Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
George Pirlea
Iris
Commits
bcce68db
Commit
bcce68db
authored
Mar 21, 2018
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Stop iFrame from introducing modalities
Fixes
#176
parent
458a6d45
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
3 additions
and
12 deletions
+3
-12
theories/bi/lib/fixpoint.v
theories/bi/lib/fixpoint.v
+1
-2
theories/proofmode/frame_instances.v
theories/proofmode/frame_instances.v
+0
-8
theories/tests/proofmode.v
theories/tests/proofmode.v
+2
-2
No files found.
theories/bi/lib/fixpoint.v
View file @
bcce68db
...
...
@@ -85,8 +85,7 @@ Section greatest.
F
(
bi_greatest_fixpoint
F
)
x
⊢
bi_greatest_fixpoint
F
x
.
Proof
.
iIntros
"HF"
.
iExists
(
CofeMor
(
F
(
bi_greatest_fixpoint
F
))).
(* FIXME: The framing here adds an <affine> modality that we have to introduce. *)
iIntros
"{$HF} !# !#"
(
y
)
"Hy"
.
iApply
(
bi_mono_pred
with
"[#] Hy"
).
iSplit
;
last
done
.
iIntros
"!#"
(
y
)
"Hy"
.
iApply
(
bi_mono_pred
with
"[#] Hy"
).
iIntros
"!#"
(
z
)
"?"
.
by
iApply
greatest_fixpoint_unfold_1
.
Qed
.
...
...
theories/proofmode/frame_instances.v
View file @
bcce68db
...
...
@@ -58,12 +58,8 @@ Global Instance make_sep_emp_r P : KnownRMakeSep P emp P.
Proof
.
apply
right_id
,
_
.
Qed
.
Global
Instance
make_sep_true_l
P
:
Absorbing
P
→
KnownLMakeSep
True
P
P
.
Proof
.
intros
.
apply
True_sep
,
_
.
Qed
.
Global
Instance
make_and_emp_l_absorbingly
P
:
KnownLMakeSep
True
P
(<
absorb
>
P
)
|
10
.
Proof
.
intros
.
by
rewrite
/
KnownLMakeSep
/
MakeSep
.
Qed
.
Global
Instance
make_sep_true_r
P
:
Absorbing
P
→
KnownRMakeSep
P
True
P
.
Proof
.
intros
.
by
rewrite
/
KnownRMakeSep
/
MakeSep
sep_True
.
Qed
.
Global
Instance
make_and_emp_r_absorbingly
P
:
KnownRMakeSep
P
True
(<
absorb
>
P
)
|
10
.
Proof
.
intros
.
by
rewrite
/
KnownRMakeSep
/
MakeSep
comm
.
Qed
.
Global
Instance
make_sep_default
P
Q
:
MakeSep
P
Q
(
P
∗
Q
)
|
100
.
Proof
.
by
rewrite
/
MakeSep
.
Qed
.
...
...
@@ -101,12 +97,8 @@ Global Instance make_and_true_r P : KnownRMakeAnd P True P.
Proof
.
by
rewrite
/
KnownRMakeAnd
/
MakeAnd
right_id
.
Qed
.
Global
Instance
make_and_emp_l
P
:
Affine
P
→
KnownLMakeAnd
emp
P
P
.
Proof
.
intros
.
by
rewrite
/
KnownLMakeAnd
/
MakeAnd
emp_and
.
Qed
.
Global
Instance
make_and_emp_l_affinely
P
:
KnownLMakeAnd
emp
P
(<
affine
>
P
)
|
10
.
Proof
.
intros
.
by
rewrite
/
KnownLMakeAnd
/
MakeAnd
.
Qed
.
Global
Instance
make_and_emp_r
P
:
Affine
P
→
KnownRMakeAnd
P
emp
P
.
Proof
.
intros
.
by
rewrite
/
KnownRMakeAnd
/
MakeAnd
and_emp
.
Qed
.
Global
Instance
make_and_emp_r_affinely
P
:
KnownRMakeAnd
P
emp
(<
affine
>
P
)
|
10
.
Proof
.
intros
.
by
rewrite
/
KnownRMakeAnd
/
MakeAnd
comm
.
Qed
.
Global
Instance
make_and_default
P
Q
:
MakeAnd
P
Q
(
P
∧
Q
)
|
100
.
Proof
.
by
rewrite
/
MakeAnd
.
Qed
.
...
...
theories/tests/proofmode.v
View file @
bcce68db
...
...
@@ -57,7 +57,7 @@ Lemma test_iDestruct_and_emp P Q `{!Persistent P, !Persistent Q} :
Proof
.
iIntros
"[#? _] [_ #?]"
.
auto
.
Qed
.
Lemma
test_iIntros_persistent
P
Q
`
{!
Persistent
Q
}
:
(
P
→
Q
→
P
∧
Q
)%
I
.
Proof
.
iIntros
"H1 #H2"
.
by
iFrame
.
Qed
.
Proof
.
iIntros
"H1 #H2"
.
by
iFrame
"∗#"
.
Qed
.
Lemma
test_iIntros_pure
(
ψ
φ
:
Prop
)
P
:
ψ
→
(
⌜
φ
⌝
→
P
→
⌜
φ
∧
ψ
⌝
∧
P
)%
I
.
Proof
.
iIntros
(??)
"H"
.
auto
.
Qed
.
...
...
@@ -374,7 +374,7 @@ Lemma test_assert_affine_pure (φ : Prop) P :
Proof
.
iIntros
(
H
φ
).
iAssert
(<
affine
>
⌜φ⌝
)%
I
with
"[%]"
as
"$"
;
auto
.
Qed
.
Lemma
test_assert_pure
(
φ
:
Prop
)
P
:
φ
→
P
⊢
P
∗
⌜φ⌝
.
Proof
.
iIntros
(
H
φ
).
iAssert
⌜φ⌝
%
I
with
"[%]"
as
"$"
;
auto
.
Qed
.
Proof
.
iIntros
(
H
φ
).
iAssert
⌜φ⌝
%
I
with
"[%]"
as
"$"
;
auto
with
iFrame
.
Qed
.
Lemma
test_iEval
x
y
:
⌜
(
y
+
x
)%
nat
=
1
⌝
-
∗
⌜
S
(
x
+
y
)
=
2
%
nat
⌝
:
PROP
.
Proof
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment