Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
George Pirlea
Iris
Commits
af7b6da1
Commit
af7b6da1
authored
Jan 05, 2017
by
Ralf Jung
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of
https://gitlab.mpisws.org/FP/iriscoq
parents
81ed7343
fb07db75
Changes
8
Hide whitespace changes
Inline
Sidebyside
Showing
8 changed files
with
100 additions
and
96 deletions
+100
96
README.md
README.md
+23
21
theories/base_logic/lib/invariants.v
theories/base_logic/lib/invariants.v
+25
30
theories/base_logic/lib/sts.v
theories/base_logic/lib/sts.v
+2
2
theories/base_logic/lib/wsat.v
theories/base_logic/lib/wsat.v
+0
1
theories/prelude/fin_maps.v
theories/prelude/fin_maps.v
+11
10
theories/prelude/list.v
theories/prelude/list.v
+24
20
theories/prelude/option.v
theories/prelude/option.v
+14
12
theories/proofmode/tactics.v
theories/proofmode/tactics.v
+1
0
No files found.
README.md
View file @
af7b6da1
...
...
@@ 20,33 +20,35 @@ Run `make` to build the full development.
## Structure
*
The folder
[
prelude
](
prelude
)
contains an extended "Standard Library"
by
[
Robbert Krebbers
](
http://robbertkrebbers.nl/thesis.html
)
.
*
The folder
[
algebra
](
algebra
)
contains the COFE and CMRA
constructions as well
as the solver for recursive domain equations.
*
The folder
[
base_logic
](
base_logic
)
defines the Iris base logic and
the
primitive connectives. It also contains derived constructions that are
*
The folder
[
prelude
](
theories/
prelude
)
contains an extended "Standard Library"
by
[
Robbert Krebbers
](
http://robbertkrebbers.nl/thesis.html
)
.
*
The folder
[
algebra
](
theories/
algebra
)
contains the COFE and CMRA
constructions as well
as the solver for recursive domain equations.
*
The folder
[
base_logic
](
theories/
base_logic
)
defines the Iris base logic and
the
primitive connectives. It also contains derived constructions that are
entirely independent of the choice of resources.
*
The subfolder
[
lib
](
base_logic/lib
)
contains some generally useful
*
The subfolder
[
lib
](
theories/
base_logic/lib
)
contains some generally useful
derived constructions. Most importantly, it defines composeable
dynamic resources and ownership of them; the other constructions depend
on this setup.
*
The folder
[
program_logic
](
program_logic
)
specializes the base logic
to build
Iris, the program logic. This includes weakest preconditions that
are
defined for any language satisfying some generic axioms, and some derived
*
The folder
[
program_logic
](
theories/
program_logic
)
specializes the base logic
to build
Iris, the program logic. This includes weakest preconditions that
are
defined for any language satisfying some generic axioms, and some derived
constructions that work for any such language.
*
The folder
[
proofmode
](
proofmode
)
contains the Iris proof mode, which
extends
Coq with contexts for persistent and spatial Iris assertions. It also
contains
tactics for interactive proofs in Iris. Documentation can be found in
*
The folder
[
proofmode
](
theories/
proofmode
)
contains the Iris proof mode, which
extends
Coq with contexts for persistent and spatial Iris assertions. It also
contains
tactics for interactive proofs in Iris. Documentation can be found in
[
ProofMode.md
](
ProofMode.md
)
.
*
The folder
[
heap_lang
](
heap_lang
)
defines the MLlike concurrent heap language
*
The subfolder
[
lib
](
heap_lang/lib
)
contains a few derived constructions
within this language, e.g., parallel composition.
Most notable here is
[
lib/barrier
](
heap_lang/lib/barrier
)
, the implementation
and proof of a barrier as described in
<http://doi.acm.org/10.1145/2818638>
.
*
The folder
[
tests
](
tests
)
contains modules we use to test our infrastructure.
Users of the Iris Coq library should
*not*
depend on these modules; they may
change or disappear without any notice.
*
The folder
[
heap_lang
](
theories/heap_lang
)
defines the MLlike concurrent heap
language
*
The subfolder
[
lib
](
theories/heap_lang/lib
)
contains a few derived
constructions within this language, e.g., parallel composition.
Most notable here is
[
lib/barrier
](
theories/heap_lang/lib/barrier
)
, the
implementation and proof of a barrier as described in
<http://doi.acm.org/10.1145/2818638>
.
*
The folder
[
tests
](
theories/tests
)
contains modules we use to test our
infrastructure. Users of the Iris Coq library should
*not*
depend on these
modules; they may change or disappear without any notice.
## Documentation
...
...
theories/base_logic/lib/invariants.v
View file @
af7b6da1
...
...
@@ 28,44 +28,39 @@ Qed.
Global
Instance
inv_persistent
N
P
:
PersistentP
(
inv
N
P
).
Proof
.
rewrite
inv_eq
/
inv
;
apply
_
.
Qed
.
Lemma
fresh_inv_name
(
E
:
gset
positive
)
N
:
∃
i
,
i
∉
E
∧
i
∈
↑
N
.
Proof
.
exists
(
coPpick
(
↑
N
∖
coPset
.
of_gset
E
)).
rewrite

coPset
.
elem_of_of_gset
(
comm
and
)

elem_of_difference
.
apply
coPpick_elem_of
=>
Hfin
.
eapply
nclose_infinite
,
(
difference_finite_inv
_
_
),
Hfin
.
apply
of_gset_finite
.
Qed
.
Lemma
inv_alloc
N
E
P
:
▷
P
={
E
}=
∗
inv
N
P
.
Proof
.
rewrite
inv_eq
/
inv_def
fupd_eq
/
fupd_def
.
iIntros
"HP [Hw $]"
.
iMod
(
ownI_alloc
(
∈
↑
N
)
P
with
"[HP Hw]"
)
as
(
i
)
"(% & $ & ?)"
;
auto
.

intros
Ef
.
exists
(
coPpick
(
↑
N
∖
coPset
.
of_gset
Ef
)).
rewrite

coPset
.
elem_of_of_gset
comm

elem_of_difference
.
apply
coPpick_elem_of
=>
Hfin
.
eapply
nclose_infinite
,
(
difference_finite_inv
_
_
),
Hfin
.
apply
of_gset_finite
.

by
iFrame
.

rewrite
/
uPred_except_0
;
eauto
.
iMod
(
ownI_alloc
(
∈
↑
N
)
P
with
"[$HP $Hw]"
)
as
(
i
)
"(% & $ & ?)"
;
auto
using
fresh_inv_name
.
Qed
.
Lemma
inv_alloc_open
N
E
P
:
↑
N
⊆
E
→
True
={
E
,
E
∖↑
N
}=
∗
inv
N
P
∗
(
▷
P
={
E
∖↑
N
,
E
}=
∗
True
).
Proof
.
rewrite
inv_eq
/
inv_def
fupd_eq
/
fupd_def
.
iIntros
(
Sub
)
"[Hw HE]"
.
iMod
(
ownI_alloc_open
(
∈
↑
N
)
P
with
"Hw"
)
as
(
i
)
"(% & Hw & #Hi & HD)"
.

intros
Ef
.
exists
(
coPpick
(
↑
N
∖
coPset
.
of_gset
Ef
)).
rewrite

coPset
.
elem_of_of_gset
comm

elem_of_difference
.
apply
coPpick_elem_of
=>
Hfin
.
eapply
nclose_infinite
,
(
difference_finite_inv
_
_
),
Hfin
.
apply
of_gset_finite
.

iAssert
(
ownE
{[
i
]}
∗
ownE
(
↑
N
∖
{[
i
]})
∗
ownE
(
E
∖
↑
N
))%
I
with
"[HE]"
as
"(HEi & HEN\i & HE\N)"
.
{
rewrite

?ownE_op
;
[
set_solver

set_solver
].
rewrite
assoc_L
.
rewrite
<!
union_difference_L
;
try
done
;
set_solver
.
}
iModIntro
.
rewrite
/
uPred_except_0
.
iRight
.
iFrame
.
iSplitL
"Hw HEi"
.
+
by
iApply
"Hw"
.
+
iSplitL
"Hi"
;
[
eauto
].
iIntros
"HP [Hw HE\N]"
.
iDestruct
(
ownI_close
with
"[$Hw $Hi $HP $HD]"
)
as
"[? HEi]"
.
iModIntro
.
iRight
.
iFrame
.
iSplitL
;
[
done
].
iCombine
"HEi"
"HEN\i"
as
"HEN"
.
iCombine
"HEN"
"HE\N"
as
"HE"
.
rewrite

?ownE_op
;
[
set_solver

set_solver
].
rewrite
<!
union_difference_L
;
try
done
;
set_solver
.
rewrite
inv_eq
/
inv_def
fupd_eq
/
fupd_def
.
iIntros
(
Sub
)
"[Hw HE]"
.
iMod
(
ownI_alloc_open
(
∈
↑
N
)
P
with
"Hw"
)
as
(
i
)
"(% & Hw & #Hi & HD)"
;
auto
using
fresh_inv_name
.
iAssert
(
ownE
{[
i
]}
∗
ownE
(
↑
N
∖
{[
i
]})
∗
ownE
(
E
∖
↑
N
))%
I
with
"[HE]"
as
"(HEi & HEN\i & HE\N)"
.
{
rewrite

?ownE_op
;
[
set_solver
..].
rewrite
assoc_L
!
union_difference_L
//.
set_solver
.
}
do
2
iModIntro
.
iFrame
"HE\N"
.
iSplitL
"Hw HEi"
;
first
by
iApply
"Hw"
.
iSplitL
"Hi"
;
first
by
eauto
.
iIntros
"HP [Hw HE\N]"
.
iDestruct
(
ownI_close
with
"[$Hw $Hi $HP $HD]"
)
as
"[$ HEi]"
.
do
2
iModIntro
.
iSplitL
;
[
done
].
iCombine
"HEi"
"HEN\i"
as
"HEN"
;
iCombine
"HEN"
"HE\N"
as
"HE"
.
rewrite

?ownE_op
;
[
set_solver
..].
rewrite
!
union_difference_L
//
;
set_solver
.
Qed
.
Lemma
inv_open
E
N
P
:
...
...
theories/base_logic/lib/sts.v
View file @
af7b6da1
...
...
@@ 45,9 +45,9 @@ Section definitions.
Proof
.
solve_proper
.
Qed
.
Global
Instance
sts_ctx_persistent
`
{!
invG
Σ
}
N
φ
:
PersistentP
(
sts_ctx
N
φ
).
Proof
.
apply
_
.
Qed
.
Global
Instance
sts_own_peristent
s
:
PersistentP
(
sts_own
s
∅
).
Global
Instance
sts_own_per
s
istent
s
:
PersistentP
(
sts_own
s
∅
).
Proof
.
apply
_
.
Qed
.
Global
Instance
sts_ownS_peristent
S
:
PersistentP
(
sts_ownS
S
∅
).
Global
Instance
sts_ownS_per
s
istent
S
:
PersistentP
(
sts_ownS
S
∅
).
Proof
.
apply
_
.
Qed
.
End
definitions
.
...
...
theories/base_logic/lib/wsat.v
View file @
af7b6da1
...
...
@@ 165,5 +165,4 @@ Proof.
iApply
(
big_sepM_insert
_
I
)
;
first
done
.
iFrame
"HI"
.
by
iRight
.
Qed
.
End
wsat
.
theories/prelude/fin_maps.v
View file @
af7b6da1
...
...
@@ 119,13 +119,13 @@ Context `{FinMap K M}.
(** ** Setoids *)
Section
setoid
.
Context
`
{
Equiv
A
}.
Lemma
map_equiv_lookup_l
(
m1
m2
:
M
A
)
i
x
:
m1
≡
m2
→
m1
!!
i
=
Some
x
→
∃
y
,
m2
!!
i
=
Some
y
∧
x
≡
y
.
Proof
.
generalize
(
equiv_Some_inv_l
(
m1
!!
i
)
(
m2
!!
i
)
x
)
;
naive_solver
.
Qed
.
Context
`
{!
Equivalence
((
≡
)
:
relation
A
)}.
Global
Instance
map_equivalence
:
Equivalence
((
≡
)
:
relation
(
M
A
)).
Global
Instance
map_equivalence
:
Equivalence
((
≡
)
:
relation
A
)
→
Equivalence
((
≡
)
:
relation
(
M
A
)).
Proof
.
split
.

by
intros
m
i
.
...
...
@@ 147,7 +147,10 @@ Section setoid.
Proof
.
by
intros
???
;
apply
partial_alter_proper
;
[
constructor
].
Qed
.
Global
Instance
singleton_proper
k
:
Proper
((
≡
)
==>
(
≡
))
(
singletonM
k
:
A
→
M
A
).
Proof
.
by
intros
???
;
apply
insert_proper
.
Qed
.
Proof
.
intros
???
;
apply
insert_proper
;
[
done
].
intros
?.
rewrite
lookup_empty
;
constructor
.
Qed
.
Global
Instance
delete_proper
(
i
:
K
)
:
Proper
((
≡
)
==>
(
≡
))
(
delete
(
M
:
=
M
A
)
i
).
Proof
.
by
apply
partial_alter_proper
;
[
constructor
].
Qed
.
...
...
@@ 170,14 +173,12 @@ Section setoid.
by
do
2
destruct
1
;
first
[
apply
Hf

constructor
].
Qed
.
Global
Instance
map_leibniz
`
{!
LeibnizEquiv
A
}
:
LeibnizEquiv
(
M
A
).
Proof
.
intros
m1
m2
Hm
;
apply
map_eq
;
intros
i
.
by
unfold_leibniz
;
apply
lookup_proper
.
Qed
.
Proof
.
intros
m1
m2
Hm
;
apply
map_eq
;
intros
i
.
apply
leibniz_equiv
,
Hm
.
Qed
.
Lemma
map_equiv_empty
(
m
:
M
A
)
:
m
≡
∅
↔
m
=
∅
.
Proof
.
split
;
[
intros
Hm
;
apply
map_eq
;
intros
i

by
intros
>].
by
rewrite
lookup_empty
,
<
equiv_None
,
Hm
,
lookup_empty
.
split
;
[
intros
Hm
;
apply
map_eq
;
intros
i

intros
>].

generalize
(
Hm
i
).
by
rewrite
lookup_empty
,
equiv_None
.

intros
?.
rewrite
lookup_empty
;
constructor
.
Qed
.
Global
Instance
map_fmap_proper
`
{
Equiv
B
}
(
f
:
A
→
B
)
:
Proper
((
≡
)
==>
(
≡
))
f
→
Proper
((
≡
)
==>
(
≡
))
(
fmap
(
M
:
=
M
)
f
).
...
...
theories/prelude/list.v
View file @
af7b6da1
...
...
@@ 2753,9 +2753,8 @@ Section setoid.
by setoid_rewrite equiv_option_Forall2.
Qed.
Context {Hequiv: Equivalence ((≡) : relation A)}.
Global Instance list_equivalence : Equivalence ((≡) : relation (list A)).
Global Instance list_equivalence :
Equivalence ((≡) : relation A) → Equivalence ((≡) : relation (list A)).
Proof.
split.
 intros l. by apply equiv_Forall2.
...
...
@@ 2766,48 +2765,53 @@ Section setoid.
Proof. induction 1; f_equal; fold_leibniz; auto. Qed.
Global Instance cons_proper : Proper ((≡) ==> (≡) ==> (≡)) (@cons A).
Proof
using (Hequiv)
. by constructor. Qed.
Proof. by constructor. Qed.
Global Instance app_proper : Proper ((≡) ==> (≡) ==> (≡)) (@app A).
Proof
using (Hequiv)
. induction 1; intros ???; simpl; try constructor; auto. Qed.
Proof. induction 1; intros ???; simpl; try constructor; auto. Qed.
Global Instance length_proper : Proper ((≡) ==> (=)) (@length A).
Proof
using (Hequiv)
. induction 1; f_equal/=; auto. Qed.
Proof. induction 1; f_equal/=; auto. Qed.
Global Instance tail_proper : Proper ((≡) ==> (≡)) (@tail A).
Proof.
by
destruct 1. Qed.
Proof. destruct 1
; try constructor; auto
. Qed.
Global Instance take_proper n : Proper ((≡) ==> (≡)) (@take A n).
Proof
using (Hequiv)
. induction n; destruct 1; constructor; auto. Qed.
Proof. induction n; destruct 1; constructor; auto. Qed.
Global Instance drop_proper n : Proper ((≡) ==> (≡)) (@drop A n).
Proof
using (Hequiv)
. induction n; destruct 1; simpl; try constructor; auto. Qed.
Proof. induction n; destruct 1; simpl; try constructor; auto. Qed.
Global Instance list_lookup_proper i :
Proper ((≡) ==> (≡)) (lookup (M:=list A) i).
Proof. induction i; destruct 1; simpl;
f_equiv
; auto. Qed.
Proof. induction i; destruct 1; simpl;
try constructor
; auto. Qed.
Global Instance list_alter_proper f i :
Proper ((≡) ==> (≡)) f → Proper ((≡) ==> (≡)) (alter (M:=list A) f i).
Proof
using (Hequiv)
. intros. induction i; destruct 1; constructor; eauto. Qed.
Proof. intros. induction i; destruct 1; constructor; eauto. Qed.
Global Instance list_insert_proper i :
Proper ((≡) ==> (≡) ==> (≡)) (insert (M:=list A) i).
Proof
using (Hequiv)
. intros ???; induction i; destruct 1; constructor; eauto. Qed.
Proof. intros ???; induction i; destruct 1; constructor; eauto. Qed.
Global Instance list_inserts_proper i :
Proper ((≡) ==> (≡) ==> (≡)) (@list_inserts A i).
Proof
using (Hequiv)
.
Proof.
intros k1 k2 Hk; revert i.
induction Hk; intros ????; simpl; try f_equiv; naive_solver.
Qed.
Global Instance list_delete_proper i :
Proper ((≡) ==> (≡)) (delete (M:=list A) i).
Proof
using (Hequiv)
. induction i; destruct 1; try constructor; eauto. Qed.
Proof. induction i; destruct 1; try constructor; eauto. Qed.
Global Instance option_list_proper : Proper ((≡) ==> (≡)) (@option_list A).
Proof. destruct 1;
by
constructor. Qed.
Proof. destruct 1;
repeat
constructor
; auto
. Qed.
Global Instance list_filter_proper P `{∀ x, Decision (P x)} :
Proper ((≡) ==> iff) P → Proper ((≡) ==> (≡)) (filter (B:=list A) P).
Proof
using (Hequiv)
. intros ???. rewrite !equiv_Forall2. by apply Forall2_filter. Qed.
Proof. intros ???. rewrite !equiv_Forall2. by apply Forall2_filter. Qed.
Global Instance replicate_proper n : Proper ((≡) ==> (≡)) (@replicate A n).
Proof
using (Hequiv)
. induction n; constructor; auto. Qed.
Proof. induction n; constructor; auto. Qed.
Global Instance reverse_proper : Proper ((≡) ==> (≡)) (@reverse A).
Proof. induction 1; rewrite ?reverse_cons; repeat (done  f_equiv). Qed.
Proof.
induction 1; rewrite ?reverse_cons; simpl; [constructor].
apply app_proper; repeat constructor; auto.
Qed.
Global Instance last_proper : Proper ((≡) ==> (≡)) (@last A).
Proof. induction 1 as [????? []]; simpl; repeat
(done  f_equiv)
. Qed.
Proof. induction 1 as [????? []]; simpl; repeat
constructor; auto
. Qed.
Global Instance resize_proper n : Proper ((≡) ==> (≡) ==> (≡)) (@resize A n).
Proof. induction n; destruct 2; simpl; repeat (auto  f_equiv). Qed.
Proof.
induction n; destruct 2; simpl; repeat (constructor  f_equiv); auto.
Qed.
End setoid.
(** * Properties of the monadic operations *)
...
...
theories/prelude/option.v
View file @
af7b6da1
...
...
@@ 115,36 +115,38 @@ End Forall2.
Instance
option_equiv
`
{
Equiv
A
}
:
Equiv
(
option
A
)
:
=
option_Forall2
(
≡
).
Section
setoids
.
Context
`
{
Equiv
A
}
{
Hequiv
:
Equivalence
((
≡
)
:
relation
A
)}
.
Context
`
{
Equiv
A
}.
Implicit
Types
mx
my
:
option
A
.
Lemma
equiv_option_Forall2
mx
my
:
mx
≡
my
↔
option_Forall2
(
≡
)
mx
my
.
Proof
using
(
Hequiv
)
.
done
.
Qed
.
Proof
.
done
.
Qed
.
Global
Instance
option_equivalence
:
Equivalence
((
≡
)
:
relation
(
option
A
)).
Global
Instance
option_equivalence
:
Equivalence
((
≡
)
:
relation
A
)
→
Equivalence
((
≡
)
:
relation
(
option
A
)).
Proof
.
apply
_
.
Qed
.
Global
Instance
Some_proper
:
Proper
((
≡
)
==>
(
≡
))
(@
Some
A
).
Proof
using
(
Hequiv
)
.
by
constructor
.
Qed
.
Proof
.
by
constructor
.
Qed
.
Global
Instance
Some_equiv_inj
:
Inj
(
≡
)
(
≡
)
(@
Some
A
).
Proof
using
(
Hequiv
)
.
by
inversion_clear
1
.
Qed
.
Proof
.
by
inversion_clear
1
.
Qed
.
Global
Instance
option_leibniz
`
{!
LeibnizEquiv
A
}
:
LeibnizEquiv
(
option
A
).
Proof
.
intros
x
y
;
destruct
1
;
f
old_leibniz
;
congruence
.
Qed
.
Proof
.
intros
x
y
;
destruct
1
;
f
_equal
;
by
apply
leibniz_equiv
.
Qed
.
Lemma
equiv_None
mx
:
mx
≡
None
↔
mx
=
None
.
Proof
.
split
;
[
by
inversion_clear
1

by
intros
>].
Qed
.
Proof
.
split
;
[
by
inversion_clear
1

intros
>
;
constructor
].
Qed
.
Lemma
equiv_Some_inv_l
mx
my
x
:
mx
≡
my
→
mx
=
Some
x
→
∃
y
,
my
=
Some
y
∧
x
≡
y
.
Proof
using
(
Hequiv
)
.
destruct
1
;
naive_solver
.
Qed
.
Proof
.
destruct
1
;
naive_solver
.
Qed
.
Lemma
equiv_Some_inv_r
mx
my
y
:
mx
≡
my
→
my
=
Some
y
→
∃
x
,
mx
=
Some
x
∧
x
≡
y
.
Proof
using
(
Hequiv
)
.
destruct
1
;
naive_solver
.
Qed
.
Proof
.
destruct
1
;
naive_solver
.
Qed
.
Lemma
equiv_Some_inv_l'
my
x
:
Some
x
≡
my
→
∃
x'
,
Some
x'
=
my
∧
x
≡
x'
.
Proof
using
(
Hequiv
).
intros
?%(
equiv_Some_inv_l
_
_
x
)
;
naive_solver
.
Qed
.
Lemma
equiv_Some_inv_r'
mx
y
:
mx
≡
Some
y
→
∃
y'
,
mx
=
Some
y'
∧
y
≡
y'
.
Proof
.
intros
?%(
equiv_Some_inv_l
_
_
x
)
;
naive_solver
.
Qed
.
Lemma
equiv_Some_inv_r'
`
{!
Equivalence
((
≡
)
:
relation
A
)}
mx
y
:
mx
≡
Some
y
→
∃
y'
,
mx
=
Some
y'
∧
y
≡
y'
.
Proof
.
intros
?%(
equiv_Some_inv_r
_
_
y
)
;
naive_solver
.
Qed
.
Global
Instance
is_Some_proper
:
Proper
((
≡
)
==>
iff
)
(@
is_Some
A
).
Proof
using
(
Hequiv
)
.
inversion_clear
1
;
split
;
eauto
.
Qed
.
Proof
.
inversion_clear
1
;
split
;
eauto
.
Qed
.
Global
Instance
from_option_proper
{
B
}
(
R
:
relation
B
)
(
f
:
A
→
B
)
:
Proper
((
≡
)
==>
R
)
f
→
Proper
(
R
==>
(
≡
)
==>
R
)
(
from_option
f
).
Proof
.
destruct
3
;
simpl
;
auto
.
Qed
.
...
...
theories/proofmode/tactics.v
View file @
af7b6da1
...
...
@@ 1280,6 +1280,7 @@ Hint Extern 1 (of_envs _ ⊢ _) =>


_
⊢
□
_
=>
iClear
"*"
;
iAlways


_
⊢
∃
_
,
_
=>
iExists
_


_
⊢
==>
_
=>
iModIntro


_
⊢
◇
_
=>
iModIntro
end
.
Hint
Extern
1
(
of_envs
_
⊢
_
)
=>
match
goal
with

_
⊢
(
_
∨
_
)%
I
=>
iLeft
end
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment