Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
George Pirlea
Iris
Commits
a71965c4
Commit
a71965c4
authored
Aug 24, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix issue #95.
parent
baa7a380
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
13 additions
and
5 deletions
+13
-5
theories/proofmode/coq_tactics.v
theories/proofmode/coq_tactics.v
+6
-3
theories/proofmode/tactics.v
theories/proofmode/tactics.v
+4
-2
theories/tests/proofmode.v
theories/tests/proofmode.v
+3
-0
No files found.
theories/proofmode/coq_tactics.v
View file @
a71965c4
...
@@ -492,12 +492,15 @@ Qed.
...
@@ -492,12 +492,15 @@ Qed.
(** * Implication and wand *)
(** * Implication and wand *)
Lemma
tac_impl_intro
Δ
Δ
'
i
P
Q
:
Lemma
tac_impl_intro
Δ
Δ
'
i
P
Q
:
env_spatial_is_nil
Δ
=
true
→
(
if
env_spatial_is_nil
Δ
then
Unit
else
PersistentP
P
)
→
envs_app
false
(
Esnoc
Enil
i
P
)
Δ
=
Some
Δ
'
→
envs_app
false
(
Esnoc
Enil
i
P
)
Δ
=
Some
Δ
'
→
(
Δ
'
⊢
Q
)
→
Δ
⊢
P
→
Q
.
(
Δ
'
⊢
Q
)
→
Δ
⊢
P
→
Q
.
Proof
.
Proof
.
intros
??
HQ
.
rewrite
(
persistentP
Δ
)
envs_app_sound
//
;
simpl
.
intros
??
<-.
destruct
(
env_spatial_is_nil
Δ
)
eqn
:
?.
by
rewrite
right_id
always_wand_impl
always_elim
HQ
.
-
rewrite
(
persistentP
Δ
)
envs_app_sound
//
;
simpl
.
by
rewrite
right_id
always_wand_impl
always_elim
.
-
apply
impl_intro_l
.
rewrite
envs_app_sound
//
;
simpl
.
by
rewrite
always_and_sep_l
right_id
wand_elim_r
.
Qed
.
Qed
.
Lemma
tac_impl_intro_persistent
Δ
Δ
'
i
P
P'
Q
:
Lemma
tac_impl_intro_persistent
Δ
Δ
'
i
P
P'
Q
:
IntoPersistentP
P
P'
→
IntoPersistentP
P
P'
→
...
...
theories/proofmode/tactics.v
View file @
a71965c4
...
@@ -299,8 +299,10 @@ Local Tactic Notation "iIntro" constr(H) :=
...
@@ -299,8 +299,10 @@ Local Tactic Notation "iIntro" constr(H) :=
first
first
[
(* (?Q → _) *)
[
(* (?Q → _) *)
eapply
tac_impl_intro
with
_
H
;
(* (i:=H) *)
eapply
tac_impl_intro
with
_
H
;
(* (i:=H) *)
[
reflexivity
||
fail
1
"iIntro: introducing"
H
[
env_cbv
;
apply
_
||
"into non-empty spatial context"
let
P
:
=
lazymatch
goal
with
|-
PersistentP
?P
=>
P
end
in
fail
1
"iIntro: introducing non-persistent"
H
":"
P
"into non-empty spatial context"
|
env_reflexivity
||
fail
"iIntro:"
H
"not fresh"
|
env_reflexivity
||
fail
"iIntro:"
H
"not fresh"
|]
|]
|
(* (_ -∗ _) *)
|
(* (_ -∗ _) *)
...
...
theories/tests/proofmode.v
View file @
a71965c4
...
@@ -77,6 +77,9 @@ Proof.
...
@@ -77,6 +77,9 @@ Proof.
done
.
done
.
Qed
.
Qed
.
Lemma
test_iIntros_persistent
P
Q
`
{!
PersistentP
Q
}
:
(
P
→
Q
→
P
∗
Q
)%
I
.
Proof
.
iIntros
"H1 H2"
.
by
iFrame
.
Qed
.
Lemma
test_fast_iIntros
P
Q
:
Lemma
test_fast_iIntros
P
Q
:
(
∀
x
y
z
:
nat
,
(
∀
x
y
z
:
nat
,
⌜
x
=
plus
0
x
⌝
→
⌜
y
=
0
⌝
→
⌜
z
=
0
⌝
→
P
→
□
Q
→
foo
(
x
≡
x
))%
I
.
⌜
x
=
plus
0
x
⌝
→
⌜
y
=
0
⌝
→
⌜
z
=
0
⌝
→
P
→
□
Q
→
foo
(
x
≡
x
))%
I
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment