Commit 3cffb277 authored by Ralf Jung's avatar Ralf Jung
Browse files

prove some more Löb lemmas

parent 8c5ad077
......@@ -715,13 +715,24 @@ Lemma later_wand P Q : ▷ (P -★ Q) ⊑ (▷ P -★ ▷ Q).
Proof. apply wand_intro_r;rewrite -later_sep; apply later_mono,wand_elim_l. Qed.
Lemma later_iff P Q : ( (P Q)) (P Q).
Proof. by rewrite /uPred_iff later_and !later_impl. Qed.
Lemma löb_strong P Q : (P Q) Q P Q.
Proof.
intros Hlöb. apply impl_entails.
etransitivity; last by eapply löb.
apply impl_intro_l, impl_intro_l. rewrite right_id -{2}Hlöb.
apply and_intro; first by eauto.
by rewrite {1}(later_intro P) later_impl impl_elim_r.
Qed.
Lemma löb_all_1 {A} (Φ Ψ : A uPred M) :
( a, ( ( b, Φ b Ψ b) Φ a) Ψ a) a, Φ a Ψ a.
Proof.
intros Hlöb a. apply impl_entails. transitivity ( a, Φ a Ψ a)%I; last first.
{ by rewrite (forall_elim a). } clear a.
etransitivity; last by eapply löb.
apply impl_intro_l, forall_intro=>a. rewrite right_id. by apply impl_intro_r.
intros Hlöb a.
(* Part I: Revert all the bits we need for the induction into the conclusion. *)
apply impl_entails.
rewrite -[(Φ a Ψ a)%I](forall_elim (Ψ := λ a, Φ a Ψ a)%I a). clear a.
(* Part II: Perform induction. *)
apply löb_strong, forall_intro=>a. apply impl_intro_r.
by rewrite left_id Hlöb.
Qed.
(* Always *)
......@@ -957,6 +968,8 @@ Lemma always_always P `{!AlwaysStable P} : (□ P)%I ≡ P.
Proof. apply (anti_symm ()); auto using always_elim. Qed.
Lemma always_intro P Q `{!AlwaysStable P} : P Q P Q.
Proof. rewrite -(always_always P); apply always_intro'. Qed.
Lemma always_entails P Q `{!AlwaysStable P} : P Q P Q.
Proof. rewrite -(always_always P). move=>->. by rewrite always_elim. Qed.
Lemma always_and_sep_l P Q `{!AlwaysStable P} : (P Q)%I (P Q)%I.
Proof. by rewrite -(always_always P) always_and_sep_l'. Qed.
Lemma always_and_sep_r P Q `{!AlwaysStable Q} : (P Q)%I (P Q)%I.
......@@ -968,6 +981,14 @@ Proof. by rewrite -(always_always Q); apply always_entails_l'. Qed.
Lemma always_entails_r P Q `{!AlwaysStable Q} : (P Q) P (P Q).
Proof. by rewrite -(always_always Q); apply always_entails_r'. Qed.
(* Derived lemmas that need a combination of the above *)
Lemma löb_strong_sep P Q : ((P - Q) P) Q P Q.
Proof.
move/wand_intro_r=>Hlöb. rewrite -[P](left_id True ())%I.
apply impl_elim_l'. apply: always_entails. apply löb_strong.
rewrite left_id -always_wand_impl -always_later Hlöb. done.
Qed.
End uPred_logic.
(* Hint DB for the logic *)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment