namespaces.v 3.36 KB
Newer Older
1
From iris.prelude Require Export countable coPset.
2
From iris.algebra Require Export base.
3
4

Definition namespace := list positive.
5
Instance namespace_eq_dec : EqDecision namespace := _.
6
7
8
Instance namespace_countable : Countable namespace := _.
Typeclasses Opaque namespace.

9
Definition nroot : namespace := nil.
10
11

Definition ndot_def `{Countable A} (N : namespace) (x : A) : namespace :=
12
  encode x :: N.
13
14
15
16
17
18
Definition ndot_aux : { x | x = @ndot_def }. by eexists. Qed.
Definition ndot {A A_dec A_count}:= proj1_sig ndot_aux A A_dec A_count.
Definition ndot_eq : @ndot = @ndot_def := proj2_sig ndot_aux.

Definition nclose_def (N : namespace) : coPset := coPset_suffixes (encode N).
Definition nclose_aux : { x | x = @nclose_def }. by eexists. Qed.
19
Instance nclose : UpClose namespace coPset := proj1_sig nclose_aux.
20
Definition nclose_eq : @nclose = @nclose_def := proj2_sig nclose_aux.
21

22
23
Notation "N .@ x" := (ndot N x)
  (at level 19, left associativity, format "N .@ x") : C_scope.
Ralf Jung's avatar
Ralf Jung committed
24
Notation "(.@)" := ndot (only parsing) : C_scope.
Ralf Jung's avatar
Ralf Jung committed
25

26
Instance ndisjoint : Disjoint namespace := λ N1 N2, nclose N1  nclose N2.
27

28
Section namespace.
29
30
  Context `{Countable A}.
  Implicit Types x y : A.
31
32
  Implicit Types N : namespace.
  Implicit Types E : coPset.
33

34
35
36
  Global Instance ndot_inj : Inj2 (=) (=) (=) (@ndot A _ _).
  Proof. intros N1 x1 N2 x2; rewrite !ndot_eq=> ?; by simplify_eq. Qed.

37
  Lemma nclose_nroot : nroot = .
38
  Proof. rewrite nclose_eq. by apply (sig_eq_pi _). Qed.
39
  Lemma encode_nclose N : encode N  N.
40
41
42
43
44
  Proof.
    rewrite nclose_eq.
    by apply elem_coPset_suffixes; exists xH; rewrite (left_id_L _ _).
  Qed.

45
  Lemma nclose_subseteq N x : N.@x  (N : coPset).
46
47
48
49
50
51
  Proof.
    intros p; rewrite nclose_eq /nclose !ndot_eq !elem_coPset_suffixes.
    intros [q ->]. destruct (list_encode_suffix N (ndot_def N x)) as [q' ?].
    { by exists [encode x]. }
    by exists (q ++ q')%positive; rewrite <-(assoc_L _); f_equal.
  Qed.
52

53
  Lemma nclose_subseteq' E N x : N  E  N.@x  E.
54
55
  Proof. intros. etrans; eauto using nclose_subseteq. Qed.

56
  Lemma ndot_nclose N x : encode (N.@x)   N.
57
  Proof. apply nclose_subseteq with x, encode_nclose. Qed.
58
  Lemma nclose_infinite N : ¬set_finite ( N : coPset).
59
60
  Proof. rewrite nclose_eq. apply coPset_suffixes_infinite. Qed.

61
  Lemma ndot_ne_disjoint N x y : x  y  N.@x  N.@y.
62
  Proof.
63
    intros Hxy a. rewrite !nclose_eq !elem_coPset_suffixes !ndot_eq.
64
65
    intros [qx ->] [qy Hqy].
    revert Hqy. by intros [= ?%encode_inj]%list_encode_suffix_eq.
66
67
  Qed.

68
  Lemma ndot_preserve_disjoint_l N E x : N  E  N.@x  E.
69
  Proof. intros. pose proof (nclose_subseteq N x). set_solver. Qed.
70

71
  Lemma ndot_preserve_disjoint_r N E x : E  N  E  N.@x.
72
  Proof. intros. by apply symmetry, ndot_preserve_disjoint_l. Qed.
73

74
  Lemma ndisj_subseteq_difference N E F : E  N  E  F  E  F  N.
75
  Proof. set_solver. Qed.
76
End namespace.
77
78

(* The hope is that registering these will suffice to solve most goals
79
of the form [N1 ⊥ N2] and those of the form [↑N1 ⊆ E ∖ ↑N2 ∖ .. ∖ ↑Nn]. *)
80
Hint Resolve ndisj_subseteq_difference : ndisj.
81
Hint Extern 0 (_  _) => apply ndot_ne_disjoint; congruence : ndisj.
82
83
Hint Resolve ndot_preserve_disjoint_l : ndisj.
Hint Resolve ndot_preserve_disjoint_r : ndisj.
84
Hint Extern 1 (_  _) => apply nclose_subseteq' : ndisj.
85

86
Ltac solve_ndisj := solve [eauto with ndisj].