Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
George Pirlea
Iris
Commits
cde5b548
Commit
cde5b548
authored
Nov 22, 2016
by
Ralf Jung
Browse files
Merge branch 'master' of
https://gitlab.mpi-sws.org/FP/iris-coq
parents
b40dca66
ed90ff31
Changes
2
Hide whitespace changes
Inline
Side-by-side
prelude/gmultiset.v
View file @
cde5b548
...
...
@@ -39,11 +39,15 @@ Section definitions.
let
(
X
)
:
=
X
in
let
(
Y
)
:
=
Y
in
GMultiSet
$
difference_with
(
λ
x
y
,
let
z
:
=
x
-
y
in
guard
(
0
<
z
)
;
Some
(
pred
z
))
X
Y
.
Instance
gmultiset_dom
:
Dom
(
gmultiset
A
)
(
gset
A
)
:
=
λ
X
,
let
(
X
)
:
=
X
in
dom
_
X
.
End
definitions
.
Typeclasses
Opaque
gmultiset_elem_of
gmultiset_subseteq
.
Typeclasses
Opaque
gmultiset_elements
gmultiset_size
gmultiset_empty
.
Typeclasses
Opaque
gmultiset_singleton
gmultiset_union
gmultiset_difference
.
Typeclasses
Opaque
gmultiset_dom
.
(** These instances are declared using [Hint Extern] to avoid too
eager type class search. *)
...
...
@@ -63,6 +67,8 @@ Hint Extern 1 (Elements _ (gmultiset _)) =>
eapply
@
gmultiset_elements
:
typeclass_instances
.
Hint
Extern
1
(
Size
(
gmultiset
_
))
=>
eapply
@
gmultiset_size
:
typeclass_instances
.
Hint
Extern
1
(
Dom
(
gmultiset
_
)
_
)
=>
eapply
@
gmultiset_dom
:
typeclass_instances
.
Section
lemmas
.
Context
`
{
Countable
A
}.
...
...
@@ -196,6 +202,12 @@ Proof.
exists
(
x
,
n
)
;
split
;
[|
by
apply
elem_of_map_to_list
].
apply
elem_of_replicate
;
auto
with
omega
.
Qed
.
Lemma
gmultiset_elem_of_dom
x
X
:
x
∈
dom
(
gset
A
)
X
↔
x
∈
X
.
Proof
.
unfold
dom
,
gmultiset_dom
,
elem_of
at
2
,
gmultiset_elem_of
,
multiplicity
.
destruct
X
as
[
X
]
;
simpl
;
rewrite
elem_of_dom
,
<-
not_eq_None_Some
.
destruct
(
X
!!
x
)
;
naive_solver
omega
.
Qed
.
(* Properties of the size operation *)
Lemma
gmultiset_size_empty
:
size
(
∅
:
gmultiset
A
)
=
0
.
...
...
prelude/tactics.v
View file @
cde5b548
...
...
@@ -478,8 +478,13 @@ Tactic Notation "naive_solver" tactic(tac) :=
|
|-
∀
_
,
_
=>
intro
(**i simplification of assumptions *)
|
H
:
False
|-
_
=>
destruct
H
|
H
:
_
∧
_
|-
_
=>
destruct
H
|
H
:
∃
_
,
_
|-
_
=>
destruct
H
|
H
:
_
∧
_
|-
_
=>
(* Work around bug https://coq.inria.fr/bugs/show_bug.cgi?id=2901 *)
let
H1
:
=
fresh
in
let
H2
:
=
fresh
in
destruct
H
as
[
H1
H2
]
;
try
clear
H
|
H
:
∃
_
,
_
|-
_
=>
let
x
:
=
fresh
in
let
Hx
:
=
fresh
in
destruct
H
as
[
x
Hx
]
;
try
clear
H
|
H
:
?P
→
?Q
,
H2
:
?P
|-
_
=>
specialize
(
H
H2
)
|
H
:
Is_true
(
bool_decide
_
)
|-
_
=>
apply
(
bool_decide_unpack
_
)
in
H
|
H
:
Is_true
(
_
&&
_
)
|-
_
=>
apply
andb_True
in
H
;
destruct
H
...
...
@@ -491,7 +496,8 @@ Tactic Notation "naive_solver" tactic(tac) :=
|
|-
_
∧
_
=>
split
|
|-
Is_true
(
bool_decide
_
)
=>
apply
(
bool_decide_pack
_
)
|
|-
Is_true
(
_
&&
_
)
=>
apply
andb_True
;
split
|
H
:
_
∨
_
|-
_
=>
destruct
H
|
H
:
_
∨
_
|-
_
=>
let
H1
:
=
fresh
in
destruct
H
as
[
H1
|
H1
]
;
try
clear
H
(**i solve the goal using the user supplied tactic *)
|
|-
_
=>
solve
[
tac
]
end
;
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment