From iris.base_logic.lib Require Export invariants. From iris.bi.lib Require Import fractional. From iris.algebra Require Export frac. From iris.proofmode Require Import tactics. Set Default Proof Using "Type". Import uPred. Class cinvG Σ := cinv_inG :> inG Σ fracR. Definition cinvΣ : gFunctors := #[GFunctor fracR]. Instance subG_cinvΣ {Σ} : subG cinvΣ Σ → cinvG Σ. Proof. solve_inG. Qed. Section defs. Context `{invG Σ, cinvG Σ}. Definition cinv_own (γ : gname) (p : frac) : iProp Σ := own γ p. Definition cinv (N : namespace) (γ : gname) (P : iProp Σ) : iProp Σ := (∃ P', □ ▷ (P ↔ P') ∗ inv N (P' ∨ cinv_own γ 1%Qp))%I. End defs. Instance: Params (@cinv) 5. Section proofs. Context `{invG Σ, cinvG Σ}. Global Instance cinv_own_timeless γ p : Timeless (cinv_own γ p). Proof. rewrite /cinv_own; apply _. Qed. Global Instance cinv_contractive N γ : Contractive (cinv N γ). Proof. solve_contractive. Qed. Global Instance cinv_ne N γ : NonExpansive (cinv N γ). Proof. exact: contractive_ne. Qed. Global Instance cinv_proper N γ : Proper ((≡) ==> (≡)) (cinv N γ). Proof. exact: ne_proper. Qed. Global Instance cinv_persistent N γ P : Persistent (cinv N γ P). Proof. rewrite /cinv; apply _. Qed. Global Instance cinv_own_fractionnal γ : Fractional (cinv_own γ). Proof. intros ??. by rewrite /cinv_own -own_op. Qed. Global Instance cinv_own_as_fractionnal γ q : AsFractional (cinv_own γ q) (cinv_own γ) q. Proof. split. done. apply _. Qed. Lemma cinv_own_valid γ q1 q2 : cinv_own γ q1 -∗ cinv_own γ q2 -∗ ✓ (q1 + q2)%Qp. Proof. apply (own_valid_2 γ q1 q2). Qed. Lemma cinv_own_1_l γ q : cinv_own γ 1 -∗ cinv_own γ q -∗ False. Proof. iIntros "H1 H2". iDestruct (cinv_own_valid with "H1 H2") as %[]%(exclusive_l 1%Qp). Qed. Lemma cinv_iff N γ P P' : ▷ □ (P ↔ P') -∗ cinv N γ P -∗ cinv N γ P'. Proof. iIntros "#HP' Hinv". iDestruct "Hinv" as (P'') "[#HP'' Hinv]". iExists _. iFrame "Hinv". iNext. iAlways. iSplit. - iIntros "?". iApply "HP''". iApply "HP'". done. - iIntros "?". iApply "HP'". iApply "HP''". done. Qed. Lemma cinv_alloc E N P : ▷ P ={E}=∗ ∃ γ, cinv N γ P ∗ cinv_own γ 1. Proof. iIntros "HP". iMod (own_alloc 1%Qp) as (γ) "H1"; first done. iMod (inv_alloc N _ (P ∨ own γ 1%Qp)%I with "[HP]"); first by eauto. iExists _. iFrame. iExists _. iFrame. iIntros "!> !# !>". iSplit; by iIntros "?". Qed. Lemma cinv_cancel E N γ P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ 1 ={E}=∗ ▷ P. Proof. iIntros (?) "#Hinv Hγ". iDestruct "Hinv" as (P') "[#HP' Hinv]". iInv N as "[HP|>Hγ']" "Hclose". - iMod ("Hclose" with "[Hγ]") as "_"; first by eauto. iModIntro. iNext. iApply "HP'". done. - iDestruct (cinv_own_1_l with "Hγ Hγ'") as %[]. Qed. Lemma cinv_open E N γ p P : ↑N ⊆ E → cinv N γ P -∗ cinv_own γ p ={E,E∖↑N}=∗ ▷ P ∗ cinv_own γ p ∗ (▷ P ={E∖↑N,E}=∗ True). Proof. iIntros (?) "#Hinv Hγ". iDestruct "Hinv" as (P') "[#HP' Hinv]". iInv N as "[HP | >Hγ']" "Hclose". - iIntros "!> {$Hγ}". iSplitL "HP". + iNext. iApply "HP'". done. + iIntros "HP". iApply "Hclose". iLeft. iNext. by iApply "HP'". - iDestruct (cinv_own_1_l with "Hγ' Hγ") as %[]. Qed. Global Instance into_inv_cinv N γ P : IntoInv (cinv N γ P) N. Global Instance elim_inv_cinv p γ E N P P' Q Q' : ElimModal True (|={E,E∖↑N}=> (▷ P ∗ cinv_own γ p) ∗ (▷ P ={E∖↑N,E}=∗ True))%I P' Q Q' → ElimInv (↑N ⊆ E) N (cinv N γ P) [cinv_own γ p] P' Q Q'. Proof. rewrite /ElimInv/ElimModal. iIntros (Helim ?) "(#H1&(Hown&_)&H2)". iApply Helim; auto. iFrame "H2". iMod (cinv_open E N γ p P with "[#] [Hown]") as "(HP&Hown&Hclose)"; auto. by iFrame. Qed. End proofs. Typeclasses Opaque cinv_own cinv.