ofe.v 41.3 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5
6
7
8
9
10
11
12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16
17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20
21
22

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
23
  | _ => progress simplify_eq/=
24
25
26
27
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
28
  repeat match goal with
29
  | _ => progress simplify_eq/=
30
31
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
32
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
33

34
Record OfeMixin A `{Equiv A, Dist A} := {
35
  mixin_equiv_dist x y : x  y   n, x {n} y;
36
  mixin_dist_equivalence n : Equivalence (dist n);
37
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
38
39
40
}.

(** Bundeled version *)
41
42
43
44
45
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
46
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
47
}.
48
49
50
51
52
53
54
55
56
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
57
58

(** Lifting properties from the mixin *)
59
60
Section ofe_mixin.
  Context {A : ofeT}.
61
  Implicit Types x y : A.
62
  Lemma equiv_dist x y : x  y   n, x {n} y.
63
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
64
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
65
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
66
  Lemma dist_S n x y : x {S n} y  x {n} y.
67
68
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
69

Robbert Krebbers's avatar
Robbert Krebbers committed
70
71
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

72
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
73
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
74
   more sense. *)
75
76
77
78
Class Timeless {A : ofeT} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_} _ {_} _ _.
Hint Mode Timeless + ! : typeclass_instances.

79
80
81
82
83
84
85
86
87
88
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

89
90
91
92
93
Program Definition chain_map {A B : ofeT} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

94
95
96
97
98
99
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
100

101
102
103
104
105
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c
      `( n : nat, Proper (dist n ==> dist n) f) :
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
106
107
(** General properties *)
Section cofe.
108
  Context {A : ofeT}.
109
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
112
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
113
114
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
115
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
116
  Qed.
117
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
120
121
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
122
  Qed.
123
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
124
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
129
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
  Proof. induction 2; eauto using dist_S. Qed.
131
132
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
133
  Instance ne_proper {B : ofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
134
135
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
136
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
137
138
139
140
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
142
  Qed.
143

144
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
145
146
147
148
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
149
150
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
152
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
154
End cofe.

155
(** Contractive functions *)
156
157
158
159
160
161
162
163
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
164

165
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
166
167
Proof. by intros n y1 y2. Qed.

168
Section contractive.
169
  Local Set Default Proof Using "Type*".
170
171
172
173
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
174
  Proof. by apply (_ : Contractive f). Qed.
175
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
176
  Proof. intros. by apply (_ : Contractive f). Qed.
177
178
179
180
181
182
183

  Global Instance contractive_ne n : Proper (dist n ==> dist n) f | 100.
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

184
185
186
187
188
189
190
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
191
192
  | |- @dist_later ?A ?n ?x ?y =>
         destruct n as [|n]; [done|change (@dist A _ n x y)]
193
194
195
196
197
198
  end;
  try reflexivity.

Ltac solve_contractive :=
  preprocess_solve_proper;
  solve [repeat (first [f_contractive|f_equiv]; try eassumption)].
Robbert Krebbers's avatar
Robbert Krebbers committed
199

Robbert Krebbers's avatar
Robbert Krebbers committed
200
(** Fixpoint *)
201
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
202
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
203
Next Obligation.
204
  intros A ? f ? n.
205
  induction n as [|n IH]=> -[|i] //= ?; try omega.
206
207
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
208
Qed.
209

210
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
211
  `{!Contractive f} : A := compl (fixpoint_chain f).
212
213
214
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
216

Section fixpoint.
217
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
218

219
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
220
  Proof.
221
222
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
223
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
224
  Qed.
225
226
227

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
228
229
230
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
231
232
  Qed.

233
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
234
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
  Proof.
236
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
237
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
238
239
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
240
  Qed.
241
242
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
244
245

  Lemma fixpoint_ind (P : A  Prop) :
246
    Proper (() ==> impl) P 
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
    { intros n. induction n as [|n IH]=> -[|i] //= ?; try omega.
      - apply (contractive_0 f).
      - apply (contractive_S f), IH; auto with omega. }
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
    rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr.
    apply equiv_dist=>n.
    rewrite /fp2 (conv_compl n) /= /chcar.
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
262
263
End fixpoint.

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
(** Fixpoint of f when f^2 is contractive. **)
(* TODO: Generalize 2 to m. *)
Definition fixpoint2 `{Cofe A, Inhabited A} (f : A  A)
  `{!Contractive (Nat.iter 2 f)} := fixpoint (Nat.iter 2 f).

Section fixpoint2.
  Local Set Default Proof Using "Type*".
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive (Nat.iter 2 f)}.
  (* TODO: Can we get rid of this assumption, derive it from contractivity? *)
  Context `{! n, Proper (dist n ==> dist n) f}.

  Lemma fixpoint2_unfold : fixpoint2 f  f (fixpoint2 f).
  Proof.
    apply equiv_dist=>n.
    rewrite /fixpoint2 fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain _)) //.
    induction n as [|n IH]; simpl.
    - eapply contractive_0 with (f0 := Nat.iter 2 f). done.
    - eapply contractive_S with (f0 := Nat.iter 2 f); first done. eauto.
  Qed.

  Lemma fixpoint2_unique (x : A) : x  f x  x  fixpoint2 f.
  Proof.
    intros Hf. apply fixpoint_unique, equiv_dist=>n. eapply equiv_dist in Hf.
    rewrite 2!{1}Hf. done.
  Qed.

  Section fixpoint2_ne.
    Context (g : A  A) `{!Contractive (Nat.iter 2 g), ! n, Proper (dist n ==> dist n) g}.

    Lemma fixpoint2_ne n : ( z, f z {n} g z)  fixpoint2 f {n} fixpoint2 g.
    Proof.
      rewrite /fixpoint2=>Hne /=. apply fixpoint_ne=>? /=. rewrite !Hne. done.
    Qed.

    Lemma fixpoint2_proper : ( z, f z  g z)  fixpoint2 f  fixpoint2 g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint2_ne. Qed.
  End fixpoint2_ne.
End fixpoint2.

Robbert Krebbers's avatar
Robbert Krebbers committed
303
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
304
Section fixpointAB.
305
306
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
348
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
349

Ralf Jung's avatar
Ralf Jung committed
350
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
382
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
383

384
(** Function space *)
385
(* We make [ofe_fun] a definition so that we can register it as a canonical
386
structure. *)
387
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
388

389
390
391
392
393
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
394
395
396
397
398
399
400
401
402
403
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
404
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
405

406
407
408
409
410
411
412
413
414
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
415
Notation "A -c> B" :=
416
417
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
418
419
  Inhabited (A -c> B) := populate (λ _, inhabitant).

420
(** Non-expansive function space *)
421
422
423
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
  ofe_mor_ne n : Proper (dist n ==> dist n) ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
424
425
}.
Arguments CofeMor {_ _} _ {_}.
426
427
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
428

429
430
431
432
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

433
434
435
436
437
438
439
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
440
441
  Proof.
    split.
442
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
443
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
444
    - intros n; split.
445
446
      + by intros f x.
      + by intros f g ? x.
447
      + by intros f g h ?? x; trans (g x).
448
    - by intros n f g ? x; apply dist_S.
449
  Qed.
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
467

468
469
  Global Instance ofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@ofe_mor_car A B).
470
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
471
472
473
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
474
  Proof. done. Qed.
475
End ofe_mor.
476

477
Arguments ofe_morC : clear implicits.
478
Notation "A -n> B" :=
479
480
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
481
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
482

483
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
484
485
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
486
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
487
Instance: Params (@cconst) 2.
488

Robbert Krebbers's avatar
Robbert Krebbers committed
489
490
491
492
493
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
494
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
495
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
496

Ralf Jung's avatar
Ralf Jung committed
497
(* Function space maps *)
498
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
499
  (h : A -n> B) : A' -n> B' := g  h  f.
500
501
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
502
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
503

504
505
506
507
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
Instance ofe_morC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
508
Proof.
509
  intros f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
510
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
511
512
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
513
(** unit *)
514
515
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
516
  Definition unit_ofe_mixin : OfeMixin unit.
517
  Proof. by repeat split; try exists 0. Qed.
518
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
519

520
521
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
522
523

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
524
  Proof. done. Qed.
525
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
527

(** Product *)
528
Section product.
529
  Context {A B : ofeT}.
530
531
532
533
534
535

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
536
  Definition prod_ofe_mixin : OfeMixin (A * B).
537
538
  Proof.
    split.
539
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
540
      rewrite !equiv_dist; naive_solver.
541
542
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
543
  Qed.
544
545
546
547
548
549
550
551
552
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

553
554
555
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
556
557
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
558
559
560
561
562
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

563
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
564
565
566
567
568
569
570
571
572
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

573
574
(** Functors *)
Structure cFunctor := CFunctor {
575
  cFunctor_car : ofeT  ofeT  ofeT;
576
577
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
578
579
  cFunctor_ne {A1 A2 B1 B2} n :
    Proper (dist n ==> dist n) (@cFunctor_map A1 A2 B1 B2);
580
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
581
582
583
584
585
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
586
Existing Instance cFunctor_ne.
587
588
Instance: Params (@cFunctor_map) 5.

589
590
591
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

592
593
594
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

595
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
596
597
Coercion cFunctor_diag : cFunctor >-> Funclass.

598
Program Definition constCF (B : ofeT) : cFunctor :=
599
600
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
601
Coercion constCF : ofeT >-> cFunctor.
602

603
Instance constCF_contractive B : cFunctorContractive (constCF B).
604
Proof. rewrite /cFunctorContractive; apply _. Qed.
605
606
607
608

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
609
Notation "∙" := idCF : cFunctor_scope.
610

611
612
613
614
615
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
616
617
618
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
619
620
621
622
623
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
624
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
625

626
627
628
629
630
631
632
633
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

634
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') n :
635
636
637
  Proper (dist n ==> dist n) (compose f : (A -c> B)  A -c> B').
Proof. intros g g' Hf x; simpl. by rewrite (Hf x). Qed.

638
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
639
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
640
641
Instance ofe_funC_map_ne {A B B'} n :
  Proper (dist n ==> dist n) (@ofe_funC_map A B B').
642
643
Proof. intros f f' Hf g x. apply Hf. Qed.

644
645
646
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
647
648
|}.
Next Obligation.
649
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
650
651
652
653
654
655
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.
656
Notation "T -c> F" := (ofe_funCF T%type F%CF) : cFunctor_scope.
657

658
659
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
660
661
Proof.
  intros ?? A1 A2 B1 B2 n ???;
662
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
663
664
Qed.

665
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
666
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
667
  cFunctor_map A1 A2 B1 B2 fg :=
668
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
669
|}.
670
671
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
672
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
673
Qed.
Ralf Jung's avatar
Ralf Jung committed
674
Next Obligation.
675
676
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
677
678
Qed.
Next Obligation.
679
680
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
681
Qed.
682
Notation "F1 -n> F2" := (ofe_morCF F1%CF F2%CF) : cFunctor_scope.
Ralf Jung's avatar
Ralf Jung committed
683

684
Instance ofe_morCF_contractive F1 F2 :
685
  cFunctorContractive F1  cFunctorContractive F2 
686
  cFunctorContractive (ofe_morCF F1 F2).
687
688
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
689
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
690
691
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
692
693
(** Sum *)
Section sum.
694
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
695
696
697
698
699
700
701

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
  Global Instance inl_ne : Proper (dist n ==> dist n) (@inl A B) := _.
  Global Instance inr_ne : Proper (dist n ==> dist n) (@inr A B) := _.
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

702
703
704
705
706
707
708
709
710
711
712
713
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program Definition inl_chain (c : chain sumC) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
714
715
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
716
  Program Definition inr_chain (c : chain sumC) (b : B) : chain B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
717
718
719
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

720
  Definition sum_compl `{Cofe A, Cofe B} : Compl sumC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
721
722
723
724
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.
725
726
727
728
729
730
731
  Global Program Instance sum_cofe `{Cofe A, Cofe B} : Cofe sumC :=
    { compl := sum_compl }.
  Next Obligation.
    intros ?? n c; rewrite /compl /sum_compl.
    feed inversion (chain_cauchy c 0 n); first by auto with lia; constructor.
    - rewrite (conv_compl n (inl_chain c _)) /=. destruct (c n); naive_solver.
    - rewrite (conv_compl n (inr_chain c _)) /=. destruct (c n); naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
732
733
734
735
736
737
738
739
740
741
742
743
744
  Qed.

  Global Instance inl_timeless (x : A) : Timeless x  Timeless (inl x).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance inr_timeless (y : B) : Timeless y  Timeless (inr y).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance sum_discrete_cofe : Discrete A  Discrete B  Discrete sumC.
  Proof. intros ?? [?|?]; apply _. Qed.
End sum.

Arguments sumC : clear implicits.
Typeclasses Opaque sum_dist.

745
Instance sum_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@sum_map A A' B B').
Proof.
  intros f f' Hf g g' Hg ??; destruct 1; constructor; [by apply Hf|by apply Hg].
Qed.
Definition sumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  sumC A B -n> sumC A' B' := CofeMor (sum_map f g).
Instance sumC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@sumC_map A A' B B').
Proof. intros f f' Hf g g' Hg [?|?]; constructor; [apply Hf|apply Hg]. Qed.

Program Definition sumCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := sumC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    sumC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply sumC_map_ne; apply cFunctor_ne.
Qed.
Next Obligation. by intros F1 F2 A B [?|?]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [?|?]; simpl;
    by rewrite !cFunctor_compose.
Qed.
770
Notation "F1 + F2" := (sumCF F1%CF F2%CF) : cFunctor_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
771
772
773
774
775
776
777
778
779

Instance sumCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (sumCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply sumC_map_ne; apply cFunctor_contractive.
Qed.

780
781
782
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
783

784
  Instance discrete_dist : Dist A := λ n x y, x  y.
785
  Definition discrete_ofe_mixin : OfeMixin A.
786
  Proof using Type*.
787
    split.
788
789
790
    - intros x y; split; [done|intros Hn; apply (Hn 0)].
    - done.
    - done.
791
  Qed.
792

793
794
795
796
797
  Global Program Instance discrete_cofe : Cofe (OfeT A discrete_ofe_mixin) :=
    { compl c := c 0 }.
  Next Obligation.
    intros n c. rewrite /compl /=;
    symmetry; apply (chain_cauchy c 0 n). omega.
798
799
800
  Qed.
End discrete_cofe.

801
802
Notation discreteC A := (OfeT A discrete_ofe_mixin).
Notation leibnizC A := (OfeT A (@discrete_ofe_mixin _ equivL _)).
803
804
805
806
807
808

Instance discrete_discrete_cofe `{Equiv A, @Equivalence A ()} :
  Discrete (discreteC A).
Proof. by intros x y. Qed.
Instance leibnizC_leibniz A : LeibnizEquiv (leibnizC A).
Proof. by intros x y. Qed.
809

Robbert Krebbers's avatar
Robbert Krebbers committed
810
Canonical Structure boolC := leibnizC bool.
811
812
813
814
Canonical Structure natC := leibnizC nat.
Canonical Structure positiveC := leibnizC positive.
Canonical Structure NC := leibnizC N.
Canonical Structure ZC := leibnizC Z.
815

816
817
(* Option *)
Section option.
818
  Context {A : ofeT}.
819

820
  Instance option_dist : Dist (option A) := λ n, option_Forall2 (dist n).
821
  Lemma dist_option_Forall2 n mx my : mx {n} my  option_Forall2 (dist n) mx my.
822
  Proof. done. Qed.