Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
George Pirlea
Iris
Commits
555e1dad
Commit
555e1dad
authored
May 24, 2016
by
Robbert Krebbers
Browse files
Clean up some useless scope delimiters.
parent
eacb1c46
Changes
1
Hide whitespace changes
Inline
Side-by-side
proofmode/coq_tactics.v
View file @
555e1dad
...
...
@@ -411,7 +411,7 @@ Global Instance to_persistentP_persistent P :
Proof
.
done
.
Qed
.
Lemma
tac_persistent
Δ
Δ
'
i
p
P
P'
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
P
)
%
I
→
ToPersistentP
P
P'
→
envs_lookup
i
Δ
=
Some
(
p
,
P
)
→
ToPersistentP
P
P'
→
envs_replace
i
p
true
(
Esnoc
Enil
i
P'
)
Δ
=
Some
Δ
'
→
Δ
'
⊢
Q
→
Δ
⊢
Q
.
Proof
.
...
...
@@ -476,7 +476,7 @@ Global Instance to_wand_always R P Q : ToWand R P Q → ToWand (□ R) P Q.
but it is doing some work to keep the order of hypotheses preserved. *)
Lemma
tac_specialize
Δ
Δ
'
Δ
''
i
p
j
q
P1
P2
R
Q
:
envs_lookup_delete
i
Δ
=
Some
(
p
,
P1
,
Δ
'
)
→
envs_lookup
j
(
if
p
then
Δ
else
Δ
'
)
=
Some
(
q
,
R
)
%
I
→
envs_lookup
j
(
if
p
then
Δ
else
Δ
'
)
=
Some
(
q
,
R
)
→
ToWand
R
P1
P2
→
match
p
with
|
true
=>
envs_simple_replace
j
q
(
Esnoc
Enil
j
P2
)
Δ
...
...
@@ -495,7 +495,7 @@ Proof.
Qed
.
Lemma
tac_specialize_assert
Δ
Δ
'
Δ
1
Δ
2
'
j
q
lr
js
P1
P2
R
Q
:
envs_lookup_delete
j
Δ
=
Some
(
q
,
R
,
Δ
'
)
%
I
→
envs_lookup_delete
j
Δ
=
Some
(
q
,
R
,
Δ
'
)
→
ToWand
R
P1
P2
→
(
'
(
Δ
1
,
Δ
2
)
←
envs_split
lr
js
Δ
'
;
Δ
2
'
←
envs_app
(
envs_persistent
Δ
1
&&
q
)
(
Esnoc
Enil
j
P2
)
Δ
2
;
...
...
@@ -610,7 +610,7 @@ Proof.
Qed
.
Lemma
tac_apply
Δ
Δ
'
i
p
R
P1
P2
:
envs_lookup_delete
i
Δ
=
Some
(
p
,
R
,
Δ
'
)
%
I
→
ToWand
R
P1
P2
→
envs_lookup_delete
i
Δ
=
Some
(
p
,
R
,
Δ
'
)
→
ToWand
R
P1
P2
→
Δ
'
⊢
P1
→
Δ
⊢
P2
.
Proof
.
intros
??
HP1
.
rewrite
envs_lookup_delete_sound'
//.
...
...
@@ -621,7 +621,7 @@ Qed.
Lemma
tac_rewrite
Δ
i
p
Pxy
(
lr
:
bool
)
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
Pxy
)
→
∀
{
A
:
cofeT
}
(
x
y
:
A
)
(
Φ
:
A
→
uPred
M
),
Pxy
⊢
(
x
≡
y
)
%
I
→
Pxy
⊢
(
x
≡
y
)
→
Q
⊣
⊢
Φ
(
if
lr
then
y
else
x
)
→
(
∀
n
,
Proper
(
dist
n
==>
dist
n
)
Φ
)
→
Δ
⊢
Φ
(
if
lr
then
x
else
y
)
→
Δ
⊢
Q
.
...
...
@@ -633,9 +633,9 @@ Qed.
Lemma
tac_rewrite_in
Δ
i
p
Pxy
j
q
P
(
lr
:
bool
)
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
Pxy
)
→
envs_lookup
j
Δ
=
Some
(
q
,
P
)
%
I
→
envs_lookup
j
Δ
=
Some
(
q
,
P
)
→
∀
{
A
:
cofeT
}
Δ
'
x
y
(
Φ
:
A
→
uPred
M
),
Pxy
⊢
(
x
≡
y
)
%
I
→
Pxy
⊢
(
x
≡
y
)
→
P
⊣
⊢
Φ
(
if
lr
then
y
else
x
)
→
(
∀
n
,
Proper
(
dist
n
==>
dist
n
)
Φ
)
→
envs_simple_replace
j
q
(
Esnoc
Enil
j
(
Φ
(
if
lr
then
x
else
y
)))
Δ
=
Some
Δ
'
→
...
...
@@ -735,7 +735,7 @@ Global Instance sep_destruct_later p P Q1 Q2 :
Proof
.
by
rewrite
/
SepDestruct
-
later_sep
!
always_if_later
=>
->.
Qed
.
Lemma
tac_sep_destruct
Δ
Δ
'
i
p
j1
j2
P
P1
P2
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
P
)
%
I
→
SepDestruct
p
P
P1
P2
→
envs_lookup
i
Δ
=
Some
(
p
,
P
)
→
SepDestruct
p
P
P1
P2
→
envs_simple_replace
i
p
(
Esnoc
(
Esnoc
Enil
j1
P1
)
j2
P2
)
Δ
=
Some
Δ
'
→
Δ
'
⊢
Q
→
Δ
⊢
Q
.
Proof
.
...
...
@@ -794,7 +794,7 @@ Global Instance frame_forall {A} R (Φ : A → uPred M) mΨ :
Proof
.
rewrite
/
Frame
=>
?.
by
rewrite
sep_forall_l
;
apply
forall_mono
.
Qed
.
Lemma
tac_frame
Δ
Δ
'
i
p
R
P
mQ
:
envs_lookup_delete
i
Δ
=
Some
(
p
,
R
,
Δ
'
)
%
I
→
Frame
R
P
mQ
→
envs_lookup_delete
i
Δ
=
Some
(
p
,
R
,
Δ
'
)
→
Frame
R
P
mQ
→
(
if
mQ
is
Some
Q
then
(
if
p
then
Δ
else
Δ
'
)
⊢
Q
else
True
)
→
Δ
⊢
P
.
Proof
.
...
...
@@ -889,7 +889,7 @@ Global Instance exist_destruct_later {A} P (Φ : A → uPred M) :
Proof
.
rewrite
/
ExistDestruct
=>
HP
?.
by
rewrite
HP
later_exist
.
Qed
.
Lemma
tac_exist_destruct
{
A
}
Δ
i
p
j
P
(
Φ
:
A
→
uPred
M
)
Q
:
envs_lookup
i
Δ
=
Some
(
p
,
P
)
%
I
→
ExistDestruct
P
Φ
→
envs_lookup
i
Δ
=
Some
(
p
,
P
)
→
ExistDestruct
P
Φ
→
(
∀
a
,
∃
Δ
'
,
envs_simple_replace
i
p
(
Esnoc
Enil
j
(
Φ
a
))
Δ
=
Some
Δ
'
∧
Δ
'
⊢
Q
)
→
Δ
⊢
Q
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment