Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
George Pirlea
Iris
Commits
ff935fd4
Commit
ff935fd4
authored
Oct 05, 2016
by
Robbert Krebbers
Browse files
Define FromOp type class and use it in the proof mode.
parent
fc77fc3a
Changes
3
Hide whitespace changes
Inline
Side-by-side
proofmode/class_instances.v
View file @
ff935fd4
...
...
@@ -132,6 +132,10 @@ Proof. rewrite /FromAnd=> <-. by rewrite later_and. Qed.
(* FromSep *)
Global
Instance
from_sep_sep
P1
P2
:
FromSep
(
P1
★
P2
)
P1
P2
|
100
.
Proof
.
done
.
Qed
.
Global
Instance
from_sep_ownM
(
a
b1
b2
:
M
)
:
FromOp
a
b1
b2
→
FromSep
(
uPred_ownM
a
)
(
uPred_ownM
b1
)
(
uPred_ownM
b2
).
Proof
.
intros
.
by
rewrite
/
FromSep
-
ownM_op
from_op
.
Qed
.
Global
Instance
from_sep_always
P
Q1
Q2
:
FromSep
P
Q1
Q2
→
FromSep
(
□
P
)
(
□
Q1
)
(
□
Q2
).
Proof
.
rewrite
/
FromSep
=>
<-.
by
rewrite
always_sep
.
Qed
.
...
...
@@ -142,9 +146,6 @@ Global Instance from_sep_rvs P Q1 Q2 :
FromSep
P
Q1
Q2
→
FromSep
(|=
r
=>
P
)
(|=
r
=>
Q1
)
(|=
r
=>
Q2
).
Proof
.
rewrite
/
FromSep
=><-.
apply
rvs_sep
.
Qed
.
Global
Instance
from_sep_ownM
(
a
b
:
M
)
:
FromSep
(
uPred_ownM
(
a
⋅
b
))
(
uPred_ownM
a
)
(
uPred_ownM
b
)
|
99
.
Proof
.
by
rewrite
/
FromSep
ownM_op
.
Qed
.
Global
Instance
from_sep_big_sepM
`
{
Countable
K
}
{
A
}
(
Φ
Ψ
1
Ψ
2
:
K
→
A
→
uPred
M
)
m
:
(
∀
k
x
,
FromSep
(
Φ
k
x
)
(
Ψ
1
k
x
)
(
Ψ
2
k
x
))
→
...
...
@@ -160,6 +161,20 @@ Proof.
rewrite
/
FromSep
=>
?.
rewrite
-
big_sepS_sepS
.
by
apply
big_sepS_mono
.
Qed
.
(* FromOp *)
Global
Instance
from_op_op
{
A
:
cmraT
}
(
a
b
:
A
)
:
FromOp
(
a
⋅
b
)
a
b
.
Proof
.
by
rewrite
/
FromOp
.
Qed
.
Global
Instance
from_op_persistent
{
A
:
cmraT
}
(
a
:
A
)
:
Persistent
a
→
FromOp
a
a
a
.
Proof
.
intros
.
by
rewrite
/
FromOp
-(
persistent_dup
a
).
Qed
.
Global
Instance
from_op_pair
{
A
B
:
cmraT
}
(
a
b1
b2
:
A
)
(
a'
b1'
b2'
:
B
)
:
FromOp
a
b1
b2
→
FromOp
a'
b1'
b2'
→
FromOp
(
a
,
a'
)
(
b1
,
b1'
)
(
b2
,
b2'
).
Proof
.
by
constructor
.
Qed
.
Global
Instance
from_op_Some
{
A
:
cmraT
}
(
a
:
A
)
b1
b2
:
FromOp
a
b1
b2
→
FromOp
(
Some
a
)
(
Some
b1
)
(
Some
b2
).
Proof
.
by
constructor
.
Qed
.
(* IntoOp *)
Global
Instance
into_op_op
{
A
:
cmraT
}
(
a
b
:
A
)
:
IntoOp
(
a
⋅
b
)
a
b
.
Proof
.
by
rewrite
/
IntoOp
.
Qed
.
...
...
proofmode/classes.v
View file @
ff935fd4
...
...
@@ -39,6 +39,9 @@ Global Arguments into_and : clear implicits.
Lemma
mk_into_and_sep
p
P
Q1
Q2
:
(
P
⊢
Q1
★
Q2
)
→
IntoAnd
p
P
Q1
Q2
.
Proof
.
rewrite
/
IntoAnd
=>->.
destruct
p
;
auto
using
sep_and
.
Qed
.
Class
FromOp
{
A
:
cmraT
}
(
a
b1
b2
:
A
)
:
=
from_op
:
b1
⋅
b2
≡
a
.
Global
Arguments
from_op
{
_
}
_
_
_
{
_
}.
Class
IntoOp
{
A
:
cmraT
}
(
a
b1
b2
:
A
)
:
=
into_op
:
a
≡
b1
⋅
b2
.
Global
Arguments
into_op
{
_
}
_
_
_
{
_
}.
...
...
proofmode/ghost_ownership.v
View file @
ff935fd4
...
...
@@ -9,7 +9,7 @@ Implicit Types a b : A.
Global
Instance
into_and_own
p
γ
a
b1
b2
:
IntoOp
a
b1
b2
→
IntoAnd
p
(
own
γ
a
)
(
own
γ
b1
)
(
own
γ
b2
).
Proof
.
intros
.
apply
mk_into_and_sep
.
by
rewrite
(
into_op
a
)
own_op
.
Qed
.
Global
Instance
from_sep_own
γ
a
b
:
FromSep
(
own
γ
(
a
⋅
b
)
)
(
own
γ
a
)
(
own
γ
b
)
|
90
.
Proof
.
by
rewrite
/
FromSep
own_op
.
Qed
.
Global
Instance
from_sep_own
γ
a
b
1
b2
:
FromOp
a
b1
b2
→
FromSep
(
own
γ
a
)
(
own
γ
b1
)
(
own
γ
b
2
).
Proof
.
intros
.
by
rewrite
/
FromSep
-
own_op
from_op
.
Qed
.
End
ghost
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment