Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
George Pirlea
Iris
Commits
8cabea52
Commit
8cabea52
authored
May 31, 2016
by
Robbert Krebbers
Browse files
Make iDestruct and iCombine work with (sep)conjunctions under big_ops.
parent
63075f7c
Changes
2
Hide whitespace changes
Inline
Side-by-side
algebra/upred_big_op.v
View file @
8cabea52
...
...
@@ -214,6 +214,18 @@ Section gmap.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
]
;
csimpl
;
rewrite
?later_True
//.
by
rewrite
later_sep
IH
.
Qed
.
Lemma
big_sepM_always
Φ
m
:
(
□
[
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣
⊢
([
★
map
]
k
↦
x
∈
m
,
□
Φ
k
x
).
Proof
.
rewrite
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
]
;
csimpl
;
rewrite
?always_const
//.
by
rewrite
always_sep
IH
.
Qed
.
Lemma
big_sepM_always_if
p
Φ
m
:
(
□
?p
[
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣
⊢
([
★
map
]
k
↦
x
∈
m
,
□
?p
Φ
k
x
).
Proof
.
destruct
p
;
simpl
;
auto
using
big_sepM_always
.
Qed
.
End
gmap
.
(** ** Big ops over finite sets *)
...
...
@@ -295,6 +307,17 @@ Section gset.
induction
(
elements
X
)
as
[|
x
l
IH
]
;
csimpl
;
first
by
rewrite
?later_True
.
by
rewrite
later_sep
IH
.
Qed
.
Lemma
big_sepS_always
Φ
X
:
(
□
[
★
set
]
y
∈
X
,
Φ
y
)
⊣
⊢
([
★
set
]
y
∈
X
,
□
Φ
y
).
Proof
.
rewrite
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
l
IH
]
;
csimpl
;
first
by
rewrite
?always_const
.
by
rewrite
always_sep
IH
.
Qed
.
Lemma
big_sepS_always_if
q
Φ
X
:
(
□
?q
[
★
set
]
y
∈
X
,
Φ
y
)
⊣
⊢
([
★
set
]
y
∈
X
,
□
?q
Φ
y
).
Proof
.
destruct
q
;
simpl
;
auto
using
big_sepS_always
.
Qed
.
End
gset
.
(** ** Persistence *)
...
...
proofmode/coq_tactics.v
View file @
8cabea52
...
...
@@ -681,6 +681,20 @@ Proof. done. Qed.
Global
Instance
sep_split_ownM
(
a
b
:
M
)
:
SepSplit
(
uPred_ownM
(
a
⋅
b
))
(
uPred_ownM
a
)
(
uPred_ownM
b
)
|
99
.
Proof
.
by
rewrite
/
SepSplit
ownM_op
.
Qed
.
Global
Instance
sep_split_big_sepM
`
{
Countable
K
}
{
A
}
(
Φ
Ψ
1
Ψ
2
:
K
→
A
→
uPred
M
)
m
:
(
∀
k
x
,
SepSplit
(
Φ
k
x
)
(
Ψ
1
k
x
)
(
Ψ
2
k
x
))
→
SepSplit
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
([
★
map
]
k
↦
x
∈
m
,
Ψ
1
k
x
)
([
★
map
]
k
↦
x
∈
m
,
Ψ
2
k
x
).
Proof
.
rewrite
/
SepSplit
=>
?.
rewrite
-
big_sepM_sepM
.
by
apply
big_sepM_mono
.
Qed
.
Global
Instance
sep_split_big_sepS
`
{
Countable
A
}
(
Φ
Ψ
1
Ψ
2
:
A
→
uPred
M
)
X
:
(
∀
x
,
SepSplit
(
Φ
x
)
(
Ψ
1
x
)
(
Ψ
2
x
))
→
SepSplit
([
★
set
]
x
∈
X
,
Φ
x
)
([
★
set
]
x
∈
X
,
Ψ
1
x
)
([
★
set
]
x
∈
X
,
Ψ
2
x
).
Proof
.
rewrite
/
SepSplit
=>
?.
rewrite
-
big_sepS_sepS
.
by
apply
big_sepS_mono
.
Qed
.
Lemma
tac_sep_split
Δ
Δ
1
Δ
2
lr
js
P
Q1
Q2
:
SepSplit
P
Q1
Q2
→
...
...
@@ -759,6 +773,23 @@ Global Instance sep_destruct_later p P Q1 Q2 :
SepDestruct
p
P
Q1
Q2
→
SepDestruct
p
(
▷
P
)
(
▷
Q1
)
(
▷
Q2
).
Proof
.
by
rewrite
/
SepDestruct
-
later_sep
!
always_if_later
=>
->.
Qed
.
Global
Instance
sep_destruct_big_sepM
`
{
Countable
K
}
{
A
}
(
Φ
Ψ
1
Ψ
2
:
K
→
A
→
uPred
M
)
p
m
:
(
∀
k
x
,
SepDestruct
p
(
Φ
k
x
)
(
Ψ
1
k
x
)
(
Ψ
2
k
x
))
→
SepDestruct
p
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
([
★
map
]
k
↦
x
∈
m
,
Ψ
1
k
x
)
([
★
map
]
k
↦
x
∈
m
,
Ψ
2
k
x
).
Proof
.
rewrite
/
SepDestruct
=>
?.
rewrite
-
big_sepM_sepM
!
big_sepM_always_if
.
by
apply
big_sepM_mono
.
Qed
.
Global
Instance
sep_destruct_big_sepS
`
{
Countable
A
}
(
Φ
Ψ
1
Ψ
2
:
A
→
uPred
M
)
p
X
:
(
∀
x
,
SepDestruct
p
(
Φ
x
)
(
Ψ
1
x
)
(
Ψ
2
x
))
→
SepDestruct
p
([
★
set
]
x
∈
X
,
Φ
x
)
([
★
set
]
x
∈
X
,
Ψ
1
x
)
([
★
set
]
x
∈
X
,
Ψ
2
x
).
Proof
.
rewrite
/
SepDestruct
=>
?.
rewrite
-
big_sepS_sepS
!
big_sepS_always_if
.
by
apply
big_sepS_mono
.
Qed
.
Lemma
tac_sep_destruct
Δ
Δ
'
i
p
j1
j2
P
P1
P2
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
P
)
→
SepDestruct
p
P
P1
P2
→
envs_simple_replace
i
p
(
Esnoc
(
Esnoc
Enil
j1
P1
)
j2
P2
)
Δ
=
Some
Δ
'
→
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment