From iris.algebra Require Export cmra. Set Default Proof Using "Type". (** The basic definition of the uPred type, its metric and functor laws. You probably do not want to import this file. Instead, import base_logic.base_logic; that will also give you all the primitive and many derived laws for the logic. *) Record uPred (M : ucmraT) : Type := IProp { uPred_holds :> nat → M → Prop; (* [uPred_mono] is used to prove non-expansiveness (guaranteed by [uPred_ne]). Therefore, it is important that we do not restrict it to only valid elements. *) uPred_mono n x1 x2 : uPred_holds n x1 → x1 ≼{n} x2 → uPred_holds n x2; (* We have to restrict this to hold only for valid elements, otherwise this condition is no longer limit preserving, and uPred does no longer form a COFE (i.e., [uPred_compl] breaks). This is because the distance and equivalence on this cofe ignores the truth value on invalid elements. This, in turn, is required by the fact that entailment has to ignore invalid elements, which is itself essential for proving [ownM_valid]. We could, actually, remove this restriction and make this condition apply even to invalid elements: we have proved that uPred is isomorphic to a sub-COFE of the COFE of predicates that are monotonous both with respect to the step index and with respect to x. However, that would essentially require changing (by making it more complicated) the model of many connectives of the logic, which we don't want. This sub-COFE is the sub-COFE of monotonous sProp predicates P such that the following sProp assertion is valid: ∀ x, (V(x) → P(x)) → P(x) Where V is the validity predicate. Another way of saying that this is equivalent to this definition of uPred is to notice that our definition of uPred is equivalent to quotienting the COFE of monotonous sProp predicates with the following (sProp) equivalence relation: P1 ≡ P2 := ∀ x, V(x) → (P1(x) ↔ P2(x)) whose equivalence classes appear to all have one only canonical representative such that ∀ x, (V(x) → P(x)) → P(x). *) uPred_closed n1 n2 x : uPred_holds n1 x → n2 ≤ n1 → ✓{n2} x → uPred_holds n2 x }. Arguments uPred_holds {_} _ _ _ : simpl never. Add Printing Constructor uPred. Instance: Params (@uPred_holds) 3. Delimit Scope uPred_scope with I. Bind Scope uPred_scope with uPred. Arguments uPred_holds {_} _%I _ _. Section cofe. Context {M : ucmraT}. Inductive uPred_equiv' (P Q : uPred M) : Prop := { uPred_in_equiv : ∀ n x, ✓{n} x → P n x ↔ Q n x }. Instance uPred_equiv : Equiv (uPred M) := uPred_equiv'. Inductive uPred_dist' (n : nat) (P Q : uPred M) : Prop := { uPred_in_dist : ∀ n' x, n' ≤ n → ✓{n'} x → P n' x ↔ Q n' x }. Instance uPred_dist : Dist (uPred M) := uPred_dist'. Definition uPred_ofe_mixin : OfeMixin (uPred M). Proof. split. - intros P Q; split. + by intros HPQ n; split=> i x ??; apply HPQ. + intros HPQ; split=> n x ?; apply HPQ with n; auto. - intros n; split. + by intros P; split=> x i. + by intros P Q HPQ; split=> x i ??; symmetry; apply HPQ. + intros P Q Q' HP HQ; split=> i x ??. by trans (Q i x);[apply HP|apply HQ]. - intros n P Q HPQ; split=> i x ??; apply HPQ; auto. Qed. Canonical Structure uPredC : ofeT := OfeT (uPred M) uPred_ofe_mixin. Program Definition uPred_compl : Compl uPredC := λ c, {| uPred_holds n x := c n n x |}. Next Obligation. naive_solver eauto using uPred_mono. Qed. Next Obligation. intros c n1 n2 x ???; simpl in *. apply (chain_cauchy c n2 n1); eauto using uPred_closed. Qed. Global Program Instance uPred_cofe : Cofe uPredC := {| compl := uPred_compl |}. Next Obligation. intros n c; split=>i x ??; symmetry; apply (chain_cauchy c i n); auto. Qed. End cofe. Arguments uPredC : clear implicits. Instance uPred_ne {M} (P : uPred M) n : Proper (dist n ==> iff) (P n). Proof. intros x1 x2 Hx; split=> ?; eapply uPred_mono; eauto; by rewrite Hx. Qed. Instance uPred_proper {M} (P : uPred M) n : Proper ((≡) ==> iff) (P n). Proof. by intros x1 x2 Hx; apply uPred_ne, equiv_dist. Qed. Lemma uPred_holds_ne {M} (P Q : uPred M) n1 n2 x : P ≡{n2}≡ Q → n2 ≤ n1 → ✓{n2} x → Q n1 x → P n2 x. Proof. intros [Hne] ???. eapply Hne; try done. eapply uPred_closed; eauto using cmra_validN_le. Qed. (** functor *) Program Definition uPred_map {M1 M2 : ucmraT} (f : M2 -n> M1) `{!CmraMorphism f} (P : uPred M1) : uPred M2 := {| uPred_holds n x := P n (f x) |}. Next Obligation. naive_solver eauto using uPred_mono, cmra_morphism_monotoneN. Qed. Next Obligation. naive_solver eauto using uPred_closed, cmra_morphism_validN. Qed. Instance uPred_map_ne {M1 M2 : ucmraT} (f : M2 -n> M1) `{!CmraMorphism f} n : Proper (dist n ==> dist n) (uPred_map f). Proof. intros x1 x2 Hx; split=> n' y ??. split; apply Hx; auto using cmra_morphism_validN. Qed. Lemma uPred_map_id {M : ucmraT} (P : uPred M): uPred_map cid P ≡ P. Proof. by split=> n x ?. Qed. Lemma uPred_map_compose {M1 M2 M3 : ucmraT} (f : M1 -n> M2) (g : M2 -n> M3) `{!CmraMorphism f, !CmraMorphism g} (P : uPred M3): uPred_map (g ◎ f) P ≡ uPred_map f (uPred_map g P). Proof. by split=> n x Hx. Qed. Lemma uPred_map_ext {M1 M2 : ucmraT} (f g : M1 -n> M2) `{!CmraMorphism f} `{!CmraMorphism g}: (∀ x, f x ≡ g x) → ∀ x, uPred_map f x ≡ uPred_map g x. Proof. intros Hf P; split=> n x Hx /=; by rewrite /uPred_holds /= Hf. Qed. Definition uPredC_map {M1 M2 : ucmraT} (f : M2 -n> M1) `{!CmraMorphism f} : uPredC M1 -n> uPredC M2 := CofeMor (uPred_map f : uPredC M1 → uPredC M2). Lemma uPredC_map_ne {M1 M2 : ucmraT} (f g : M2 -n> M1) `{!CmraMorphism f, !CmraMorphism g} n : f ≡{n}≡ g → uPredC_map f ≡{n}≡ uPredC_map g. Proof. by intros Hfg P; split=> n' y ??; rewrite /uPred_holds /= (dist_le _ _ _ _(Hfg y)); last lia. Qed. Program Definition uPredCF (F : urFunctor) : cFunctor := {| cFunctor_car A B := uPredC (urFunctor_car F B A); cFunctor_map A1 A2 B1 B2 fg := uPredC_map (urFunctor_map F (fg.2, fg.1)) |}. Next Obligation. intros F A1 A2 B1 B2 n P Q HPQ. apply uPredC_map_ne, urFunctor_ne; split; by apply HPQ. Qed. Next Obligation. intros F A B P; simpl. rewrite -{2}(uPred_map_id P). apply uPred_map_ext=>y. by rewrite urFunctor_id. Qed. Next Obligation. intros F A1 A2 A3 B1 B2 B3 f g f' g' P; simpl. rewrite -uPred_map_compose. apply uPred_map_ext=>y; apply urFunctor_compose. Qed. Instance uPredCF_contractive F : urFunctorContractive F → cFunctorContractive (uPredCF F). Proof. intros ? A1 A2 B1 B2 n P Q HPQ. apply uPredC_map_ne, urFunctor_contractive. destruct n; split; by apply HPQ. Qed. (** logical entailement *) Inductive uPred_entails {M} (P Q : uPred M) : Prop := { uPred_in_entails : ∀ n x, ✓{n} x → P n x → Q n x }. Hint Extern 0 (uPred_entails _ _) => reflexivity. Instance uPred_entails_rewrite_relation M : RewriteRelation (@uPred_entails M). Hint Resolve uPred_mono uPred_closed : uPred_def. (** Notations *) Notation "P ⊢ Q" := (uPred_entails P%I Q%I) (at level 99, Q at level 200, right associativity) : stdpp_scope. Notation "(⊢)" := uPred_entails (only parsing) : stdpp_scope. Notation "P ⊣⊢ Q" := (equiv (A:=uPred _) P%I Q%I) (at level 95, no associativity) : stdpp_scope. Notation "(⊣⊢)" := (equiv (A:=uPred _)) (only parsing) : stdpp_scope. Module uPred. Section entails. Context {M : ucmraT}. Implicit Types P Q : uPred M. Global Instance entails_po : PreOrder (@uPred_entails M). Proof. split. - by intros P; split=> x i. - by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP. Qed. Global Instance entails_anti_sym : AntiSymm (⊣⊢) (@uPred_entails M). Proof. intros P Q HPQ HQP; split=> x n; by split; [apply HPQ|apply HQP]. Qed. Lemma equiv_spec P Q : (P ⊣⊢ Q) ↔ (P ⊢ Q) ∧ (Q ⊢ P). Proof. split; [|by intros [??]; apply (anti_symm (⊢))]. intros HPQ; split; split=> x i; apply HPQ. Qed. Lemma equiv_entails P Q : (P ⊣⊢ Q) → (P ⊢ Q). Proof. apply equiv_spec. Qed. Lemma equiv_entails_sym P Q : (Q ⊣⊢ P) → (P ⊢ Q). Proof. apply equiv_spec. Qed. Global Instance entails_proper : Proper ((⊣⊢) ==> (⊣⊢) ==> iff) ((⊢) : relation (uPred M)). Proof. move => P1 P2 /equiv_spec [HP1 HP2] Q1 Q2 /equiv_spec [HQ1 HQ2]; split; intros. - by trans P1; [|trans Q1]. - by trans P2; [|trans Q2]. Qed. Lemma entails_equiv_l (P Q R : uPred M) : (P ⊣⊢ Q) → (Q ⊢ R) → (P ⊢ R). Proof. by intros ->. Qed. Lemma entails_equiv_r (P Q R : uPred M) : (P ⊢ Q) → (Q ⊣⊢ R) → (P ⊢ R). Proof. by intros ? <-. Qed. Lemma entails_lim (cP cQ : chain (uPredC M)) : (∀ n, cP n ⊢ cQ n) → compl cP ⊢ compl cQ. Proof. intros Hlim; split=> n m ? HP. eapply uPred_holds_ne, Hlim, HP; eauto using conv_compl. Qed. Lemma limit_preserving_entails `{Cofe A} (Φ Ψ : A → uPred M) : NonExpansive Φ → NonExpansive Ψ → LimitPreserving (λ x, Φ x ⊢ Ψ x). Proof. intros HΦ HΨ c Hc. rewrite -!compl_chain_map /=. by apply entails_lim. Qed. End entails. End uPred.