Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
George Pirlea
Iris
Commits
8b563357
Commit
8b563357
authored
Feb 21, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Support multiple hypotheses in iCombine.
This fixes issue #72.
parent
94861f1d
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
62 additions
and
28 deletions
+62
-28
theories/proofmode/coq_tactics.v
theories/proofmode/coq_tactics.v
+49
-21
theories/proofmode/tactics.v
theories/proofmode/tactics.v
+9
-7
theories/tests/proofmode.v
theories/tests/proofmode.v
+4
-0
No files found.
theories/proofmode/coq_tactics.v
View file @
8b563357
...
...
@@ -6,6 +6,8 @@ Set Default Proof Using "Type".
Import
uPred
.
Import
env_notations
.
Local
Notation
"b1 && b2"
:
=
(
if
b1
then
b2
else
false
)
:
bool_scope
.
Record
envs
(
M
:
ucmraT
)
:
=
Envs
{
env_persistent
:
env
(
uPred
M
)
;
env_spatial
:
env
(
uPred
M
)
}.
Add
Printing
Constructor
envs
.
...
...
@@ -51,6 +53,17 @@ Definition envs_lookup_delete {M} (i : string)
|
None
=>
'
(
P
,
Γ
s'
)
←
env_lookup_delete
i
Γ
s
;
Some
(
false
,
P
,
Envs
Γ
p
Γ
s'
)
end
.
Fixpoint
envs_lookup_delete_list
{
M
}
(
js
:
list
string
)
(
remove_persistent
:
bool
)
(
Δ
:
envs
M
)
:
option
(
bool
*
list
(
uPred
M
)
*
envs
M
)
:
=
match
js
with
|
[]
=>
Some
(
true
,
[],
Δ
)
|
j
::
js
=>
'
(
p
,
P
,
Δ
'
)
←
envs_lookup_delete
j
Δ
;
let
Δ
'
:
=
if
p
then
(
if
remove_persistent
then
Δ
'
else
Δ
)
else
Δ
'
in
'
(
q
,
Hs
,
Δ
''
)
←
envs_lookup_delete_list
js
remove_persistent
Δ
'
;
Some
(
p
&&
q
,
P
::
Hs
,
Δ
''
)
end
.
Definition
envs_snoc
{
M
}
(
Δ
:
envs
M
)
(
p
:
bool
)
(
j
:
string
)
(
P
:
uPred
M
)
:
envs
M
:
=
let
(
Γ
p
,
Γ
s
)
:
=
Δ
in
...
...
@@ -102,7 +115,6 @@ Definition envs_split {M} (lr : bool)
'
(
Δ
1
,
Δ
2
)
←
envs_split_go
js
Δ
(
envs_clear_spatial
Δ
)
;
if
lr
then
Some
(
Δ
1
,
Δ
2
)
else
Some
(
Δ
2
,
Δ
1
).
(* Coq versions of the tactics *)
Section
tactics
.
Context
{
M
:
ucmraT
}.
...
...
@@ -167,6 +179,21 @@ Lemma envs_lookup_delete_sound' Δ Δ' i p P :
envs_lookup_delete
i
Δ
=
Some
(
p
,
P
,
Δ
'
)
→
Δ
⊢
P
∗
Δ
'
.
Proof
.
intros
[?
->]%
envs_lookup_delete_Some
.
by
apply
envs_lookup_sound'
.
Qed
.
Lemma
envs_lookup_delete_list_sound
Δ
Δ
'
js
rp
p
Ps
:
envs_lookup_delete_list
js
rp
Δ
=
Some
(
p
,
Ps
,
Δ
'
)
→
Δ
⊢
□
?p
[
∗
]
Ps
∗
Δ
'
.
Proof
.
revert
Δ
Δ
'
p
Ps
.
induction
js
as
[|
j
js
IH
]=>
Δ
Δ
''
p
Ps
?
;
simplify_eq
/=.
{
by
rewrite
always_pure
left_id
.
}
destruct
(
envs_lookup_delete
j
Δ
)
as
[[[
q1
P
]
Δ
'
]|]
eqn
:
Hj
;
simplify_eq
/=.
apply
envs_lookup_delete_Some
in
Hj
as
[
Hj
->].
destruct
(
envs_lookup_delete_list
js
rp
_
)
as
[[[
q2
Ps'
]
?]|]
eqn
:
?
;
simplify_eq
/=.
rewrite
always_if_sep
-
assoc
.
destruct
q1
;
simpl
.
-
destruct
rp
.
+
rewrite
envs_lookup_sound
//
;
simpl
.
by
rewrite
IH
//
(
always_elim_if
q2
).
+
rewrite
envs_lookup_persistent_sound
//.
by
rewrite
IH
//
(
always_elim_if
q2
).
-
rewrite
envs_lookup_sound
//
IH
//
;
simpl
.
by
rewrite
always_if_elim
.
Qed
.
Lemma
envs_lookup_snoc
Δ
i
p
P
:
envs_lookup
i
Δ
=
None
→
envs_lookup
i
(
envs_snoc
Δ
p
i
P
)
=
Some
(
p
,
P
).
Proof
.
...
...
@@ -703,26 +730,27 @@ Proof.
Qed
.
(** * Combining *)
Lemma
tac_combine
Δ
1
Δ
2
Δ
3
Δ
4
i1
p
P1
i2
q
P2
j
P
Q
:
envs_lookup_delete
i1
Δ
1
=
Some
(
p
,
P1
,
Δ
2
)
→
envs_lookup_delete
i2
(
if
p
then
Δ
1
else
Δ
2
)
=
Some
(
q
,
P2
,
Δ
3
)
→
FromSep
P
P1
P2
→
envs_app
(
p
&&
q
)
(
Esnoc
Enil
j
P
)
(
if
q
then
(
if
p
then
Δ
1
else
Δ
2
)
else
Δ
3
)
=
Some
Δ
4
→
(
Δ
4
⊢
Q
)
→
Δ
1
⊢
Q
.
Proof
.
intros
[?
->]%
envs_lookup_delete_Some
[?
->]%
envs_lookup_delete_Some
??
<-.
destruct
p
.
-
rewrite
envs_lookup_persistent_sound
//.
destruct
q
.
+
rewrite
envs_lookup_persistent_sound
//
envs_app_sound
//
;
simpl
.
by
rewrite
right_id
assoc
-
always_sep
(
from_sep
P
)
wand_elim_r
.
+
rewrite
envs_lookup_sound
//
envs_app_sound
//
;
simpl
.
by
rewrite
right_id
assoc
always_elim
(
from_sep
P
)
wand_elim_r
.
-
rewrite
envs_lookup_sound
//
;
simpl
.
destruct
q
.
+
rewrite
envs_lookup_persistent_sound
//
envs_app_sound
//
;
simpl
.
by
rewrite
right_id
assoc
always_elim
(
from_sep
P
)
wand_elim_r
.
+
rewrite
envs_lookup_sound
//
envs_app_sound
//
;
simpl
.
by
rewrite
right_id
assoc
(
from_sep
P
)
wand_elim_r
.
Class
FromSeps
{
M
}
(
P
:
uPred
M
)
(
Qs
:
list
(
uPred
M
))
:
=
from_seps
:
[
∗
]
Qs
⊢
P
.
Arguments
from_seps
{
_
}
_
_
{
_
}.
Global
Instance
from_seps_nil
:
@
FromSeps
M
True
[].
Proof
.
done
.
Qed
.
Global
Instance
from_seps_singleton
P
:
FromSeps
P
[
P
]
|
1
.
Proof
.
by
rewrite
/
FromSeps
/=
right_id
.
Qed
.
Global
Instance
from_seps_cons
P
P'
Q
Qs
:
FromSeps
P'
Qs
→
FromSep
P
Q
P'
→
FromSeps
P
(
Q
::
Qs
)
|
2
.
Proof
.
by
rewrite
/
FromSeps
/
FromSep
/=
=>
->.
Qed
.
Lemma
tac_combine
Δ
1
Δ
2
Δ
3
js
p
Ps
j
P
Q
:
envs_lookup_delete_list
js
false
Δ
1
=
Some
(
p
,
Ps
,
Δ
2
)
→
FromSeps
P
Ps
→
envs_app
p
(
Esnoc
Enil
j
P
)
Δ
2
=
Some
Δ
3
→
(
Δ
3
⊢
Q
)
→
Δ
1
⊢
Q
.
Proof
.
intros
???
<-.
rewrite
envs_lookup_delete_list_sound
//.
rewrite
from_seps
.
rewrite
envs_app_sound
//
;
simpl
.
by
rewrite
right_id
wand_elim_r
.
Qed
.
(** * Conjunction/separating conjunction elimination *)
...
...
theories/proofmode/tactics.v
View file @
8b563357
...
...
@@ -578,15 +578,17 @@ Local Tactic Notation "iAndDestructChoice" constr(H) "as" constr(lr) constr(H')
apply
_
||
fail
"iAndDestructChoice: cannot destruct"
P
|
env_cbv
;
reflexivity
||
fail
"iAndDestructChoice:"
H'
" not fresh"
|].
Tactic
Notation
"iCombine"
constr
(
H1
)
constr
(
H2
)
"as"
constr
(
H
)
:
=
eapply
tac_combine
with
_
_
_
H1
_
_
H2
_
_
H
_;
[
env_cbv
;
reflexivity
||
fail
"iCombine:"
H1
"not found"
|
env_cbv
;
reflexivity
||
fail
"iCombine:"
H2
"not found"
|
let
P1
:
=
match
goal
with
|-
FromSep
_
?P1
_
=>
P1
end
in
let
P2
:
=
match
goal
with
|-
FromSep
_
_
?P2
=>
P2
end
in
apply
_
||
fail
"iCombine: cannot combine"
P1
"and"
P2
(** * Combinining hypotheses *)
Tactic
Notation
"iCombine"
constr
(
Hs
)
"as"
constr
(
H
)
:
=
let
Hs
:
=
words
Hs
in
eapply
tac_combine
with
_
_
Hs
_
_
H
_;
[
env_cbv
;
reflexivity
||
fail
"iCombine:"
Hs
"not found"
|
apply
_
|
env_cbv
;
reflexivity
||
fail
"iCombine:"
H
"not fresh"
|].
Tactic
Notation
"iCombine"
constr
(
H1
)
constr
(
H2
)
"as"
constr
(
H
)
:
=
iCombine
[
H1
;
H2
]
as
H
.
(** * Existential *)
Tactic
Notation
"iExists"
uconstr
(
x1
)
:
=
iStartProof
;
...
...
theories/tests/proofmode.v
View file @
8b563357
...
...
@@ -142,3 +142,7 @@ Qed.
Lemma
demo_16
(
M
:
ucmraT
)
(
P
Q
R
:
uPred
M
)
`
{!
PersistentP
R
}
:
P
-
∗
Q
-
∗
R
-
∗
R
∗
Q
∗
P
∗
R
∨
False
.
Proof
.
eauto
with
iFrame
.
Qed
.
Lemma
demo_17
(
M
:
ucmraT
)
(
P
Q
R
:
uPred
M
)
`
{!
PersistentP
R
}
:
P
-
∗
Q
-
∗
R
-
∗
R
∗
Q
∗
P
∗
R
∨
False
.
Proof
.
iIntros
"HP HQ #HR"
.
iCombine
"HR HQ HP HR"
as
"H"
.
auto
.
Qed
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment