gmultiset_union_subset_r X Y : X    Y  X  Y.
Proof. rewrite (comm_L ()). apply gmultiset_disj_union_subset_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
410

Robbert Krebbers's avatar
Robbert Krebbers committed
411
Lemma gmultiset_elem_of_singleton_subseteq x X : x  X  {[ x ]}  X.
Robbert Krebbers's avatar
Robbert Krebbers committed
412
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
413 414
  rewrite elem_of_multiplicity. split.
  - intros Hx y; destruct (decide (x = y)) as [->|].
Ralf Jung's avatar
Ralf Jung committed
415 416 417
    + rewrite multiplicity_singleton; lia.
    + rewrite multiplicity_singleton_ne by done; lia.
  - intros Hx. generalize (Hx x). rewrite multiplicity_singleton. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
418 419
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
420 421 422
Lemma gmultiset_elem_of_subseteq X1 X2 x : x  X1  X1  X2  x  X2.
Proof. rewrite !gmultiset_elem_of_singleton_subseteq. by intros ->. Qed.

423
Lemma gmultiset_disj_union_difference X Y : X  Y  Y = X  Y  X.
Robbert Krebbers's avatar
Robbert Krebbers committed
424 425
Proof.
  intros HXY. apply gmultiset_eq; intros x; specialize (HXY x).
426
  rewrite multiplicity_disj_union, multiplicity_difference; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Qed.
428
Lemma gmultiset_disj_union_difference' x Y : x  Y  Y = {[ x ]}  Y  {[ x ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
Proof.
430
  intros. by apply gmultiset_disj_union_difference,
Robbert Krebbers's avatar
Robbert Krebbers committed
431 432
    gmultiset_elem_of_singleton_subseteq.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
433

Robbert Krebbers's avatar
Robbert Krebbers committed
434 435
Lemma gmultiset_size_difference X Y : Y  X  size (X  Y) = size X - size Y.
Proof.
436 437
  intros HX%gmultiset_disj_union_difference.
  rewrite HX at 2; rewrite gmultiset_size_disj_union. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
438 439
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
440 441 442 443
Lemma gmultiset_non_empty_difference X Y : X  Y  Y  X  .
Proof.
  intros [_ HXY2] Hdiff; destruct HXY2; intros x.
  generalize (f_equal (multiplicity x) Hdiff).
Ralf Jung's avatar
Ralf Jung committed
444
  rewrite multiplicity_difference, multiplicity_empty; lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
445 446 447 448 449
Qed.

Lemma gmultiset_difference_subset X Y : X    X  Y  Y  X  Y.
Proof.
  intros. eapply strict_transitive_l; [by apply gmultiset_union_subset_r|].
450
  by rewrite <-(gmultiset_disj_union_difference X Y).
Robbert Krebbers's avatar
Robbert Krebbers committed
451 452
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
453
(* Mononicity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
454
Lemma gmultiset_elements_submseteq X Y : X  Y  elements X + elements Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
455
Proof.
456
  intros ->%gmultiset_disj_union_difference. rewrite gmultiset_elements_disj_union.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
  by apply submseteq_inserts_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
458 459
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
460
Lemma gmultiset_subseteq_size X Y : X  Y  size X  size Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
461
Proof. intros. by apply submseteq_length, gmultiset_elements_submseteq. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
462 463 464 465

Lemma gmultiset_subset_size X Y : X  Y  size X < size Y.
Proof.
  intros HXY. assert (size (Y  X)  0).
Robbert Krebbers's avatar
Robbert Krebbers committed
466
  { by apply gmultiset_size_non_empty_iff, gmultiset_non_empty_difference. }
467 468
  rewrite (gmultiset_disj_union_difference X Y),
    gmultiset_size_disj_union by auto. lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
469 470 471
Qed.

(* Well-foundedness *)
472
Lemma gmultiset_wf : wf (@{gmultiset A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
473 474 475
Proof.
  apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
476 477

Lemma gmultiset_ind (P : gmultiset A  Prop) :
478
  P   ( x X, P X  P ({[ x ]}  X))   X, P X.
Robbert Krebbers's avatar
Robbert Krebbers committed
479 480 481
Proof.
  intros Hemp Hinsert X. induction (gmultiset_wf X) as [X _ IH].
  destruct (gmultiset_choose_or_empty X) as [[x Hx]| ->]; auto.
482
  rewrite (gmultiset_disj_union_difference' x X) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
483 484
  apply Hinsert, IH, gmultiset_difference_subset,
    gmultiset_elem_of_singleton_subseteq; auto using gmultiset_non_empty_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
485
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
486
End lemmas.