Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
George Pirlea
Iris
Commits
ccfa1196
Commit
ccfa1196
authored
Mar 29, 2019
by
Robbert Krebbers
Browse files
Add `big_sepL2_later_1`.
parent
0495f119
Changes
1
Show whitespace changes
Inline
Side-by-side
theories/bi/big_op.v
View file @
ccfa1196
...
@@ -1027,6 +1027,13 @@ Section list2.
...
@@ -1027,6 +1027,13 @@ Section list2.
Context
{
A
B
:
Type
}.
Context
{
A
B
:
Type
}.
Implicit
Types
Φ
Ψ
:
nat
→
A
→
B
→
PROP
.
Implicit
Types
Φ
Ψ
:
nat
→
A
→
B
→
PROP
.
Lemma
big_sepL2_later_1
`
{
BiAffine
PROP
}
Φ
l1
l2
:
(
▷
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
⊢
◇
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
▷
Φ
k
y1
y2
.
Proof
.
rewrite
!
big_sepL2_alt
later_and
big_sepL_later
(
timeless
⌜
_
⌝
%
I
).
rewrite
except_0_and
.
auto
using
and_mono
,
except_0_intro
.
Qed
.
Lemma
big_sepL2_later_2
Φ
l1
l2
:
Lemma
big_sepL2_later_2
Φ
l1
l2
:
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
▷
Φ
k
y1
y2
)
⊢
▷
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
.
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
▷
Φ
k
y1
y2
)
⊢
▷
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
.
Proof
.
Proof
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment