Commit 020be806 authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan

Simplify uses of AffineEnv by making it easy to prove when the BI is affine.

parent d5f22a79
......@@ -443,16 +443,15 @@ Global Instance affine_env_snoc Γ i P :
Affine P AffineEnv Γ AffineEnv (Esnoc Γ i P).
Proof. by constructor. Qed.
(* If the BI is affine, no need to walk on the whole environment. *)
Global Instance affine_env_bi `(AffineBI PROP) Γ : AffineEnv Γ | 0.
Proof. induction Γ; apply _. Qed.
Instance affine_env_spatial Δ :
TCOr (AffineBI PROP) (AffineEnv (env_spatial Δ)) Affine ([] env_spatial Δ).
Proof. destruct 1 as [?|H]. apply _. induction H; simpl; apply _. Qed.
Lemma tac_emp_intro Δ :
(* Establishing [AffineEnv (env_spatial Δ)] is rather expensive (linear in the
size of the context), so first check whether the whole BI is affine (which
takes constant time). *)
TCOr (AffineBI PROP) (AffineEnv (env_spatial Δ))
Δ emp.
AffineEnv (env_spatial Δ) Affine ([] env_spatial Δ).
Proof. intros H. induction H; simpl; apply _. Qed.
Lemma tac_emp_intro Δ : AffineEnv (env_spatial Δ) Δ emp.
Proof. intros. by rewrite (affine Δ). Qed.
Lemma tac_assumption Δ Δ' i p P Q :
......@@ -571,7 +570,7 @@ Proof. destruct pe; by split. Qed.
Lemma tac_always_intro Δ Δ' a pe pl Q Q' :
FromAlways a pe pl Q' Q
(if a then TCOr (AffineBI PROP) (AffineEnv (env_spatial Δ')) else TCTrue)
(if a then AffineEnv (env_spatial Δ') else TCTrue)
IntoAlwaysEnvs pe pl Δ' Δ
(Δ Q) Δ' Q'.
Proof.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment