Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
George Pirlea
Iris
Commits
1c48ea12
Commit
1c48ea12
authored
Jul 25, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Cofe on the function space A → B where A : Type and B : cofeT.
parent
677aae22
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
33 additions
and
0 deletions
+33
-0
algebra/cofe.v
algebra/cofe.v
+33
-0
No files found.
algebra/cofe.v
View file @
1c48ea12
...
...
@@ -207,6 +207,39 @@ Section fixpoint.
Proof
.
setoid_rewrite
equiv_dist
;
naive_solver
eauto
using
fixpoint_ne
.
Qed
.
End
fixpoint
.
(** Function space *)
Definition
cofe_fun
(
A
:
Type
)
(
B
:
cofeT
)
:
=
A
→
B
.
Section
cofe_fun
.
Context
{
A
:
Type
}
{
B
:
cofeT
}.
Instance
cofe_fun_equiv
:
Equiv
(
cofe_fun
A
B
)
:
=
λ
f
g
,
∀
x
,
f
x
≡
g
x
.
Instance
cofe_fun_dist
:
Dist
(
cofe_fun
A
B
)
:
=
λ
n
f
g
,
∀
x
,
f
x
≡
{
n
}
≡
g
x
.
Program
Definition
cofe_fun_chain
`
(
c
:
chain
(
cofe_fun
A
B
))
(
x
:
A
)
:
chain
B
:
=
{|
chain_car
n
:
=
c
n
x
|}.
Next
Obligation
.
intros
c
x
n
i
?.
by
apply
(
chain_cauchy
c
).
Qed
.
Program
Instance
cofe_fun_compl
:
Compl
(
cofe_fun
A
B
)
:
=
λ
c
x
,
compl
(
cofe_fun_chain
c
x
).
Definition
cofe_fun_cofe_mixin
:
CofeMixin
(
cofe_fun
A
B
).
Proof
.
split
.
-
intros
f
g
;
split
;
[
intros
Hfg
n
k
;
apply
equiv_dist
,
Hfg
|].
intros
Hfg
k
;
apply
equiv_dist
=>
n
;
apply
Hfg
.
-
intros
n
;
split
.
+
by
intros
f
x
.
+
by
intros
f
g
?
x
.
+
by
intros
f
g
h
??
x
;
trans
(
g
x
).
-
by
intros
n
f
g
?
x
;
apply
dist_S
.
-
intros
n
c
x
.
apply
(
conv_compl
n
(
cofe_fun_chain
c
x
)).
Qed
.
Canonical
Structure
cofe_funC
:
=
CofeT
(
cofe_fun
A
B
)
cofe_fun_cofe_mixin
.
End
cofe_fun
.
Arguments
cofe_funC
:
clear
implicits
.
Notation
"A -c> B"
:
=
(
cofe_funC
A
B
)
(
at
level
99
,
B
at
level
200
,
right
associativity
).
Instance
cofe_fun_inhabited
{
A
}
{
B
:
cofeT
}
`
{
Inhabited
B
}
:
Inhabited
(
A
-
c
>
B
)
:
=
populate
(
λ
_
,
inhabitant
).
(** Non-expansive function space *)
Record
cofe_mor
(
A
B
:
cofeT
)
:
Type
:
=
CofeMor
{
cofe_mor_car
:
>
A
→
B
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment