From iris.algebra Require Export big_op. From iris.bi Require Import derived_laws_sbi plainly. From stdpp Require Import countable fin_sets functions. Set Default Proof Using "Type". Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi. (** Notations for unary variants *) Notation "'[∗' 'list]' k ↦ x ∈ l , P" := (big_opL bi_sep (λ k x, P) l) : bi_scope. Notation "'[∗' 'list]' x ∈ l , P" := (big_opL bi_sep (λ _ x, P) l) : bi_scope. Notation "'[∗]' Ps" := (big_opL bi_sep (λ _ x, x) Ps) : bi_scope. Notation "'[∧' 'list]' k ↦ x ∈ l , P" := (big_opL bi_and (λ k x, P) l) : bi_scope. Notation "'[∧' 'list]' x ∈ l , P" := (big_opL bi_and (λ _ x, P) l) : bi_scope. Notation "'[∧]' Ps" := (big_opL bi_and (λ _ x, x) Ps) : bi_scope. Notation "'[∗' 'map]' k ↦ x ∈ m , P" := (big_opM bi_sep (λ k x, P) m) : bi_scope. Notation "'[∗' 'map]' x ∈ m , P" := (big_opM bi_sep (λ _ x, P) m) : bi_scope. Notation "'[∗' 'set]' x ∈ X , P" := (big_opS bi_sep (λ x, P) X) : bi_scope. Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P) X) : bi_scope. (** Definitions and notations for binary variants *) (** A version of the separating big operator that ranges over two lists. This version also ensures that both lists have the same length. Although this version can be defined in terms of the unary using a [zip] (see [big_sepL2_alt]), we do not define it that way to get better computational behavior (for [simpl]). *) Fixpoint big_sepL2 {PROP : bi} {A B} (Φ : nat → A → B → PROP) (l1 : list A) (l2 : list B) : PROP := match l1, l2 with | [], [] => emp | x1 :: l1, x2 :: l2 => Φ 0 x1 x2 ∗ big_sepL2 (λ n, Φ (S n)) l1 l2 | _, _ => False end%I. Instance: Params (@big_sepL2) 3 := {}. Arguments big_sepL2 {PROP A B} _ !_ !_ /. Typeclasses Opaque big_sepL2. Notation "'[∗' 'list]' k ↦ x1 ; x2 ∈ l1 ; l2 , P" := (big_sepL2 (λ k x1 x2, P) l1 l2) : bi_scope. Notation "'[∗' 'list]' x1 ; x2 ∈ l1 ; l2 , P" := (big_sepL2 (λ _ x1 x2, P) l1 l2) : bi_scope. Definition big_sepM2 {PROP : bi} `{Countable K} {A B} (Φ : K → A → B → PROP) (m1 : gmap K A) (m2 : gmap K B) : PROP := (⌜ ∀ k, is_Some (m1 !! k) ↔ is_Some (m2 !! k) ⌝ ∧ [∗ map] k ↦ xy ∈ map_zip m1 m2, Φ k xy.1 xy.2)%I. Instance: Params (@big_sepM2) 6 := {}. Typeclasses Opaque big_sepM2. Notation "'[∗' 'map]' k ↦ x1 ; x2 ∈ m1 ; m2 , P" := (big_sepM2 (λ k x1 x2, P) m1 m2) : bi_scope. Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P" := (big_sepM2 (λ _ x1 x2, P) m1 m2) : bi_scope. (** * Properties *) Section bi_big_op. Context {PROP : bi}. Implicit Types P Q : PROP. Implicit Types Ps Qs : list PROP. Implicit Types A : Type. (** ** Big ops over lists *) Section sep_list. Context {A : Type}. Implicit Types l : list A. Implicit Types Φ Ψ : nat → A → PROP. Lemma big_sepL_nil Φ : ([∗ list] k↦y ∈ nil, Φ k y) ⊣⊢ emp. Proof. done. Qed. Lemma big_sepL_nil' `{BiAffine PROP} P Φ : P ⊢ [∗ list] k↦y ∈ nil, Φ k y. Proof. apply (affine _). Qed. Lemma big_sepL_cons Φ x l : ([∗ list] k↦y ∈ x :: l, Φ k y) ⊣⊢ Φ 0 x ∗ [∗ list] k↦y ∈ l, Φ (S k) y. Proof. by rewrite big_opL_cons. Qed. Lemma big_sepL_singleton Φ x : ([∗ list] k↦y ∈ [x], Φ k y) ⊣⊢ Φ 0 x. Proof. by rewrite big_opL_singleton. Qed. Lemma big_sepL_app Φ l1 l2 : ([∗ list] k↦y ∈ l1 ++ l2, Φ k y) ⊣⊢ ([∗ list] k↦y ∈ l1, Φ k y) ∗ ([∗ list] k↦y ∈ l2, Φ (length l1 + k) y). Proof. by rewrite big_opL_app. Qed. Lemma big_sepL_mono Φ Ψ l : (∀ k y, l !! k = Some y → Φ k y ⊢ Ψ k y) → ([∗ list] k ↦ y ∈ l, Φ k y) ⊢ [∗ list] k ↦ y ∈ l, Ψ k y. Proof. apply big_opL_forall; apply _. Qed. Lemma big_sepL_proper Φ Ψ l : (∀ k y, l !! k = Some y → Φ k y ⊣⊢ Ψ k y) → ([∗ list] k ↦ y ∈ l, Φ k y) ⊣⊢ ([∗ list] k ↦ y ∈ l, Ψ k y). Proof. apply big_opL_proper. Qed. Lemma big_sepL_submseteq `{BiAffine PROP} (Φ : A → PROP) l1 l2 : l1 ⊆+ l2 → ([∗ list] y ∈ l2, Φ y) ⊢ [∗ list] y ∈ l1, Φ y. Proof. intros [l ->]%submseteq_Permutation. by rewrite big_sepL_app sep_elim_l. Qed. Global Instance big_sepL_mono' : Proper (pointwise_relation _ (pointwise_relation _ (⊢)) ==> (=) ==> (⊢)) (big_opL (@bi_sep PROP) (A:=A)). Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed. Global Instance big_sepL_id_mono' : Proper (Forall2 (⊢) ==> (⊢)) (big_opL (@bi_sep PROP) (λ _ P, P)). Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed. Lemma big_sepL_emp l : ([∗ list] k↦y ∈ l, emp) ⊣⊢@{PROP} emp. Proof. by rewrite big_opL_unit. Qed. Lemma big_sepL_lookup_acc Φ l i x : l !! i = Some x → ([∗ list] k↦y ∈ l, Φ k y) ⊢ Φ i x ∗ (Φ i x -∗ ([∗ list] k↦y ∈ l, Φ k y)). Proof. intros Hli. rewrite -(take_drop_middle l i x) // big_sepL_app /=. rewrite Nat.add_0_r take_length_le; eauto using lookup_lt_Some, Nat.lt_le_incl. rewrite assoc -!(comm _ (Φ _ _)) -assoc. by apply sep_mono_r, wand_intro_l. Qed. Lemma big_sepL_lookup Φ l i x `{!Absorbing (Φ i x)} : l !! i = Some x → ([∗ list] k↦y ∈ l, Φ k y) ⊢ Φ i x. Proof. intros. rewrite big_sepL_lookup_acc //. by rewrite sep_elim_l. Qed. Lemma big_sepL_elem_of (Φ : A → PROP) l x `{!Absorbing (Φ x)} : x ∈ l → ([∗ list] y ∈ l, Φ y) ⊢ Φ x. Proof. intros [i ?]%elem_of_list_lookup; eauto using (big_sepL_lookup (λ _, Φ)). Qed. Lemma big_sepL_fmap {B} (f : A → B) (Φ : nat → B → PROP) l : ([∗ list] k↦y ∈ f <\$> l, Φ k y) ⊣⊢ ([∗ list] k↦y ∈ l, Φ k (f y)). Proof. by rewrite big_opL_fmap. Qed. Lemma big_sepL_sepL Φ Ψ l : ([∗ list] k↦x ∈ l, Φ k x ∗ Ψ k x) ⊣⊢ ([∗ list] k↦x ∈ l, Φ k x) ∗ ([∗ list] k↦x ∈ l, Ψ k x). Proof. by rewrite big_opL_opL. Qed. Lemma big_sepL_and Φ Ψ l : ([∗ list] k↦x ∈ l, Φ k x ∧ Ψ k x) ⊢ ([∗ list] k↦x ∈ l, Φ k x) ∧ ([∗ list] k↦x ∈ l, Ψ k x). Proof. auto using and_intro, big_sepL_mono, and_elim_l, and_elim_r. Qed. Lemma big_sepL_persistently `{BiAffine PROP} Φ l : ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ [∗ list] k↦x ∈ l, (Φ k x). Proof. apply (big_opL_commute _). Qed. Lemma big_sepL_forall `{BiAffine PROP} Φ l : (∀ k x, Persistent (Φ k x)) → ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ (∀ k x, ⌜l !! k = Some x⌝ → Φ k x). Proof. intros HΦ. apply (anti_symm _). { apply forall_intro=> k; apply forall_intro=> x. apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepL_lookup. } revert Φ HΦ. induction l as [|x l IH]=> Φ HΦ; [by auto using big_sepL_nil'|]. rewrite big_sepL_cons. rewrite -persistent_and_sep; apply and_intro. - by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl. - rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)). Qed. Lemma big_sepL_impl Φ Ψ l : ([∗ list] k↦x ∈ l, Φ k x) -∗ □ (∀ k x, ⌜l !! k = Some x⌝ → Φ k x -∗ Ψ k x) -∗ [∗ list] k↦x ∈ l, Ψ k x. Proof. apply wand_intro_l. revert Φ Ψ. induction l as [|x l IH]=> Φ Ψ /=. { by rewrite sep_elim_r. } rewrite intuitionistically_sep_dup -assoc [(□ _ ∗ _)%I]comm -!assoc assoc. apply sep_mono. - rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl. by rewrite intuitionistically_elim wand_elim_l. - rewrite comm -(IH (Φ ∘ S) (Ψ ∘ S)) /=. apply sep_mono_l, affinely_mono, persistently_mono. apply forall_intro=> k. by rewrite (forall_elim (S k)). Qed. Lemma big_sepL_delete Φ l i x : l !! i = Some x → ([∗ list] k↦y ∈ l, Φ k y) ⊣⊢ Φ i x ∗ [∗ list] k↦y ∈ l, if decide (k = i) then emp else Φ k y. Proof. intros. rewrite -(take_drop_middle l i x) // !big_sepL_app /= Nat.add_0_r. rewrite take_length_le; last eauto using lookup_lt_Some, Nat.lt_le_incl. rewrite decide_True // left_id. rewrite assoc -!(comm _ (Φ _ _)) -assoc. do 2 f_equiv. - apply big_sepL_proper=> k y Hk. apply lookup_lt_Some in Hk. rewrite take_length in Hk. by rewrite decide_False; last lia. - apply big_sepL_proper=> k y _. by rewrite decide_False; last lia. Qed. Lemma big_sepL_delete' `{!BiAffine PROP} Φ l i x : l !! i = Some x → ([∗ list] k↦y ∈ l, Φ k y) ⊣⊢ Φ i x ∗ [∗ list] k↦y ∈ l, ⌜ k ≠ i ⌝ → Φ k y. Proof. intros. rewrite big_sepL_delete //. (do 2 f_equiv)=> k y. rewrite -decide_emp. by repeat case_decide. Qed. Lemma big_sepL_replicate l P : [∗] replicate (length l) P ⊣⊢ [∗ list] y ∈ l, P. Proof. induction l as [|x l]=> //=; by f_equiv. Qed. Global Instance big_sepL_nil_persistent Φ : Persistent ([∗ list] k↦x ∈ [], Φ k x). Proof. simpl; apply _. Qed. Global Instance big_sepL_persistent Φ l : (∀ k x, Persistent (Φ k x)) → Persistent ([∗ list] k↦x ∈ l, Φ k x). Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed. Global Instance big_sepL_persistent_id Ps : TCForall Persistent Ps → Persistent ([∗] Ps). Proof. induction 1; simpl; apply _. Qed. Global Instance big_sepL_nil_affine Φ : Affine ([∗ list] k↦x ∈ [], Φ k x). Proof. simpl; apply _. Qed. Global Instance big_sepL_affine Φ l : (∀ k x, Affine (Φ k x)) → Affine ([∗ list] k↦x ∈ l, Φ k x). Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed. Global Instance big_sepL_affine_id Ps : TCForall Affine Ps → Affine ([∗] Ps). Proof. induction 1; simpl; apply _. Qed. End sep_list. Section sep_list_more. Context {A : Type}. Implicit Types l : list A. Implicit Types Φ Ψ : nat → A → PROP. (* Some lemmas depend on the generalized versions of the above ones. *) Lemma big_sepL_zip_with {B C} Φ f (l1 : list B) (l2 : list C) : ([∗ list] k↦x ∈ zip_with f l1 l2, Φ k x) ⊣⊢ ([∗ list] k↦x ∈ l1, if l2 !! k is Some y then Φ k (f x y) else emp). Proof. revert Φ l2; induction l1 as [|x l1 IH]=> Φ [|y l2] //=. - by rewrite big_sepL_emp left_id. - by rewrite IH. Qed. End sep_list_more. Lemma big_sepL2_alt {A B} (Φ : nat → A → B → PROP) l1 l2 : ([∗ list] k↦y1;y2 ∈ l1; l2, Φ k y1 y2) ⊣⊢ ⌜ length l1 = length l2 ⌝ ∧ [∗ list] k ↦ y ∈ zip l1 l2, Φ k (y.1) (y.2). Proof. apply (anti_symm _). - apply and_intro. + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=; auto using pure_intro, False_elim. rewrite IH sep_elim_r. apply pure_mono; auto. + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=; auto using pure_intro, False_elim. by rewrite IH. - apply pure_elim_l=> /Forall2_same_length Hl. revert Φ. induction Hl as [|x1 l1 x2 l2 _ _ IH]=> Φ //=. by rewrite -IH. Qed. (** ** Big ops over two lists *) Section sep_list2. Context {A B : Type}. Implicit Types Φ Ψ : nat → A → B → PROP. Lemma big_sepL2_nil Φ : ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2) ⊣⊢ emp. Proof. done. Qed. Lemma big_sepL2_nil' `{BiAffine PROP} P Φ : P ⊢ [∗ list] k↦y1;y2 ∈ [];[], Φ k y1 y2. Proof. apply (affine _). Qed. Lemma big_sepL2_cons Φ x1 x2 l1 l2 : ([∗ list] k↦y1;y2 ∈ x1 :: l1; x2 :: l2, Φ k y1 y2) ⊣⊢ Φ 0 x1 x2 ∗ [∗ list] k↦y1;y2 ∈ l1;l2, Φ (S k) y1 y2. Proof. done. Qed. Lemma big_sepL2_cons_inv_l Φ x1 l1 l2 : ([∗ list] k↦y1;y2 ∈ x1 :: l1; l2, Φ k y1 y2) -∗ ∃ x2 l2', ⌜ l2 = x2 :: l2' ⌝ ∧ Φ 0 x1 x2 ∗ [∗ list] k↦y1;y2 ∈ l1;l2', Φ (S k) y1 y2. Proof. destruct l2 as [|x2 l2]; simpl; auto using False_elim. by rewrite -(exist_intro x2) -(exist_intro l2) pure_True // left_id. Qed. Lemma big_sepL2_cons_inv_r Φ x2 l1 l2 : ([∗ list] k↦y1;y2 ∈ l1; x2 :: l2, Φ k y1 y2) -∗ ∃ x1 l1', ⌜ l1 = x1 :: l1' ⌝ ∧ Φ 0 x1 x2 ∗ [∗ list] k↦y1;y2 ∈ l1';l2, Φ (S k) y1 y2. Proof. destruct l1 as [|x1 l1]; simpl; auto using False_elim. by rewrite -(exist_intro x1) -(exist_intro l1) pure_True // left_id. Qed. Lemma big_sepL2_singleton Φ x1 x2 : ([∗ list] k↦y1;y2 ∈ [x1];[x2], Φ k y1 y2) ⊣⊢ Φ 0 x1 x2. Proof. by rewrite /= right_id. Qed. Lemma big_sepL2_length Φ l1 l2 : ([∗ list] k↦y1;y2 ∈ l1; l2, Φ k y1 y2) -∗ ⌜ length l1 = length l2 ⌝. Proof. by rewrite big_sepL2_alt and_elim_l. Qed. Lemma big_sepL2_app Φ l1 l2 l1' l2' : ([∗ list] k↦y1;y2 ∈ l1; l1', Φ k y1 y2) -∗ ([∗ list] k↦y1;y2 ∈ l2; l2', Φ (length l1 + k) y1 y2) -∗ ([∗ list] k↦y1;y2 ∈ l1 ++ l2; l1' ++ l2', Φ k y1 y2). Proof. apply wand_intro_r. revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] /=. - by rewrite left_id. - rewrite left_absorb. apply False_elim. - rewrite left_absorb. apply False_elim. - by rewrite -assoc IH. Qed. Lemma big_sepL2_app_inv_l Φ l1' l1'' l2 : ([∗ list] k↦y1;y2 ∈ l1' ++ l1''; l2, Φ k y1 y2) -∗ ∃ l2' l2'', ⌜ l2 = l2' ++ l2'' ⌝ ∧ ([∗ list] k↦y1;y2 ∈ l1';l2', Φ k y1 y2) ∗ ([∗ list] k↦y1;y2 ∈ l1'';l2'', Φ (length l1' + k) y1 y2). Proof. rewrite -(exist_intro (take (length l1') l2)) -(exist_intro (drop (length l1') l2)) take_drop pure_True // left_id. revert Φ l2. induction l1' as [|x1 l1' IH]=> Φ -[|x2 l2] /=; [by rewrite left_id|by rewrite left_id|apply False_elim|]. by rewrite IH -assoc. Qed. Lemma big_sepL2_app_inv_r Φ l1 l2' l2'' : ([∗ list] k↦y1;y2 ∈ l1; l2' ++ l2'', Φ k y1 y2) -∗ ∃ l1' l1'', ⌜ l1 = l1' ++ l1'' ⌝ ∧ ([∗ list] k↦y1;y2 ∈ l1';l2', Φ k y1 y2) ∗ ([∗ list] k↦y1;y2 ∈ l1'';l2'', Φ (length l2' + k) y1 y2). Proof. rewrite -(exist_intro (take (length l2') l1)) -(exist_intro (drop (length l2') l1)) take_drop pure_True // left_id. revert Φ l1. induction l2' as [|x2 l2' IH]=> Φ -[|x1 l1] /=; [by rewrite left_id|by rewrite left_id|apply False_elim|]. by rewrite IH -assoc. Qed. Lemma big_sepL2_mono Φ Ψ l1 l2 : (∀ k y1 y2, l1 !! k = Some y1 → l2 !! k = Some y2 → Φ k y1 y2 ⊢ Ψ k y1 y2) → ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2) ⊢ [∗ list] k ↦ y1;y2 ∈ l1;l2, Ψ k y1 y2. Proof. intros H. rewrite !big_sepL2_alt. f_equiv. apply big_sepL_mono=> k [y1 y2]. rewrite lookup_zip_with=> ?; simplify_option_eq; auto. Qed. Lemma big_sepL2_proper Φ Ψ l1 l2 : (∀ k y1 y2, l1 !! k = Some y1 → l2 !! k = Some y2 → Φ k y1 y2 ⊣⊢ Ψ k y1 y2) → ([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2) ⊣⊢ [∗ list] k ↦ y1;y2 ∈ l1;l2, Ψ k y1 y2. Proof. intros; apply (anti_symm _); apply big_sepL2_mono; auto using equiv_entails, equiv_entails_sym. Qed. Global Instance big_sepL2_ne n : Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (dist n))) ==> (=) ==> (=) ==> (dist n)) (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)). Proof. intros Φ1 Φ2 HΦ x1 ? <- x2 ? <-. rewrite !big_sepL2_alt. f_equiv. f_equiv=> k [y1 y2]. apply HΦ. Qed. Global Instance big_sepL2_mono' : Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (⊢))) ==> (=) ==> (=) ==> (⊢)) (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)). Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_mono; intros; apply Hf. Qed. Global Instance big_sepL2_proper' : Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (⊣⊢))) ==> (=) ==> (=) ==> (⊣⊢)) (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)). Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_proper; intros; apply Hf. Qed. Lemma big_sepL2_lookup_acc Φ l1 l2 i x1 x2 : l1 !! i = Some x1 → l2 !! i = Some x2 → ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ⊢ Φ i x1 x2 ∗ (Φ i x1 x2 -∗ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2)). Proof. intros Hl1 Hl2. rewrite big_sepL2_alt. apply pure_elim_l=> Hl. rewrite {1}big_sepL_lookup_acc; last by rewrite lookup_zip_with; simplify_option_eq. by rewrite pure_True // left_id. Qed. Lemma big_sepL2_lookup Φ l1 l2 i x1 x2 `{!Absorbing (Φ i x1 x2)} : l1 !! i = Some x1 → l2 !! i = Some x2 → ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ⊢ Φ i x1 x2. Proof. intros. rewrite big_sepL2_lookup_acc //. by rewrite sep_elim_l. Qed. Lemma big_sepL2_fmap_l {A'} (f : A → A') (Φ : nat → A' → B → PROP) l1 l2 : ([∗ list] k↦y1;y2 ∈ f <\$> l1; l2, Φ k y1 y2) ⊣⊢ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k (f y1) y2). Proof. rewrite !big_sepL2_alt fmap_length zip_with_fmap_l zip_with_zip big_sepL_fmap. by f_equiv; f_equiv=> k [??]. Qed. Lemma big_sepL2_fmap_r {B'} (g : B → B') (Φ : nat → A → B' → PROP) l1 l2 : ([∗ list] k↦y1;y2 ∈ l1; g <\$> l2, Φ k y1 y2) ⊣⊢ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 (g y2)). Proof. rewrite !big_sepL2_alt fmap_length zip_with_fmap_r zip_with_zip big_sepL_fmap. by f_equiv; f_equiv=> k [??]. Qed. Lemma big_sepL2_sepL2 Φ Ψ l1 l2 : ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2 ∗ Ψ k y1 y2) ⊣⊢ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ∗ ([∗ list] k↦y1;y2 ∈ l1;l2, Ψ k y1 y2). Proof. rewrite !big_sepL2_alt big_sepL_sepL !persistent_and_affinely_sep_l. rewrite -assoc (assoc _ _ ( _)%I). rewrite -(comm bi_sep ( _)%I). rewrite -assoc (assoc _ _ ( _)%I) -!persistent_and_affinely_sep_l. by rewrite affinely_and_r persistent_and_affinely_sep_l idemp. Qed. Lemma big_sepL2_and Φ Ψ l1 l2 : ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2 ∧ Ψ k y1 y2) ⊢ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ∧ ([∗ list] k↦y1;y2 ∈ l1;l2, Ψ k y1 y2). Proof. auto using and_intro, big_sepL2_mono, and_elim_l, and_elim_r. Qed. Lemma big_sepL2_persistently `{BiAffine PROP} Φ l1 l2 : ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ⊣⊢ [∗ list] k↦y1;y2 ∈ l1;l2, (Φ k y1 y2). Proof. by rewrite !big_sepL2_alt persistently_and persistently_pure big_sepL_persistently. Qed. Lemma big_sepL2_impl Φ Ψ l1 l2 : ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) -∗ □ (∀ k x1 x2, ⌜l1 !! k = Some x1⌝ → ⌜l2 !! k = Some x2⌝ → Φ k x1 x2 -∗ Ψ k x1 x2) -∗ [∗ list] k↦y1;y2 ∈ l1;l2, Ψ k y1 y2. Proof. apply wand_intro_l. revert Φ Ψ l2. induction l1 as [|x1 l1 IH]=> Φ Ψ [|x2 l2] /=; [by rewrite sep_elim_r..|]. rewrite intuitionistically_sep_dup -assoc [(□ _ ∗ _)%I]comm -!assoc assoc. apply sep_mono. - rewrite (forall_elim 0) (forall_elim x1) (forall_elim x2) !pure_True // !True_impl. by rewrite intuitionistically_elim wand_elim_l. - rewrite comm -(IH (Φ ∘ S) (Ψ ∘ S)) /=. apply sep_mono_l, affinely_mono, persistently_mono. apply forall_intro=> k. by rewrite (forall_elim (S k)). Qed. Global Instance big_sepL2_nil_persistent Φ : Persistent ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2). Proof. simpl; apply _. Qed. Global Instance big_sepL2_persistent Φ l1 l2 : (∀ k x1 x2, Persistent (Φ k x1 x2)) → Persistent ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2). Proof. rewrite big_sepL2_alt. apply _. Qed. Global Instance big_sepL2_nil_affine Φ : Affine ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2). Proof. simpl; apply _. Qed. Global Instance big_sepL2_affine Φ l1 l2 : (∀ k x1 x2, Affine (Φ k x1 x2)) → Affine ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2). Proof. rewrite big_sepL2_alt. apply _. Qed. End sep_list2. Section and_list. Context {A : Type}. Implicit Types l : list A. Implicit Types Φ Ψ : nat → A → PROP. Lemma big_andL_nil Φ : ([∧ list] k↦y ∈ nil, Φ k y) ⊣⊢ True. Proof. done. Qed. Lemma big_andL_nil' P Φ : P ⊢ [∧ list] k↦y ∈ nil, Φ k y. Proof. by apply pure_intro. Qed. Lemma big_andL_cons Φ x l : ([∧ list] k↦y ∈ x :: l, Φ k y) ⊣⊢ Φ 0 x ∧ [∧ list] k↦y ∈ l, Φ (S k) y. Proof. by rewrite big_opL_cons. Qed. Lemma big_andL_singleton Φ x : ([∧ list] k↦y ∈ [x], Φ k y) ⊣⊢ Φ 0 x. Proof. by rewrite big_opL_singleton. Qed. Lemma big_andL_app Φ l1 l2 : ([∧ list] k↦y ∈ l1 ++ l2, Φ k y) ⊣⊢ ([∧ list] k↦y ∈ l1, Φ k y) ∧ ([∧ list] k↦y ∈ l2, Φ (length l1 + k) y). Proof. by rewrite big_opL_app. Qed. Lemma big_andL_mono Φ Ψ l : (∀ k y, l !! k = Some y → Φ k y ⊢ Ψ k y) → ([∧ list] k ↦ y ∈ l, Φ k y) ⊢ [∧ list] k ↦ y ∈ l, Ψ k y. Proof. apply big_opL_forall; apply _. Qed. Lemma big_andL_proper Φ Ψ l : (∀ k y, l !! k = Some y → Φ k y ⊣⊢ Ψ k y) → ([∧ list] k ↦ y ∈ l, Φ k y) ⊣⊢ ([∧ list] k ↦ y ∈ l, Ψ k y). Proof. apply big_opL_proper. Qed. Lemma big_andL_submseteq (Φ : A → PROP) l1 l2 : l1 ⊆+ l2 → ([∧ list] y ∈ l2, Φ y) ⊢ [∧ list] y ∈ l1, Φ y. Proof. intros [l ->]%submseteq_Permutation. by rewrite big_andL_app and_elim_l. Qed. Global Instance big_andL_mono' : Proper (pointwise_relation _ (pointwise_relation _ (⊢)) ==> (=) ==> (⊢)) (big_opL (@bi_and PROP) (A:=A)). Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed. Global Instance big_andL_id_mono' : Proper (Forall2 (⊢) ==> (⊢)) (big_opL (@bi_and PROP) (λ _ P, P)). Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed. Lemma big_andL_lookup Φ l i x `{!Absorbing (Φ i x)} : l !! i = Some x → ([∧ list] k↦y ∈ l, Φ k y) ⊢ Φ i x. Proof. intros. rewrite -(take_drop_middle l i x) // big_andL_app /=. rewrite Nat.add_0_r take_length_le; eauto using lookup_lt_Some, Nat.lt_le_incl, and_elim_l', and_elim_r'. Qed. Lemma big_andL_elem_of (Φ : A → PROP) l x `{!Absorbing (Φ x)} : x ∈ l → ([∧ list] y ∈ l, Φ y) ⊢ Φ x. Proof. intros [i ?]%elem_of_list_lookup; eauto using (big_andL_lookup (λ _, Φ)). Qed. Lemma big_andL_fmap {B} (f : A → B) (Φ : nat → B → PROP) l : ([∧ list] k↦y ∈ f <\$> l, Φ k y) ⊣⊢ ([∧ list] k↦y ∈ l, Φ k (f y)). Proof. by rewrite big_opL_fmap. Qed. Lemma big_andL_andL Φ Ψ l : ([∧ list] k↦x ∈ l, Φ k x ∧ Ψ k x) ⊣⊢ ([∧ list] k↦x ∈ l, Φ k x) ∧ ([∧ list] k↦x ∈ l, Ψ k x). Proof. by rewrite big_opL_opL. Qed. Lemma big_andL_and Φ Ψ l : ([∧ list] k↦x ∈ l, Φ k x ∧ Ψ k x) ⊢ ([∧ list] k↦x ∈ l, Φ k x) ∧ ([∧ list] k↦x ∈ l, Ψ k x). Proof. auto using and_intro, big_andL_mono, and_elim_l, and_elim_r. Qed. Lemma big_andL_persistently Φ l : ([∧ list] k↦x ∈ l, Φ k x) ⊣⊢ [∧ list] k↦x ∈ l, (Φ k x). Proof. apply (big_opL_commute _). Qed. Lemma big_andL_forall `{BiAffine PROP} Φ l : ([∧ list] k↦x ∈ l, Φ k x) ⊣⊢ (∀ k x, ⌜l !! k = Some x⌝ → Φ k x). Proof. apply (anti_symm _). { apply forall_intro=> k; apply forall_intro=> x. apply impl_intro_l, pure_elim_l=> ?; by apply: big_andL_lookup. } revert Φ. induction l as [|x l IH]=> Φ; [by auto using big_andL_nil'|]. rewrite big_andL_cons. apply and_intro. - by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl. - rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)). Qed. Global Instance big_andL_nil_persistent Φ : Persistent ([∧ list] k↦x ∈ [], Φ k x). Proof. simpl; apply _. Qed. Global Instance big_andL_persistent Φ l : (∀ k x, Persistent (Φ k x)) → Persistent ([∧ list] k↦x ∈ l, Φ k x). Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed. End and_list. (** ** Big ops over finite maps *) Section map. Context `{Countable K} {A : Type}. Implicit Types m : gmap K A. Implicit Types Φ Ψ : K → A → PROP. Lemma big_sepM_mono Φ Ψ m : (∀ k x, m !! k = Some x → Φ k x ⊢ Ψ k x) → ([∗ map] k ↦ x ∈ m, Φ k x) ⊢ [∗ map] k ↦ x ∈ m, Ψ k x. Proof. apply big_opM_forall; apply _ || auto. Qed. Lemma big_sepM_proper Φ Ψ m : (∀ k x, m !! k = Some x → Φ k x ⊣⊢ Ψ k x) → ([∗ map] k ↦ x ∈ m, Φ k x) ⊣⊢ ([∗ map] k ↦ x ∈ m, Ψ k x). Proof. apply big_opM_proper. Qed. Lemma big_sepM_subseteq `{BiAffine PROP} Φ m1 m2 : m2 ⊆ m1 → ([∗ map] k ↦ x ∈ m1, Φ k x) ⊢ [∗ map] k ↦ x ∈ m2, Φ k x. Proof. intros. by apply big_sepL_submseteq, map_to_list_submseteq. Qed. Global Instance big_sepM_mono' : Proper (pointwise_relation _ (pointwise_relation _ (⊢)) ==> (=) ==> (⊢)) (big_opM (@bi_sep PROP) (K:=K) (A:=A)). Proof. intros f g Hf m ? <-. apply big_sepM_mono=> ???; apply Hf. Qed. Lemma big_sepM_empty Φ : ([∗ map] k↦x ∈ ∅, Φ k x) ⊣⊢ emp. Proof. by rewrite big_opM_empty. Qed. Lemma big_sepM_empty' `{BiAffine PROP} P Φ : P ⊢ [∗ map] k↦x ∈ ∅, Φ k x. Proof. rewrite big_sepM_empty. apply: affine. Qed. Lemma big_sepM_insert Φ m i x : m !! i = None → ([∗ map] k↦y ∈ <[i:=x]> m, Φ k y) ⊣⊢ Φ i x ∗ [∗ map] k↦y ∈ m, Φ k y. Proof. apply big_opM_insert. Qed. Lemma big_sepM_delete Φ m i x : m !! i = Some x → ([∗ map] k↦y ∈ m, Φ k y) ⊣⊢ Φ i x ∗ [∗ map] k↦y ∈ delete i m, Φ k y. Proof. apply big_opM_delete. Qed. Lemma big_sepM_insert_2 Φ m i x : TCOr (∀ x, Affine (Φ i x)) (Absorbing (Φ i x)) → Φ i x -∗ ([∗ map] k↦y ∈ m, Φ k y) -∗ [∗ map] k↦y ∈ <[i:=x]> m, Φ k y. Proof. intros Ha. apply wand_intro_r. destruct (m !! i) as [y|] eqn:Hi; last first. { by rewrite -big_sepM_insert. } assert (TCOr (Affine (Φ i y)) (Absorbing (Φ i x))). { destruct Ha; try apply _. } rewrite big_sepM_delete // assoc. rewrite (sep_elim_l (Φ i x)) -big_sepM_insert ?lookup_delete //. by rewrite insert_delete. Qed. Lemma big_sepM_lookup_acc Φ m i x : m !! i = Some x → ([∗ map] k↦y ∈ m, Φ k y) ⊢ Φ i x ∗ (Φ i x -∗ ([∗ map] k↦y ∈ m, Φ k y)). Proof. intros. rewrite big_sepM_delete //. by apply sep_mono_r, wand_intro_l. Qed. Lemma big_sepM_lookup Φ m i x `{!Absorbing (Φ i x)} : m !! i = Some x → ([∗ map] k↦y ∈ m, Φ k y) ⊢ Φ i x. Proof. intros. rewrite big_sepM_lookup_acc //. by rewrite sep_elim_l. Qed. Lemma big_sepM_lookup_dom (Φ : K → PROP) m i `{!Absorbing (Φ i)} : is_Some (m !! i) → ([∗ map] k↦_ ∈ m, Φ k) ⊢ Φ i. Proof. intros [x ?]. by eapply (big_sepM_lookup (λ i x, Φ i)). Qed. Lemma big_sepM_singleton Φ i x : ([∗ map] k↦y ∈ {[i:=x]}, Φ k y) ⊣⊢ Φ i x. Proof. by rewrite big_opM_singleton. Qed. Lemma big_sepM_fmap {B} (f : A → B) (Φ : K → B → PROP) m : ([∗ map] k↦y ∈ f <\$> m, Φ k y) ⊣⊢ ([∗ map] k↦y ∈ m, Φ k (f y)). Proof. by rewrite big_opM_fmap. Qed. Lemma big_sepM_insert_override Φ m i x x' : m !! i = Some x → (Φ i x ⊣⊢ Φ i x') → ([∗ map] k↦y ∈ <[i:=x']> m, Φ k y) ⊣⊢ ([∗ map] k↦y ∈ m, Φ k y). Proof. apply big_opM_insert_override. Qed. Lemma big_sepM_insert_override_1 Φ m i x x' : m !! i = Some x → ([∗ map] k↦y ∈ <[i:=x']> m, Φ k y) ⊢ (Φ i x' -∗ Φ i x) -∗ ([∗ map] k↦y ∈ m, Φ k y). Proof. intros ?. apply wand_intro_l. rewrite -insert_delete big_sepM_insert ?lookup_delete //. by rewrite assoc wand_elim_l -big_sepM_delete. Qed. Lemma big_sepM_insert_override_2 Φ m i x x' : m !! i = Some x → ([∗ map] k↦y ∈ m, Φ k y) ⊢ (Φ i x -∗ Φ i x') -∗ ([∗ map] k↦y ∈ <[i:=x']> m, Φ k y). Proof. intros ?. apply wand_intro_l. rewrite {1}big_sepM_delete //; rewrite assoc wand_elim_l. rewrite -insert_delete big_sepM_insert ?lookup_delete //. Qed. Lemma big_sepM_insert_acc Φ m i x : m !! i = Some x → ([∗ map] k↦y ∈ m, Φ k y) ⊢ Φ i x ∗ (∀ x', Φ i x' -∗ ([∗ map] k↦y ∈ <[i:=x']> m, Φ k y)). Proof. intros ?. rewrite {1}big_sepM_delete //. apply sep_mono; [done|]. apply forall_intro=> x'. rewrite -insert_delete big_sepM_insert ?lookup_delete //. by apply wand_intro_l. Qed. Lemma big_sepM_fn_insert {B} (Ψ : K → A → B → PROP) (f : K → B) m i x b : m !! i = None → ([∗ map] k↦y ∈ <[i:=x]> m, Ψ k y (<[i:=b]> f k)) ⊣⊢ (Ψ i x b ∗ [∗ map] k↦y ∈ m, Ψ k y (f k)). Proof. apply big_opM_fn_insert. Qed. Lemma big_sepM_fn_insert' (Φ : K → PROP) m i x P : m !! i = None → ([∗ map] k↦y ∈ <[i:=x]> m, <[i:=P]> Φ k) ⊣⊢ (P ∗ [∗ map] k↦y ∈ m, Φ k). Proof. apply big_opM_fn_insert'. Qed. Lemma big_sepM_union Φ m1 m2 : m1 ##ₘ m2 → ([∗ map] k↦y ∈ m1 ∪ m2, Φ k y) ⊣⊢ ([∗ map] k↦y ∈ m1, Φ k y) ∗ ([∗ map] k↦y ∈ m2, Φ k y). Proof. apply big_opM_union. Qed. Lemma big_sepM_sepM Φ Ψ m : ([∗ map] k↦x ∈ m, Φ k x ∗ Ψ k x) ⊣⊢ ([∗ map] k↦x ∈ m, Φ k x) ∗ ([∗ map] k↦x ∈ m, Ψ k x). Proof. apply big_opM_opM. Qed. Lemma big_sepM_and Φ Ψ m : ([∗ map] k↦x ∈ m, Φ k x ∧ Ψ k x) ⊢ ([∗ map] k↦x ∈ m, Φ k x) ∧ ([∗ map] k↦x ∈ m, Ψ k x). Proof. auto using and_intro, big_sepM_mono, and_elim_l, and_elim_r. Qed. Lemma big_sepM_persistently `{BiAffine PROP} Φ m : ( ([∗ map] k↦x ∈ m, Φ k x)) ⊣⊢ ([∗ map] k↦x ∈ m, (Φ k x)). Proof. apply (big_opM_commute _). Qed. Lemma big_sepM_forall `{BiAffine PROP} Φ m : (∀ k x, Persistent (Φ k x)) → ([∗ map] k↦x ∈ m, Φ k x) ⊣⊢ (∀ k x, ⌜m !! k = Some x⌝ → Φ k x). Proof. intros. apply (anti_symm _). { apply forall_intro=> k; apply forall_intro=> x. apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepM_lookup. } induction m as [|i x m ? IH] using map_ind; auto using big_sepM_empty'. rewrite big_sepM_insert // -persistent_and_sep. apply and_intro. - rewrite (forall_elim i) (forall_elim x) lookup_insert. by rewrite pure_True // True_impl. - rewrite -IH. apply forall_mono=> k; apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?. rewrite lookup_insert_ne; last by intros ?; simplify_map_eq. by rewrite pure_True // True_impl. Qed. Lemma big_sepM_impl Φ Ψ m : ([∗ map] k↦x ∈ m, Φ k x) -∗ □ (∀ k x, ⌜m !! k = Some x⌝ → Φ k x -∗ Ψ k x) -∗ [∗ map] k↦x ∈ m, Ψ k x. Proof. apply wand_intro_l. induction m as [|i x m ? IH] using map_ind. { by rewrite sep_elim_r. } rewrite !big_sepM_insert // intuitionistically_sep_dup. rewrite -assoc [(□ _ ∗ _)%I]comm -!assoc assoc. apply sep_mono. - rewrite (forall_elim i) (forall_elim x) pure_True ?lookup_insert //. by rewrite True_impl intuitionistically_elim wand_elim_l. - rewrite comm -IH /=. apply sep_mono_l, affinely_mono, persistently_mono, forall_mono=> k. apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?. rewrite lookup_insert_ne; last by intros ?; simplify_map_eq. by rewrite pure_True // True_impl. Qed. Global Instance big_sepM_empty_persistent Φ : Persistent ([∗ map] k↦x ∈ ∅, Φ k x). Proof. rewrite /big_opM map_to_list_empty. apply _. Qed. Global Instance big_sepM_persistent Φ m : (∀ k x, Persistent (Φ k x)) → Persistent ([∗ map] k↦x ∈ m, Φ k x). Proof. intros. apply big_sepL_persistent=> _ [??]; apply _. Qed. Global Instance big_sepM_empty_affine Φ : Affine ([∗ map] k↦x ∈ ∅, Φ k x). Proof. rewrite /big_opM map_to_list_empty. apply _. Qed. Global Instance big_sepM_affine Φ m : (∀ k x, Affine (Φ k x)) → Affine ([∗ map] k↦x ∈ m, Φ k x). Proof. intros. apply big_sepL_affine=> _ [??]; apply _. Qed. End map. (** ** Big ops over two maps *) Section map2. Context `{Countable K} {A B : Type}. Implicit Types Φ Ψ : K → A → B → PROP. Lemma big_sepM2_empty Φ : ([∗ map] k↦y1;y2 ∈ ∅; ∅, Φ k y1 y2) ⊣⊢ emp. Proof. rewrite /big_sepM2 pure_True ?left_id //. intros k. rewrite !lookup_empty; split; by inversion 1. Qed. Lemma big_sepM2_empty' `{BiAffine PROP} P Φ : P ⊢ [∗ map] k↦y1;y2 ∈ ∅;∅, Φ k y1 y2. Proof. rewrite big_sepM2_empty. apply (affine _). Qed. Lemma big_sepM2_insert Φ m1 m2 i x1 x2 : (m1 !! i = None ∨ m2 !! i = None) → ([∗ map] k↦y1;y2 ∈ <[i:=x1]>m1; <[i:=x2]>m2, Φ k y1 y2) ⊣⊢ Φ i x1 x2 ∗ [∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2. Proof. intros Hm. rewrite /big_sepM2 -map_insert_zip_with. Admitted. (* Lemma big_sepM2_cons_inv_l Φ x1 m1 m2 : ([∗ map] k↦y1;y2 ∈ x1 :: m1; m2, Φ k y1 y2) -∗ ∃ x2 m2', ⌜ m2 = x2 :: m2' ⌝ ∧ Φ 0 x1 x2 ∗ [∗ map] k↦y1;y2 ∈ m1;m2', Φ (S k) y1 y2. Proof. destruct m2 as [|x2 m2]; simpl; auto using False_elim. by rewrite -(exist_intro x2) -(exist_intro m2) pure_True // left_id. Qed. Lemma big_sepM2_cons_inv_r Φ x2 m1 m2 : ([∗ map] k↦y1;y2 ∈ m1; x2 :: m2, Φ k y1 y2) -∗ ∃ x1 m1', ⌜ m1 = x1 :: m1' ⌝ ∧ Φ 0 x1 x2 ∗ [∗ map] k↦y1;y2 ∈ m1';m2, Φ (S k) y1 y2. Proof. destruct m1 as [|x1 m1]; simpl; auto using False_elim. by rewrite -(exist_intro x1) -(exist_intro m1) pure_True // left_id. Qed. *) Lemma big_sepM2_singleton Φ i x1 x2 : ([∗ map] k↦y1;y2 ∈ {[ i := x1 ]}; {[ i := x2 ]}, Φ k y1 y2) ⊣⊢ Φ i x1 x2. Proof. rewrite /big_sepM2. Admitted. Lemma big_sepM2_dom Φ m1 m2 : ([∗ map] k↦y1;y2 ∈ m1; m2, Φ k y1 y2) -∗ ⌜ dom (gset K) m1 = dom (gset K) m2 ⌝. Proof. Admitted. (* Lemma big_sepM2_app Φ m1 m2 m1' m2' : ([∗ map] k↦y1;y2 ∈ m1; m1', Φ k y1 y2) -∗ ([∗ map] k↦y1;y2 ∈ m2; m2', Φ (length m1 + k) y1 y2) -∗ ([∗ map] k↦y1;y2 ∈ m1 ++ m2; m1' ++ m2', Φ k y1 y2). Proof. apply wand_intro_r. revert Φ m1'. induction m1 as [|x1 m1 IH]=> Φ -[|x1' m1'] /=. - by rewrite left_id. - rewrite left_absorb. apply False_elim. - rewrite left_absorb. apply False_elim. - by rewrite -assoc IH. Qed. Lemma big_sepM2_app_inv_l Φ m1' m1'' m2 : ([∗ map] k↦y1;y2 ∈ m1' ++ m1''; m2, Φ k y1 y2) -∗ ∃ m2' m2'', ⌜ m2 = m2' ++ m2'' ⌝ ∧ ([∗ map] k↦y1;y2 ∈ m1';m2', Φ k y1 y2) ∗ ([∗ map] k↦y1;y2 ∈ m1'';m2'', Φ (length m1' + k) y1 y2). Proof. rewrite -(exist_intro (take (length m1') m2)) -(exist_intro (drop (length m1') m2)) take_drop pure_True // left_id. revert Φ m2. induction m1' as [|x1 m1' IH]=> Φ -[|x2 m2] /=; [by rewrite left_id|by rewrite left_id|apply False_elim|]. by rewrite IH -assoc. Qed. Lemma big_sepM2_app_inv_r Φ m1 m2' m2'' : ([∗ map] k↦y1;y2 ∈ m1; m2' ++ m2'', Φ k y1 y2) -∗ ∃ m1' m1'', ⌜ m1 = m1' ++ m1'' ⌝ ∧ ([∗ map] k↦y1;y2 ∈ m1';m2', Φ k y1 y2) ∗ ([∗ map] k↦y1;y2 ∈ m1'';m2'', Φ (length m2' + k) y1 y2). Proof. rewrite -(exist_intro (take (length m2') m1)) -(exist_intro (drop (length m2') m1)) take_drop pure_True // left_id. revert Φ m1. induction m2' as [|x2 m2' IH]=> Φ -[|x1 m1] /=; [by rewrite left_id|by rewrite left_id|apply False_elim|]. by rewrite IH -assoc. Qed. Lemma big_sepM2_mono Φ Ψ m1 m2 : (∀ k y1 y2, m1 !! k = Some y1 → m2 !! k = Some y2 → Φ k y1 y2 ⊢ Ψ k y1 y2) → ([∗ map] k ↦ y1;y2 ∈ m1;m2, Φ k y1 y2) ⊢ [∗ map] k ↦ y1;y2 ∈ m1;m2, Ψ k y1 y2. Proof. intros H. rewrite !big_sepM2_alt. f_equiv. apply big_sepL_mono=> k [y1 y2]. rewrite lookup_zip_with=> ?; simplify_option_eq; auto. Qed. Lemma big_sepM2_proper Φ Ψ m1 m2 : (∀ k y1 y2, m1 !! k = Some y1 → m2 !! k = Some y2 → Φ k y1 y2 ⊣⊢ Ψ k y1 y2) → ([∗ map] k ↦ y1;y2 ∈ m1;m2, Φ k y1 y2) ⊣⊢ [∗ map] k ↦ y1;y2 ∈ m1;m2, Ψ k y1 y2. Proof. intros; apply (anti_symm _); apply big_sepM2_mono; auto using equiv_entails, equiv_entails_sym. Qed. Global Instance big_sepM2_ne n : Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (dist n))) ==> (=) ==> (=) ==> (dist n)) (big_sepM2 (PROP:=PROP) (A:=A) (B:=B)). Proof. intros Φ1 Φ2 HΦ x1 ? <- x2 ? <-. rewrite !big_sepM2_alt. f_equiv. f_equiv=> k [y1 y2]. apply HΦ. Qed. Global Instance big_sepM2_mono' : Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (⊢))) ==> (=) ==> (=) ==> (⊢)) (big_sepM2 (PROP:=PROP) (A:=A) (B:=B)). Proof. intros f g Hf m1 ? <- m2 ? <-. apply big_sepM2_mono; intros; apply Hf. Qed. Global Instance big_sepM2_proper' : Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (⊣⊢))) ==> (=) ==> (=) ==> (⊣⊢)) (big_sepM2 (PROP:=PROP) (A:=A) (B:=B)). Proof. intros f g Hf m1 ? <- m2 ? <-. apply big_sepM2_proper; intros; apply Hf. Qed. Lemma big_sepM2_lookup_acc Φ m1 m2 i x1 x2 : m1 !! i = Some x1 → m2 !! i = Some x2 → ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) ⊢ Φ i x1 x2 ∗ (Φ i x1 x2 -∗ ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2)). Proof. intros Hm1 Hm2. rewrite big_sepM2_alt. apply pure_elim_l=> Hl. rewrite {1}big_sepL_lookup_acc; last by rewrite lookup_zip_with; simplify_option_eq. by rewrite pure_True // left_id. Qed. Lemma big_sepM2_lookup Φ m1 m2 i x1 x2 `{!Absorbing (Φ i x1 x2)} : m1 !! i = Some x1 → m2 !! i = Some x2 → ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) ⊢ Φ i x1 x2. Proof. intros. rewrite big_sepM2_lookup_acc //. by rewrite sep_elim_l. Qed. Lemma big_sepM2_fmap_l {A'} (f : A → A') (Φ : nat → A' → B → PROP) m1 m2 : ([∗ map] k↦y1;y2 ∈ f <\$> m1; m2, Φ k y1 y2) ⊣⊢ ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k (f y1) y2). Proof. rewrite !big_sepM2_alt fmap_length zip_with_fmap_l zip_with_zip big_sepL_fmap. by f_equiv; f_equiv=> k [??]. Qed. Lemma big_sepM2_fmap_r {B'} (g : B → B') (Φ : nat → A → B' → PROP) m1 m2 : ([∗ map] k↦y1;y2 ∈ m1; g <\$> m2, Φ k y1 y2) ⊣⊢ ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 (g y2)). Proof. rewrite !big_sepM2_alt fmap_length zip_with_fmap_r zip_with_zip big_sepL_fmap. by f_equiv; f_equiv=> k [??]. Qed. Lemma big_sepM2_sepM2 Φ Ψ m1 m2 : ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2 ∗ Ψ k y1 y2) ⊣⊢ ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) ∗ ([∗ map] k↦y1;y2 ∈ m1;m2, Ψ k y1 y2). Proof.simpl rewrite !big_sepM2_alt big_sepL_sepL !persistent_and_affinely_sep_l. rewrite -assoc (assoc _ _ ( _)%I). rewrite -(comm bi_sep ( _)%I). rewrite -assoc (assoc _ _ ( _)%I) -!persistent_and_affinely_sep_l. by rewrite affinely_and_r persistent_and_affinely_sep_l idemp. Qed. Lemma big_sepM2_and Φ Ψ m1 m2 : ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2 ∧ Ψ k y1 y2) ⊢ ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) ∧ ([∗ map] k↦y1;y2 ∈ m1;m2, Ψ k y1 y2). Proof. auto using and_intro, big_sepM2_mono, and_elim_l, and_elim_r. Qed. Lemma big_sepM2_persistently `{BiAffine PROP} Φ m1 m2 : ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) ⊣⊢ [∗ map] k↦y1;y2 ∈ m1;m2, (Φ k y1 y2). Proof. by rewrite !big_sepM2_alt persistently_and persistently_pure big_sepL_persistently. Qed. Lemma big_sepM2_impl Φ Ψ m1 m2 : ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) -∗ □ (∀ k x1 x2, ⌜m1 !! k = Some x1⌝ → ⌜m2 !! k = Some x2⌝ → Φ k x1 x2 -∗ Ψ k x1 x2) -∗ [∗ map] k↦y1;y2 ∈ m1;m2, Ψ k y1 y2. Proof. apply wand_intro_l. revert Φ Ψ m2. induction m1 as [|x1 m1 IH]=> Φ Ψ [|x2 m2] /=; [by rewrite sep_elim_r..|]. rewrite intuitionistically_sep_dup -assoc [(□ _ ∗ _)%I]comm -!assoc assoc. apply sep_mono. - rewrite (forall_elim 0) (forall_elim x1) (forall_elim x2) !pure_True // !True_impl. by rewrite intuitionistically_elim wand_elim_l. - rewrite comm -(IH (Φ ∘ S) (Ψ ∘ S)) /=. apply sep_mono_l, affinely_mono, persistently_mono. apply forall_intro=> k. by rewrite (forall_elim (S k)). Qed. *) Global Instance big_sepM2_empty_persistent Φ : Persistent ([∗ map] k↦y1;y2 ∈ ∅; ∅, Φ k y1 y2). Proof. rewrite big_sepM2_empty. apply _. Qed. Global Instance big_sepM2_persistent Φ m1 m2 : (∀ k x1 x2, Persistent (Φ k x1 x2)) → Persistent ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2). Proof. (* rewrite big_sepM2_alt. apply _. Qed. *) Admitted. Global Instance big_sepM2_empty_affine Φ : Affine ([∗ map] k↦y1;y2 ∈ ∅; ∅, Φ k y1 y2). Proof. rewrite big_sepM2_empty. apply _. Qed. Global Instance big_sepM2_affine Φ m1 m2 : (∀ k x1 x2, Affine (Φ k x1 x2)) → Affine ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2). Proof. (* rewrite big_sepM2_alt. apply _. Qed. *) Admitted. End map2. (** ** Big ops over finite sets *) Section gset. Context `{Countable A}. Implicit Types X : gset A. Implicit Types Φ : A → PROP. Lemma big_sepS_mono Φ Ψ X : (∀ x, x ∈ X → Φ x ⊢ Ψ x) → ([∗ set] x ∈ X, Φ x) ⊢ [∗ set] x ∈ X, Ψ x. Proof. intros. apply big_opS_forall; apply _ || auto. Qed. Lemma big_sepS_proper Φ Ψ X : (∀ x, x ∈ X → Φ x ⊣⊢ Ψ x) → ([∗ set] x ∈ X, Φ x) ⊣⊢ ([∗ set] x ∈ X, Ψ x). Proof. apply big_opS_proper. Qed. Lemma big_sepS_subseteq `{BiAffine PROP} Φ X Y : Y ⊆ X → ([∗ set] x ∈ X, Φ x) ⊢ [∗ set] x ∈ Y, Φ x. Proof. intros. by apply big_sepL_submseteq, elements_submseteq. Qed. Global Instance big_sepS_mono' : Proper (pointwise_relation _ (⊢) ==> (=) ==> (⊢)) (big_opS (@bi_sep PROP) (A:=A)). Proof. intros f g Hf m ? <-. by apply big_sepS_mono. Qed. Lemma big_sepS_empty Φ : ([∗ set] x ∈ ∅, Φ x) ⊣⊢ emp. Proof. by rewrite big_opS_empty. Qed. Lemma big_sepS_empty' `{!BiAffine PROP} P Φ : P ⊢ [∗ set] x ∈ ∅, Φ x. Proof. rewrite big_sepS_empty. apply: affine. Qed. Lemma big_sepS_insert Φ X x : x ∉ X → ([∗ set] y ∈ {[ x ]} ∪ X, Φ y) ⊣⊢ (Φ x ∗ [∗ set] y ∈ X, Φ y). Proof. apply big_opS_insert. Qed. Lemma big_sepS_fn_insert {B} (Ψ : A → B → PROP) f X x b : x ∉ X → ([∗ set] y ∈ {[ x ]} ∪ X, Ψ y (<[x:=b]> f y)) ⊣⊢ (Ψ x b ∗ [∗ set] y ∈ X, Ψ y (f y)). Proof. apply big_opS_fn_insert. Qed. Lemma big_sepS_fn_insert' Φ X x P : x ∉ X → ([∗ set] y ∈ {[ x ]} ∪ X, <[x:=P]> Φ y) ⊣⊢ (P ∗ [∗ set] y ∈ X, Φ y). Proof. apply big_opS_fn_insert'. Qed. Lemma big_sepS_union Φ X Y : X ## Y → ([∗ set] y ∈ X ∪ Y, Φ y) ⊣⊢ ([∗ set] y ∈ X, Φ y) ∗ ([∗ set] y ∈ Y, Φ y). Proof. apply big_opS_union. Qed. Lemma big_sepS_delete Φ X x : x ∈ X → ([∗ set] y ∈ X, Φ y) ⊣⊢ Φ x ∗ [∗ set] y ∈ X ∖ {[ x ]}, Φ y. Proof. apply big_opS_delete. Qed. Lemma big_sepS_elem_of Φ X x `{!Absorbing (Φ x)} : x ∈ X → ([∗ set] y ∈ X, Φ y) ⊢ Φ x. Proof. intros. rewrite big_sepS_delete //. by rewrite sep_elim_l. Qed. Lemma big_sepS_elem_of_acc Φ X x : x ∈ X → ([∗ set] y ∈ X, Φ y) ⊢ Φ x ∗ (Φ x -∗ ([∗ set] y ∈ X, Φ y)). Proof. intros. rewrite big_sepS_delete //. by apply sep_mono_r, wand_intro_l. Qed. Lemma big_sepS_singleton Φ x : ([∗ set] y ∈ {[ x ]}, Φ y) ⊣⊢ Φ x. Proof. apply big_opS_singleton. Qed. Lemma big_sepS_filter' (P : A → Prop) `{∀ x, Decision (P x)} Φ X : ([∗ set] y ∈ filter P X, Φ y) ⊣⊢ ([∗ set] y ∈ X, if decide (P y) then Φ y else emp). Proof. induction X as [|x X ? IH] using set_ind_L. { by rewrite filter_empty_L !big_sepS_empty. } destruct (decide (P x)). - rewrite filter_union_L filter_singleton_L //. rewrite !big_sepS_insert //; last set_solver. by rewrite decide_True // IH. - rewrite filter_union_L filter_singleton_not_L // left_id_L. by rewrite !big_sepS_insert // decide_False // IH left_id. Qed. Lemma big_sepS_filter_acc' (P : A → Prop) `{∀ y, Decision (P y)} Φ X Y : (∀ y, y ∈ Y → P y → y ∈ X) → ([∗ set] y ∈ X, Φ y) -∗ ([∗ set] y ∈ Y, if decide (P y) then Φ y else emp) ∗ (([∗ set] y ∈ Y, if decide (P y) then Φ y else emp) -∗ [∗ set] y ∈ X, Φ y). Proof. intros ?. destruct (proj1 (subseteq_disjoint_union_L (filter P Y) X)) as (Z&->&?); first set_solver. rewrite big_sepS_union // big_sepS_filter'. by apply sep_mono_r, wand_intro_l. Qed. Lemma big_sepS_filter `{BiAffine PROP} (P : A → Prop) `{∀ x, Decision (P x)} Φ X : ([∗ set] y ∈ filter P X, Φ y) ⊣⊢ ([∗ set] y ∈ X, ⌜P y⌝ → Φ y). Proof. setoid_rewrite <-decide_emp. apply big_sepS_filter'. Qed. Lemma big_sepS_filter_acc `{BiAffine PROP} (P : A → Prop) `{∀ y, Decision (P y)} Φ X Y : (∀ y, y ∈ Y → P y → y ∈ X) → ([∗ set] y ∈ X, Φ y) -∗ ([∗ set] y ∈ Y, ⌜P y⌝ → Φ y) ∗ (([∗ set] y ∈ Y, ⌜P y⌝ → Φ y) -∗ [∗ set] y ∈ X, Φ y). Proof. intros. setoid_rewrite <-decide_emp. by apply big_sepS_filter_acc'. Qed. Lemma big_sepS_sepS Φ Ψ X : ([∗ set] y ∈ X, Φ y ∗ Ψ y) ⊣⊢ ([∗ set] y ∈ X, Φ y) ∗ ([∗ set] y ∈ X, Ψ y). Proof. apply big_opS_opS. Qed. Lemma big_sepS_and Φ Ψ X : ([∗ set] y ∈ X, Φ y ∧ Ψ y) ⊢ ([∗ set] y ∈ X, Φ y) ∧ ([∗ set] y ∈ X, Ψ y). Proof. auto using and_intro, big_sepS_mono, and_elim_l, and_elim_r. Qed. Lemma big_sepS_persistently `{BiAffine PROP} Φ X : ([∗ set] y ∈ X, Φ y) ⊣⊢ [∗ set] y ∈ X, (Φ y). Proof. apply (big_opS_commute _). Qed. Lemma big_sepS_forall `{BiAffine PROP} Φ X : (∀ x, Persistent (Φ x)) → ([∗ set] x ∈ X, Φ x) ⊣⊢ (∀ x, ⌜x ∈ X⌝ → Φ x). Proof. intros. apply (anti_symm _). { apply forall_intro=> x. apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepS_elem_of. } induction X as [|x X ? IH] using set_ind_L; auto using big_sepS_empty'. rewrite big_sepS_insert // -persistent_and_sep. apply and_intro. - by rewrite (forall_elim x) pure_True ?True_impl; last set_solver. - rewrite -IH. apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?. by rewrite pure_True ?True_impl; last set_solver. Qed. Lemma big_sepS_impl Φ Ψ X : ([∗ set] x ∈ X, Φ x) -∗ □ (∀ x, ⌜x ∈ X⌝ → Φ x -∗ Ψ x) -∗ [∗ set] x ∈ X, Ψ x. Proof. apply wand_intro_l. induction X as [|x X ? IH] using set_ind_L. { by rewrite sep_elim_r. } rewrite !big_sepS_insert // intuitionistically_sep_dup. rewrite -assoc [(□ _ ∗ _)%I]comm -!assoc assoc. apply sep_mono. - rewrite (forall_elim x) pure_True; last set_solver. by rewrite True_impl intuitionistically_elim wand_elim_l. - rewrite comm -IH /=. apply sep_mono_l, affinely_mono, persistently_mono. apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?. by rewrite pure_True ?True_impl; last set_solver. Qed. Global Instance big_sepS_empty_persistent Φ : Persistent ([∗ set] x ∈ ∅, Φ x). Proof. rewrite /big_opS elements_empty. apply _. Qed. Global Instance big_sepS_persistent Φ X : (∀ x, Persistent (Φ x)) → Persistent ([∗ set] x ∈ X, Φ x). Proof. rewrite /big_opS. apply _. Qed. Global Instance big_sepS_empty_affine Φ : Affine ([∗ set] x ∈ ∅, Φ x). Proof. rewrite /big_opS elements_empty. apply _. Qed. Global Instance big_sepS_affine Φ X : (∀ x, Affine (Φ x)) → Affine ([∗ set] x ∈ X, Φ x). Proof. rewrite /big_opS. apply _. Qed. End gset. Lemma big_sepM_dom `{Countable K} {A} (Φ : K → PROP) (m : gmap K A) : ([∗ map] k↦_ ∈ m, Φ k) ⊣⊢ ([∗ set] k ∈ dom _ m, Φ k). Proof. apply big_opM_dom. Qed. (** ** Big ops over finite multisets *) Section gmultiset. Context `{Countable A}. Implicit Types X : gmultiset A. Implicit Types Φ : A → PROP. Lemma big_sepMS_mono Φ Ψ X : (∀ x, x ∈ X → Φ x ⊢ Ψ x) → ([∗ mset] x ∈ X, Φ x) ⊢ [∗ mset] x ∈ X, Ψ x. Proof. intros. apply big_opMS_forall; apply _ || auto. Qed. Lemma big_sepMS_proper Φ Ψ X : (∀ x, x ∈ X → Φ x ⊣⊢ Ψ x) → ([∗ mset] x ∈ X, Φ x) ⊣⊢ ([∗ mset] x ∈ X, Ψ x). Proof. apply big_opMS_proper. Qed. Lemma big_sepMS_subseteq `{BiAffine PROP} Φ X Y : Y ⊆ X → ([∗ mset] x ∈ X, Φ x) ⊢ [∗ mset] x ∈ Y, Φ x. Proof. intros. by apply big_sepL_submseteq, gmultiset_elements_submseteq. Qed. Global Instance big_sepMS_mono' : Proper (pointwise_relation _ (⊢) ==> (=) ==> (⊢)) (big_opMS (@bi_sep PROP) (A:=A)). Proof. intros f g Hf m ? <-. by apply big_sepMS_mono. Qed. Lemma big_sepMS_empty Φ : ([∗ mset] x ∈ ∅, Φ x) ⊣⊢ emp. Proof. by rewrite big_opMS_empty. Qed. Lemma big_sepMS_empty' `{!BiAffine PROP} P Φ : P ⊢ [∗ mset] x ∈ ∅, Φ x. Proof. rewrite big_sepMS_empty. apply: affine. Qed. Lemma big_sepMS_disj_union Φ X Y : ([∗ mset] y ∈ X ⊎ Y, Φ y) ⊣⊢ ([∗ mset] y ∈ X, Φ y) ∗ [∗ mset] y ∈ Y, Φ y. Proof. apply big_opMS_disj_union. Qed. Lemma big_sepMS_delete Φ X x : x ∈ X → ([∗ mset] y ∈ X, Φ y) ⊣⊢ Φ x ∗ [∗ mset] y ∈ X ∖ {[ x ]}, Φ y. Proof. apply big_opMS_delete. Qed. Lemma big_sepMS_elem_of Φ X x `{!Absorbing (Φ x)} : x ∈ X → ([∗ mset] y ∈ X, Φ y) ⊢ Φ x. Proof. intros. rewrite big_sepMS_delete //. by rewrite sep_elim_l. Qed. Lemma big_sepMS_elem_of_acc Φ X x : x ∈ X → ([∗ mset] y ∈ X, Φ y) ⊢ Φ x ∗ (Φ x -∗ ([∗ mset] y ∈ X, Φ y)). Proof. intros. rewrite big_sepMS_delete //. by apply sep_mono_r, wand_intro_l. Qed. Lemma big_sepMS_singleton Φ x : ([∗ mset] y ∈ {[ x ]}, Φ y) ⊣⊢ Φ x. Proof. apply big_opMS_singleton. Qed. Lemma big_sepMS_sepMS Φ Ψ X : ([∗ mset] y ∈ X, Φ y ∗ Ψ y) ⊣⊢ ([∗ mset] y ∈ X, Φ y) ∗ ([∗ mset] y ∈ X, Ψ y). Proof. apply big_opMS_opMS. Qed. Lemma big_sepMS_and Φ Ψ X : ([∗ mset] y ∈ X, Φ y ∧ Ψ y) ⊢ ([∗ mset] y ∈ X, Φ y) ∧ ([∗ mset] y ∈ X, Ψ y). Proof. auto using and_intro, big_sepMS_mono, and_elim_l, and_elim_r. Qed. Lemma big_sepMS_persistently `{BiAffine PROP} Φ X : ([∗ mset] y ∈ X, Φ y) ⊣⊢ [∗ mset] y ∈ X, (Φ y). Proof. apply (big_opMS_commute _). Qed. Global Instance big_sepMS_empty_persistent Φ : Persistent ([∗ mset] x ∈ ∅, Φ x). Proof. rewrite /big_opMS gmultiset_elements_empty. apply _. Qed. Global Instance big_sepMS_persistent Φ X : (∀ x, Persistent (Φ x)) → Persistent ([∗ mset] x ∈ X, Φ x). Proof. rewrite /big_opMS. apply _. Qed. Global Instance big_sepMS_empty_affine Φ : Affine ([∗ mset] x ∈ ∅, Φ x). Proof. rewrite /big_opMS gmultiset_elements_empty. apply _. Qed. Global Instance big_sepMS_affine Φ X : (∀ x, Affine (Φ x)) → Affine ([∗ mset] x ∈ X, Φ x). Proof. rewrite /big_opMS. apply _. Qed. End gmultiset. End bi_big_op. (** * Properties for step-indexed BIs*) Section sbi_big_op. Context {PROP : sbi}. Implicit Types Ps Qs : list PROP. Implicit Types A : Type. (** ** Big ops over lists *) Section list. Context {A : Type}. Implicit Types l : list A. Implicit Types Φ Ψ : nat → A → PROP. Lemma big_sepL_later `{BiAffine PROP} Φ l : ▷ ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ ([∗ list] k↦x ∈ l, ▷ Φ k x). Proof. apply (big_opL_commute _). Qed. Lemma big_sepL_later_2 Φ l : ([∗ list] k↦x ∈ l, ▷ Φ k x) ⊢ ▷ [∗ list] k↦x ∈ l, Φ k x. Proof. by rewrite (big_opL_commute _). Qed. Lemma big_sepL_laterN `{BiAffine PROP} Φ n l : ▷^n ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ ([∗ list] k↦x ∈ l, ▷^n Φ k x). Proof. apply (big_opL_commute _). Qed. Lemma big_sepL_laterN_2 Φ n l : ([∗ list] k↦x ∈ l, ▷^n Φ k x) ⊢ ▷^n [∗ list] k↦x ∈ l, Φ k x. Proof. by rewrite (big_opL_commute _). Qed. Global Instance big_sepL_nil_timeless `{!Timeless (emp%I : PROP)} Φ : Timeless ([∗ list] k↦x ∈ [], Φ k x). Proof. simpl; apply _. Qed. Global Instance big_sepL_timeless `{!Timeless (emp%I : PROP)} Φ l : (∀ k x, Timeless (Φ k x)) → Timeless ([∗ list] k↦x ∈ l, Φ k x). Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed. Global Instance big_sepL_timeless_id `{!Timeless (emp%I : PROP)} Ps : TCForall Timeless Ps → Timeless ([∗] Ps). Proof. induction 1; simpl; apply _. Qed. Section plainly. Context `{!BiPlainly PROP}. Lemma big_sepL_plainly `{!BiAffine PROP} Φ l : ■ ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ [∗ list] k↦x ∈ l, ■ (Φ k x). Proof. apply (big_opL_commute _). Qed. Global Instance big_sepL_nil_plain `{!BiAffine PROP} Φ : Plain ([∗ list] k↦x ∈ [], Φ k x). Proof. simpl; apply _. Qed. Global Instance big_sepL_plain `{!BiAffine PROP} Φ l : (∀ k x, Plain (Φ k x)) → Plain ([∗ list] k↦x ∈ l, Φ k x). Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed. Lemma big_andL_plainly Φ l : ■ ([∧ list] k↦x ∈ l, Φ k x) ⊣⊢ [∧ list] k↦x ∈ l, ■ (Φ k x). Proof. apply (big_opL_commute _). Qed. Global Instance big_andL_nil_plain Φ : Plain ([∧ list] k↦x ∈ [], Φ k x). Proof. simpl; apply _. Qed. Global Instance big_andL_plain Φ l : (∀ k x, Plain (Φ k x)) → Plain ([∧ list] k↦x ∈ l, Φ k x). Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed. End plainly. End list. Section list2. Context {A B : Type}. Implicit Types Φ Ψ : nat → A → B → PROP. Lemma big_sepL2_later_2 Φ l1 l2 : ([∗ list] k↦y1;y2 ∈ l1;l2, ▷ Φ k y1 y2) ⊢ ▷ [∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2. Proof. rewrite !big_sepL2_alt bi.later_and big_sepL_later_2. auto using and_mono, later_intro. Qed. Lemma big_sepL2_laterN_2 Φ n l1 l2 : ([∗ list] k↦y1;y2 ∈ l1;l2, ▷^n Φ k y1 y2) ⊢ ▷^n [∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2. Proof. rewrite !big_sepL2_alt bi.laterN_and big_sepL_laterN_2. auto using and_mono, laterN_intro. Qed. Global Instance big_sepL2_nil_timeless `{!Timeless (emp%I : PROP)} Φ : Timeless ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2). Proof. simpl; apply _. Qed. Global Instance big_sepL2_timeless `{!Timeless (emp%I : PROP)} Φ l1 l2 : (∀ k x1 x2, Timeless (Φ k x1 x2)) → Timeless ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2). Proof. rewrite big_sepL2_alt. apply _. Qed. Section plainly. Context `{!BiPlainly PROP}. Lemma big_sepL2_plainly `{!BiAffine PROP} Φ l1 l2 : ■ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ⊣⊢ [∗ list] k↦y1;y2 ∈ l1;l2, ■ (Φ k y1 y2). Proof. by rewrite !big_sepL2_alt plainly_and plainly_pure big_sepL_plainly. Qed. Global Instance big_sepL2_nil_plain `{!BiAffine PROP} Φ : Plain ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2). Proof. simpl; apply _. Qed. Global Instance big_sepL2_plain `{!BiAffine PROP} Φ l1 l2 : (∀ k x1 x2, Plain (Φ k x1 x2)) → Plain ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2). Proof. rewrite big_sepL2_alt. apply _. Qed. End plainly. End list2. (** ** Big ops over finite maps *) Section gmap. Context `{Countable K} {A : Type}. Implicit Types m : gmap K A. Implicit Types Φ Ψ : K → A → PROP. Lemma big_sepM_later `{BiAffine PROP} Φ m : ▷ ([∗ map] k↦x ∈ m, Φ k x) ⊣⊢ ([∗ map] k↦x ∈ m, ▷ Φ k x). Proof. apply (big_opM_commute _). Qed. Lemma big_sepM_later_2 Φ m : ([∗ map] k↦x ∈ m, ▷ Φ k x) ⊢ ▷ [∗ map] k↦x ∈ m, Φ k x. Proof. by rewrite big_opM_commute. Qed. Lemma big_sepM_laterN `{BiAffine PROP} Φ n m : ▷^n ([∗ map] k↦x ∈ m, Φ k x) ⊣⊢ ([∗ map] k↦x ∈ m, ▷^n Φ k x). Proof. apply (big_opM_commute _). Qed. Lemma big_sepM_laterN_2 Φ n m : ([∗ map] k↦x ∈ m, ▷^n Φ k x) ⊢ ▷^n [∗ map] k↦x ∈ m, Φ k x. Proof. by rewrite big_opM_commute. Qed. Global Instance big_sepM_nil_timeless `{!Timeless (emp%I : PROP)} Φ : Timeless ([∗ map] k↦x ∈ ∅, Φ k x). Proof. rewrite /big_opM map_to_list_empty. apply _. Qed. Global Instance big_sepM_timeless `{!Timeless (emp%I : PROP)} Φ m : (∀ k x, Timeless (Φ k x)) → Timeless ([∗ map] k↦x ∈ m, Φ k x). Proof. intros. apply big_sepL_timeless=> _ [??]; apply _. Qed. Section plainly. Context `{!BiPlainly PROP}. Lemma big_sepM_plainly `{BiAffine PROP} Φ m : ■ ([∗ map] k↦x ∈ m, Φ k x) ⊣⊢ [∗ map] k↦x ∈ m, ■ (Φ k x). Proof. apply (big_opM_commute _). Qed. Global Instance big_sepM_empty_plain `{BiAffine PROP} Φ : Plain ([∗ map] k↦x ∈ ∅, Φ k x). Proof. rewrite /big_opM map_to_list_empty. apply _. Qed. Global Instance big_sepM_plain `{BiAffine PROP} Φ m : (∀ k x, Plain (Φ k x)) → Plain ([∗ map] k↦x ∈ m, Φ k x). Proof. intros. apply (big_sepL_plain _ _)=> _ [??]; apply _. Qed. End plainly. End gmap. (** ** Big ops over finite sets *) Section gset. Context `{Countable A}. Implicit Types X : gset A. Implicit Types Φ : A → PROP. Lemma big_sepS_later `{BiAffine PROP} Φ X : ▷ ([∗ set] y ∈ X, Φ y) ⊣⊢ ([∗ set] y ∈ X, ▷ Φ y). Proof. apply (big_opS_commute _). Qed. Lemma big_sepS_later_2 Φ X : ([∗ set] y ∈ X, ▷ Φ y) ⊢ ▷ ([∗ set] y ∈ X, Φ y). Proof. by rewrite big_opS_commute. Qed. Lemma big_sepS_laterN `{BiAffine PROP} Φ n X : ▷^n ([∗ set] y ∈ X, Φ y) ⊣⊢ ([∗ set] y ∈ X, ▷^n Φ y). Proof. apply (big_opS_commute _). Qed. Lemma big_sepS_laterN_2 Φ n X : ([∗ set] y ∈ X, ▷^n Φ y) ⊢ ▷^n ([∗ set] y ∈ X, Φ y). Proof. by rewrite big_opS_commute. Qed. Global Instance big_sepS_nil_timeless `{!Timeless (emp%I : PROP)} Φ : Timeless ([∗ set] x ∈ ∅, Φ x). Proof. rewrite /big_opS elements_empty. apply _. Qed. Global Instance big_sepS_timeless `{!Timeless (emp%I : PROP)} Φ X : (∀ x, Timeless (Φ x)) → Timeless ([∗ set] x ∈ X, Φ x). Proof. rewrite /big_opS. apply _. Qed. Section plainly. Context `{!BiPlainly PROP}. Lemma big_sepS_plainly `{BiAffine PROP} Φ X : ■ ([∗ set] y ∈ X, Φ y) ⊣⊢ [∗ set] y ∈ X, ■ (Φ y). Proof. apply (big_opS_commute _). Qed. Global Instance big_sepS_empty_plain `{BiAffine PROP} Φ : Plain ([∗ set] x ∈ ∅, Φ x). Proof. rewrite /big_opS elements_empty. apply _. Qed. Global Instance big_sepS_plain `{BiAffine PROP} Φ X : (∀ x, Plain (Φ x)) → Plain ([∗ set] x ∈ X, Φ x). Proof. rewrite /big_opS. apply _. Qed. End plainly. End gset. (** ** Big ops over finite multisets *) Section gmultiset. Context `{Countable A}. Implicit Types X : gmultiset A. Implicit Types Φ : A → PROP. Lemma big_sepMS_later `{BiAffine PROP} Φ X : ▷ ([∗ mset] y ∈ X, Φ y) ⊣⊢ ([∗ mset] y ∈ X, ▷ Φ y). Proof. apply (big_opMS_commute _). Qed. Lemma big_sepMS_later_2 Φ X : ([∗ mset] y ∈ X, ▷ Φ y) ⊢ ▷ [∗ mset] y ∈ X, Φ y. Proof. by rewrite big_opMS_commute. Qed. Lemma big_sepMS_laterN `{BiAffine PROP} Φ n X : ▷^n ([∗ mset] y ∈ X, Φ y) ⊣⊢ ([∗ mset] y ∈ X, ▷^n Φ y). Proof. apply (big_opMS_commute _). Qed. Lemma big_sepMS_laterN_2 Φ n X : ([∗ mset] y ∈ X, ▷^n Φ y) ⊢ ▷^n [∗ mset] y ∈ X, Φ y. Proof. by rewrite big_opMS_commute. Qed. Global Instance big_sepMS_nil_timeless `{!Timeless (emp%I : PROP)} Φ : Timeless ([∗ mset] x ∈ ∅, Φ x). Proof. rewrite /big_opMS gmultiset_elements_empty. apply _. Qed. Global Instance big_sepMS_timeless `{!Timeless (emp%I : PROP)} Φ X : (∀ x, Timeless (Φ x)) → Timeless ([∗ mset] x ∈ X, Φ x). Proof. rewrite /big_opMS. apply _. Qed. Section plainly. Context `{!BiPlainly PROP}. Lemma big_sepMS_plainly `{BiAffine PROP} Φ X : ■ ([∗ mset] y ∈ X, Φ y) ⊣⊢ [∗ mset] y ∈ X, ■ (Φ y). Proof. apply (big_opMS_commute _). Qed. Global Instance big_sepMS_empty_plain `{BiAffine PROP} Φ : Plain ([∗ mset] x ∈ ∅, Φ x). Proof. rewrite /big_opMS gmultiset_elements_empty. apply _. Qed. Global Instance big_sepMS_plain `{BiAffine PROP} Φ X : (∀ x, Plain (Φ x)) → Plain ([∗ mset] x ∈ X, Φ x). Proof. rewrite /big_opMS. apply _. Qed. End plainly. End gmultiset. End sbi_big_op.