Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
George Pirlea
Iris
Commits
373feb82
Commit
373feb82
authored
Mar 20, 2018
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
teach framing about the intuitionistic modality
parent
50ef1cf4
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
38 additions
and
0 deletions
+38
-0
theories/bi/derived_laws.v
theories/bi/derived_laws.v
+6
-0
theories/proofmode/class_instances.v
theories/proofmode/class_instances.v
+23
-0
theories/proofmode/classes.v
theories/proofmode/classes.v
+9
-0
No files found.
theories/bi/derived_laws.v
View file @
373feb82
...
...
@@ -980,6 +980,12 @@ Proof. rewrite /bi_intuitionistically affinely_elim //. Qed.
Lemma
intuitionistically_persistently_persistently
P
:
□
<
pers
>
P
⊣
⊢
□
P
.
Proof
.
rewrite
/
bi_intuitionistically
persistently_idemp
//.
Qed
.
Lemma
intuitionistic_intuitionistically
P
:
Affine
P
→
Persistent
P
→
□
P
⊣
⊢
P
.
Proof
.
intros
.
apply
(
anti_symm
_
)
;
first
exact
:
intuitionistically_elim
.
rewrite
-{
1
}(
affine_affinely
P
)
{
1
}(
persistent
P
)
//.
Qed
.
Lemma
intuitionistically_affinely
P
:
□
P
⊢
<
affine
>
P
.
Proof
.
rewrite
/
bi_intuitionistically
/
bi_affinely
.
apply
and_intro
.
...
...
theories/proofmode/class_instances.v
View file @
373feb82
...
...
@@ -991,6 +991,29 @@ Proof.
rewrite
-{
1
}(
affine_affinely
(
□
R
)%
I
)
affinely_sep_2
//.
Qed
.
Global
Instance
make_intuitionistically_True
:
@
KnownMakeIntuitionistically
PROP
True
emp
|
0
.
Proof
.
by
rewrite
/
KnownMakeIntuitionistically
/
MakeIntuitionistically
intuitionistically_True_emp
.
Qed
.
Global
Instance
make_intuitionistically_intuitionistic
P
:
Affine
P
→
Persistent
P
→
KnownMakeIntuitionistically
P
P
|
1
.
Proof
.
intros
.
rewrite
/
KnownMakeIntuitionistically
/
MakeIntuitionistically
.
rewrite
intuitionistic_intuitionistically
//.
Qed
.
Global
Instance
make_intuitionistically_default
P
:
MakeIntuitionistically
P
(
□
P
)
|
100
.
Proof
.
by
rewrite
/
MakeIntuitionistically
.
Qed
.
Global
Instance
frame_intuitionistically
R
P
Q
Q'
:
Frame
true
R
P
Q
→
MakeIntuitionistically
Q
Q'
→
Frame
true
R
(
□
P
)
Q'
.
Proof
.
rewrite
/
Frame
/
MakeIntuitionistically
=>
<-
<-
/=.
rewrite
-
intuitionistically_sep_2
intuitionistically_idemp
//.
Qed
.
Global
Instance
make_absorbingly_emp
:
@
KnownMakeAbsorbingly
PROP
emp
True
|
0
.
Proof
.
by
rewrite
/
KnownMakeAbsorbingly
/
MakeAbsorbingly
...
...
theories/proofmode/classes.v
View file @
373feb82
...
...
@@ -348,6 +348,15 @@ Class KnownMakeAffinely {PROP : bi} (P Q : PROP) :=
Arguments
KnownMakeAffinely
{
_
}
_
%
I
_
%
I
.
Hint
Mode
KnownMakeAffinely
+
!
-
:
typeclass_instances
.
Class
MakeIntuitionistically
{
PROP
:
bi
}
(
P
Q
:
PROP
)
:
=
make_intuitionistically
:
□
P
⊣
⊢
Q
.
Arguments
MakeIntuitionistically
{
_
}
_
%
I
_
%
I
.
Hint
Mode
MakeIntuitionistically
+
-
-
:
typeclass_instances
.
Class
KnownMakeIntuitionistically
{
PROP
:
bi
}
(
P
Q
:
PROP
)
:
=
known_make_intuitionistically
:
>
MakeIntuitionistically
P
Q
.
Arguments
KnownMakeIntuitionistically
{
_
}
_
%
I
_
%
I
.
Hint
Mode
KnownMakeIntuitionistically
+
!
-
:
typeclass_instances
.
Class
MakeAbsorbingly
{
PROP
:
bi
}
(
P
Q
:
PROP
)
:
=
make_absorbingly
:
<
absorb
>
P
⊣
⊢
Q
.
Arguments
MakeAbsorbingly
{
_
}
_
%
I
_
%
I
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment