big_op.v 60.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.algebra Require Export big_op.
2
From iris.bi Require Import derived_laws_sbi plainly.
Robbert Krebbers's avatar
Robbert Krebbers committed
3
From stdpp Require Import countable fin_sets functions.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5
Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi.
6

Robbert Krebbers's avatar
Robbert Krebbers committed
7
(** Notations for unary variants *)
Ralf Jung's avatar
Ralf Jung committed
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Notation "'[∗' 'list]' k ↦ x ∈ l , P" :=
  (big_opL bi_sep (λ k x, P) l) : bi_scope.
Notation "'[∗' 'list]' x ∈ l , P" :=
  (big_opL bi_sep (λ _ x, P) l) : bi_scope.

Notation "'[∗]' Ps" := (big_opL bi_sep (λ _ x, x) Ps) : bi_scope.

Notation "'[∧' 'list]' k ↦ x ∈ l , P" :=
  (big_opL bi_and (λ k x, P) l) : bi_scope.
Notation "'[∧' 'list]' x ∈ l , P" :=
  (big_opL bi_and (λ _ x, P) l) : bi_scope.

Notation "'[∧]' Ps" := (big_opL bi_and (λ _ x, x) Ps) : bi_scope.

Notation "'[∗' 'map]' k ↦ x ∈ m , P" := (big_opM bi_sep (λ k x, P) m) : bi_scope.
Notation "'[∗' 'map]' x ∈ m , P" := (big_opM bi_sep (λ _ x, P) m) : bi_scope.

Notation "'[∗' 'set]' x ∈ X , P" := (big_opS bi_sep (λ x, P) X) : bi_scope.

Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P) X) : bi_scope.
28

Robbert Krebbers's avatar
Robbert Krebbers committed
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
(** Definitions and notations for binary variants *)
(** A version of the separating big operator that ranges over two lists. This
version also ensures that both lists have the same length. Although this version
can be defined in terms of the unary using a [zip] (see [big_sepL2_alt]), we do
not define it that way to get better computational behavior (for [simpl]). *)
Fixpoint big_sepL2 {PROP : bi} {A B}
    (Φ : nat  A  B  PROP) (l1 : list A) (l2 : list B) : PROP :=
  match l1, l2 with
  | [], [] => emp
  | x1 :: l1, x2 :: l2 => Φ 0 x1 x2  big_sepL2 (λ n, Φ (S n)) l1 l2
  | _, _ => False
  end%I.
Instance: Params (@big_sepL2) 3 := {}.
Arguments big_sepL2 {PROP A B} _ !_ !_ /.
Typeclasses Opaque big_sepL2.
Notation "'[∗' 'list]' k ↦ x1 ; x2 ∈ l1 ; l2 , P" :=
  (big_sepL2 (λ k x1 x2, P) l1 l2) : bi_scope.
Notation "'[∗' 'list]' x1 ; x2 ∈ l1 ; l2 , P" :=
  (big_sepL2 (λ _ x1 x2, P) l1 l2) : bi_scope.

Definition big_sepM2 {PROP : bi} `{Countable K} {A B}
    (Φ : K  A  B  PROP) (m1 : gmap K A) (m2 : gmap K B) : PROP :=
  (  k, is_Some (m1 !! k)  is_Some (m2 !! k)  
   [ map] k  xy  map_zip m1 m2, Φ k xy.1 xy.2)%I.
Instance: Params (@big_sepM2) 6 := {}.
Typeclasses Opaque big_sepM2.
Notation "'[∗' 'map]' k ↦ x1 ; x2 ∈ m1 ; m2 , P" :=
  (big_sepM2 (λ k x1 x2, P) m1 m2) : bi_scope.
Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P" :=
  (big_sepM2 (λ _ x1 x2, P) m1 m2) : bi_scope.

60
(** * Properties *)
Robbert Krebbers's avatar
Robbert Krebbers committed
61 62
Section bi_big_op.
Context {PROP : bi}.
63
Implicit Types P Q : PROP.
Robbert Krebbers's avatar
Robbert Krebbers committed
64
Implicit Types Ps Qs : list PROP.
65 66
Implicit Types A : Type.

67
(** ** Big ops over lists *)
68
Section sep_list.
69 70
  Context {A : Type}.
  Implicit Types l : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
71
  Implicit Types Φ Ψ : nat  A  PROP.
72

Robbert Krebbers's avatar
Robbert Krebbers committed
73
  Lemma big_sepL_nil Φ : ([ list] ky  nil, Φ k y)  emp.
74
  Proof. done. Qed.
75
  Lemma big_sepL_nil' `{BiAffine PROP} P Φ : P  [ list] ky  nil, Φ k y.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
  Proof. apply (affine _). Qed.
77
  Lemma big_sepL_cons Φ x l :
78
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
79
  Proof. by rewrite big_opL_cons. Qed.
80
  Lemma big_sepL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
81 82
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_sepL_app Φ l1 l2 :
83 84
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
85 86
  Proof. by rewrite big_opL_app. Qed.

87 88
  Lemma big_sepL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
89
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
90
  Proof. apply big_opL_forall; apply _. Qed.
91 92
  Lemma big_sepL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
93
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
94
  Proof. apply big_opL_proper. Qed.
95
  Lemma big_sepL_submseteq `{BiAffine PROP} (Φ : A  PROP) l1 l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
96
    l1 + l2  ([ list] y  l2, Φ y)  [ list] y  l1, Φ y.
Robbert Krebbers's avatar
Robbert Krebbers committed
97 98 99
  Proof.
    intros [l ->]%submseteq_Permutation. by rewrite big_sepL_app sep_elim_l.
  Qed.
100

101 102
  Global Instance big_sepL_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
Robbert Krebbers's avatar
Robbert Krebbers committed
103
           (big_opL (@bi_sep PROP) (A:=A)).
104
  Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
105
  Global Instance big_sepL_id_mono' :
106
    Proper (Forall2 () ==> ()) (big_opL (@bi_sep PROP) (λ _ P, P)).
107
  Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
108

109
  Lemma big_sepL_emp l : ([ list] ky  l, emp) @{PROP} emp.
Robbert Krebbers's avatar
Robbert Krebbers committed
110 111
  Proof. by rewrite big_opL_unit. Qed.

112 113 114 115
  Lemma big_sepL_lookup_acc Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  (Φ i x - ([ list] ky  l, Φ k y)).
  Proof.
116 117 118
    intros Hli. rewrite -(take_drop_middle l i x) // big_sepL_app /=.
    rewrite Nat.add_0_r take_length_le; eauto using lookup_lt_Some, Nat.lt_le_incl.
    rewrite assoc -!(comm _ (Φ _ _)) -assoc. by apply sep_mono_r, wand_intro_l.
119 120
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
121
  Lemma big_sepL_lookup Φ l i x `{!Absorbing (Φ i x)} :
122
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
  Proof. intros. rewrite big_sepL_lookup_acc //. by rewrite sep_elim_l. Qed.
124

Robbert Krebbers's avatar
Robbert Krebbers committed
125
  Lemma big_sepL_elem_of (Φ : A  PROP) l x `{!Absorbing (Φ x)} :
126
    x  l  ([ list] y  l, Φ y)  Φ x.
127 128 129
  Proof.
    intros [i ?]%elem_of_list_lookup; eauto using (big_sepL_lookup (λ _, Φ)).
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
130

Robbert Krebbers's avatar
Robbert Krebbers committed
131
  Lemma big_sepL_fmap {B} (f : A  B) (Φ : nat  B  PROP) l :
132
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
133
  Proof. by rewrite big_opL_fmap. Qed.
134 135

  Lemma big_sepL_sepL Φ Ψ l :
136 137
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
138
  Proof. by rewrite big_opL_opL. Qed.
139

140 141 142
  Lemma big_sepL_and Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
Robbert Krebbers's avatar
Robbert Krebbers committed
143
  Proof. auto using and_intro, big_sepL_mono, and_elim_l, and_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144

145
  Lemma big_sepL_persistently `{BiAffine PROP} Φ l :
146
    <pers> ([ list] kx  l, Φ k x)  [ list] kx  l, <pers> (Φ k x).
147
  Proof. apply (big_opL_commute _). Qed.
148

149
  Lemma big_sepL_forall `{BiAffine PROP} Φ l :
150
    ( k x, Persistent (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
151
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
152 153 154
  Proof.
    intros HΦ. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
Robbert Krebbers's avatar
Robbert Krebbers committed
155 156
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepL_lookup. }
    revert Φ HΦ. induction l as [|x l IH]=> Φ HΦ; [by auto using big_sepL_nil'|].
157
    rewrite big_sepL_cons. rewrite -persistent_and_sep; apply and_intro.
158
    - by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
159 160 161 162
    - rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

  Lemma big_sepL_impl Φ Ψ l :
Robbert Krebbers's avatar
Robbert Krebbers committed
163
    ([ list] kx  l, Φ k x) -
164
     ( k x, l !! k = Some x  Φ k x - Ψ k x) -
Robbert Krebbers's avatar
Robbert Krebbers committed
165
    [ list] kx  l, Ψ k x.
166
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
167 168
    apply wand_intro_l. revert Φ Ψ. induction l as [|x l IH]=> Φ Ψ /=.
    { by rewrite sep_elim_r. }
169
    rewrite intuitionistically_sep_dup -assoc [( _  _)%I]comm -!assoc assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
170 171
    apply sep_mono.
    - rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
172
      by rewrite intuitionistically_elim wand_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
173
    - rewrite comm -(IH (Φ  S) (Ψ  S)) /=.
174
      apply sep_mono_l, affinely_mono, persistently_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
      apply forall_intro=> k. by rewrite (forall_elim (S k)).
176 177
  Qed.

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  Lemma big_sepL_delete Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)
     Φ i x  [ list] ky  l, if decide (k = i) then emp else Φ k y.
  Proof.
    intros. rewrite -(take_drop_middle l i x) // !big_sepL_app /= Nat.add_0_r.
    rewrite take_length_le; last eauto using lookup_lt_Some, Nat.lt_le_incl.
    rewrite decide_True // left_id.
    rewrite assoc -!(comm _ (Φ _ _)) -assoc. do 2 f_equiv.
    - apply big_sepL_proper=> k y Hk. apply lookup_lt_Some in Hk.
      rewrite take_length in Hk. by rewrite decide_False; last lia.
    - apply big_sepL_proper=> k y _. by rewrite decide_False; last lia.
  Qed.

  Lemma big_sepL_delete' `{!BiAffine PROP} Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  [ list] ky  l,  k  i   Φ k y.
  Proof.
    intros. rewrite big_sepL_delete //. (do 2 f_equiv)=> k y.
    rewrite -decide_emp. by repeat case_decide.
  Qed.

200 201 202 203
  Lemma big_sepL_replicate l P :
    [] replicate (length l) P  [ list] y  l, P.
  Proof. induction l as [|x l]=> //=; by f_equiv. Qed.

204
  Global Instance big_sepL_nil_persistent Φ :
205
    Persistent ([ list] kx  [], Φ k x).
206
  Proof. simpl; apply _. Qed.
207
  Global Instance big_sepL_persistent Φ l :
208
    ( k x, Persistent (Φ k x))  Persistent ([ list] kx  l, Φ k x).
209
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
210
  Global Instance big_sepL_persistent_id Ps :
211
    TCForall Persistent Ps  Persistent ([] Ps).
212
  Proof. induction 1; simpl; apply _. Qed.
213

214 215 216
  Global Instance big_sepL_nil_affine Φ :
    Affine ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
217 218 219
  Global Instance big_sepL_affine Φ l :
    ( k x, Affine (Φ k x))  Affine ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
220 221
  Global Instance big_sepL_affine_id Ps : TCForall Affine Ps  Affine ([] Ps).
  Proof. induction 1; simpl; apply _. Qed.
222
End sep_list.
223

224
Section sep_list_more.
225 226
  Context {A : Type}.
  Implicit Types l : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
227
  Implicit Types Φ Ψ : nat  A  PROP.
228 229 230
  (* Some lemmas depend on the generalized versions of the above ones. *)

  Lemma big_sepL_zip_with {B C} Φ f (l1 : list B) (l2 : list C) :
Robbert Krebbers's avatar
Robbert Krebbers committed
231
    ([ list] kx  zip_with f l1 l2, Φ k x)
Robbert Krebbers's avatar
Robbert Krebbers committed
232
     ([ list] kx  l1, if l2 !! k is Some y then Φ k (f x y) else emp).
233
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
234 235 236
    revert Φ l2; induction l1 as [|x l1 IH]=> Φ [|y l2] //=.
    - by rewrite big_sepL_emp left_id.
    - by rewrite IH.
237
  Qed.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
End sep_list_more.

Lemma big_sepL2_alt {A B} (Φ : nat  A  B  PROP) l1 l2 :
  ([ list] ky1;y2  l1; l2, Φ k y1 y2)
    length l1 = length l2   [ list] k  y  zip l1 l2, Φ k (y.1) (y.2).
Proof.
  apply (anti_symm _).
  - apply and_intro.
    + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
        auto using pure_intro, False_elim.
      rewrite IH sep_elim_r. apply pure_mono; auto.
    + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
        auto using pure_intro, False_elim.
      by rewrite IH.
  - apply pure_elim_l=> /Forall2_same_length Hl. revert Φ.
    induction Hl as [|x1 l1 x2 l2 _ _ IH]=> Φ //=. by rewrite -IH.
Qed.

(** ** Big ops over two lists *)
Section sep_list2.
  Context {A B : Type}.
  Implicit Types Φ Ψ : nat  A  B  PROP.

  Lemma big_sepL2_nil Φ : ([ list] ky1;y2  []; [], Φ k y1 y2)  emp.
  Proof. done. Qed.
  Lemma big_sepL2_nil' `{BiAffine PROP} P Φ : P  [ list] ky1;y2  [];[], Φ k y1 y2.
  Proof. apply (affine _). Qed.

  Lemma big_sepL2_cons Φ x1 x2 l1 l2 :
    ([ list] ky1;y2  x1 :: l1; x2 :: l2, Φ k y1 y2)
     Φ 0 x1 x2  [ list] ky1;y2  l1;l2, Φ (S k) y1 y2.
  Proof. done. Qed.
  Lemma big_sepL2_cons_inv_l Φ x1 l1 l2 :
    ([ list] ky1;y2  x1 :: l1; l2, Φ k y1 y2) -
     x2 l2',  l2 = x2 :: l2'  
              Φ 0 x1 x2  [ list] ky1;y2  l1;l2', Φ (S k) y1 y2.
  Proof.
    destruct l2 as [|x2 l2]; simpl; auto using False_elim.
    by rewrite -(exist_intro x2) -(exist_intro l2) pure_True // left_id.
  Qed.
  Lemma big_sepL2_cons_inv_r Φ x2 l1 l2 :
    ([ list] ky1;y2  l1; x2 :: l2, Φ k y1 y2) -
     x1 l1',  l1 = x1 :: l1'  
              Φ 0 x1 x2  [ list] ky1;y2  l1';l2, Φ (S k) y1 y2.
  Proof.
    destruct l1 as [|x1 l1]; simpl; auto using False_elim.
    by rewrite -(exist_intro x1) -(exist_intro l1) pure_True // left_id.
  Qed.

  Lemma big_sepL2_singleton Φ x1 x2 :
    ([ list] ky1;y2  [x1];[x2], Φ k y1 y2)  Φ 0 x1 x2.
  Proof. by rewrite /= right_id. Qed.

  Lemma big_sepL2_length Φ l1 l2 :
    ([ list] ky1;y2  l1; l2, Φ k y1 y2) -  length l1 = length l2 .
  Proof. by rewrite big_sepL2_alt and_elim_l. Qed.

  Lemma big_sepL2_app Φ l1 l2 l1' l2' :
    ([ list] ky1;y2  l1; l1', Φ k y1 y2) -
    ([ list] ky1;y2  l2; l2', Φ (length l1 + k) y1 y2) -
    ([ list] ky1;y2  l1 ++ l2; l1' ++ l2', Φ k y1 y2).
  Proof.
    apply wand_intro_r. revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] /=.
    - by rewrite left_id.
    - rewrite left_absorb. apply False_elim.
    - rewrite left_absorb. apply False_elim.
    - by rewrite -assoc IH.
  Qed.
  Lemma big_sepL2_app_inv_l Φ l1' l1'' l2 :
    ([ list] ky1;y2  l1' ++ l1''; l2, Φ k y1 y2) -
     l2' l2'',  l2 = l2' ++ l2''  
                ([ list] ky1;y2  l1';l2', Φ k y1 y2) 
                ([ list] ky1;y2  l1'';l2'', Φ (length l1' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length l1') l2))
      -(exist_intro (drop (length l1') l2)) take_drop pure_True // left_id.
    revert Φ l2. induction l1' as [|x1 l1' IH]=> Φ -[|x2 l2] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.
  Lemma big_sepL2_app_inv_r Φ l1 l2' l2'' :
    ([ list] ky1;y2  l1; l2' ++ l2'', Φ k y1 y2) -
     l1' l1'',  l1 = l1' ++ l1''  
                ([ list] ky1;y2  l1';l2', Φ k y1 y2) 
                ([ list] ky1;y2  l1'';l2'', Φ (length l2' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length l2') l1))
      -(exist_intro (drop (length l2') l1)) take_drop pure_True // left_id.
    revert Φ l1. induction l2' as [|x2 l2' IH]=> Φ -[|x1 l1] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.

  Lemma big_sepL2_mono Φ Ψ l1 l2 :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros H. rewrite !big_sepL2_alt. f_equiv. apply big_sepL_mono=> k [y1 y2].
    rewrite lookup_zip_with=> ?; simplify_option_eq; auto.
  Qed.
  Lemma big_sepL2_proper Φ Ψ l1 l2 :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros; apply (anti_symm _);
      apply big_sepL2_mono; auto using equiv_entails, equiv_entails_sym.
  Qed.

  Global Instance big_sepL2_ne n :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (dist n)))
      ==> (=) ==> (=) ==> (dist n))
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof.
    intros Φ1 Φ2 HΦ x1 ? <- x2 ? <-. rewrite !big_sepL2_alt. f_equiv.
    f_equiv=> k [y1 y2]. apply HΦ.
  Qed.
  Global Instance big_sepL2_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_mono; intros; apply Hf. Qed.
  Global Instance big_sepL2_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_proper; intros; apply Hf. Qed.

  Lemma big_sepL2_lookup_acc Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  (Φ i x1 x2 - ([ list] ky1;y2  l1;l2, Φ k y1 y2)).
  Proof.
    intros Hl1 Hl2. rewrite big_sepL2_alt. apply pure_elim_l=> Hl.
    rewrite {1}big_sepL_lookup_acc; last by rewrite lookup_zip_with; simplify_option_eq.
    by rewrite pure_True // left_id.
  Qed.

  Lemma big_sepL2_lookup Φ l1 l2 i x1 x2 `{!Absorbing (Φ i x1 x2)} :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2)  Φ i x1 x2.
  Proof. intros. rewrite big_sepL2_lookup_acc //. by rewrite sep_elim_l. Qed.

  Lemma big_sepL2_fmap_l {A'} (f : A  A') (Φ : nat  A'  B  PROP) l1 l2 :
    ([ list] ky1;y2  f <$> l1; l2, Φ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k (f y1) y2).
  Proof.
    rewrite !big_sepL2_alt fmap_length zip_with_fmap_l zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.
  Lemma big_sepL2_fmap_r {B'} (g : B  B') (Φ : nat  A  B'  PROP) l1 l2 :
    ([ list] ky1;y2  l1; g <$> l2, Φ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 (g y2)).
  Proof.
    rewrite !big_sepL2_alt fmap_length zip_with_fmap_r zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.

  Lemma big_sepL2_sepL2 Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2  Ψ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 y2)  ([ list] ky1;y2  l1;l2, Ψ k y1 y2).
  Proof.
    rewrite !big_sepL2_alt big_sepL_sepL !persistent_and_affinely_sep_l.
    rewrite -assoc (assoc _ _ (<affine> _)%I). rewrite -(comm bi_sep (<affine> _)%I).
    rewrite -assoc (assoc _ _ (<affine> _)%I) -!persistent_and_affinely_sep_l.
    by rewrite affinely_and_r persistent_and_affinely_sep_l idemp.
  Qed.

  Lemma big_sepL2_and Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2  Ψ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 y2)  ([ list] ky1;y2  l1;l2, Ψ k y1 y2).
  Proof. auto using and_intro, big_sepL2_mono, and_elim_l, and_elim_r. Qed.

  Lemma big_sepL2_persistently `{BiAffine PROP} Φ l1 l2 :
    <pers> ([ list] ky1;y2  l1;l2, Φ k y1 y2)
     [ list] ky1;y2  l1;l2, <pers> (Φ k y1 y2).
  Proof.
    by rewrite !big_sepL2_alt persistently_and persistently_pure big_sepL_persistently.
  Qed.

  Lemma big_sepL2_impl Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) -
     ( k x1 x2,
      l1 !! k = Some x1  l2 !! k = Some x2  Φ k x1 x2 - Ψ k x1 x2) -
    [ list] ky1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    apply wand_intro_l. revert Φ Ψ l2.
    induction l1 as [|x1 l1 IH]=> Φ Ψ [|x2 l2] /=; [by rewrite sep_elim_r..|].
    rewrite intuitionistically_sep_dup -assoc [( _  _)%I]comm -!assoc assoc.
    apply sep_mono.
    - rewrite (forall_elim 0) (forall_elim x1) (forall_elim x2) !pure_True // !True_impl.
      by rewrite intuitionistically_elim wand_elim_l.
    - rewrite comm -(IH (Φ  S) (Ψ  S)) /=.
      apply sep_mono_l, affinely_mono, persistently_mono.
      apply forall_intro=> k. by rewrite (forall_elim (S k)).
  Qed.

  Global Instance big_sepL2_nil_persistent Φ :
    Persistent ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_persistent Φ l1 l2 :
    ( k x1 x2, Persistent (Φ k x1 x2)) 
    Persistent ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.

  Global Instance big_sepL2_nil_affine Φ :
    Affine ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_affine Φ l1 l2 :
    ( k x1 x2, Affine (Φ k x1 x2)) 
    Affine ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
End sep_list2.

Section and_list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types Φ Ψ : nat  A  PROP.

  Lemma big_andL_nil Φ : ([ list] ky  nil, Φ k y)  True.
  Proof. done. Qed.
  Lemma big_andL_nil' P Φ : P  [ list] ky  nil, Φ k y.
  Proof. by apply pure_intro. Qed.
  Lemma big_andL_cons Φ x l :
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
  Proof. by rewrite big_opL_cons. Qed.
  Lemma big_andL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_andL_app Φ l1 l2 :
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
  Proof. by rewrite big_opL_app. Qed.

  Lemma big_andL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
  Proof. apply big_opL_forall; apply _. Qed.
  Lemma big_andL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
  Proof. apply big_opL_proper. Qed.
  Lemma big_andL_submseteq (Φ : A  PROP) l1 l2 :
    l1 + l2  ([ list] y  l2, Φ y)  [ list] y  l1, Φ y.
  Proof.
    intros [l ->]%submseteq_Permutation. by rewrite big_andL_app and_elim_l.
  Qed.

  Global Instance big_andL_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
           (big_opL (@bi_and PROP) (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
488
  Global Instance big_andL_id_mono' :
489
    Proper (Forall2 () ==> ()) (big_opL (@bi_and PROP) (λ _ P, P)).
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
  Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

  Lemma big_andL_lookup Φ l i x `{!Absorbing (Φ i x)} :
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
  Proof.
    intros. rewrite -(take_drop_middle l i x) // big_andL_app /=.
    rewrite Nat.add_0_r take_length_le;
      eauto using lookup_lt_Some, Nat.lt_le_incl, and_elim_l', and_elim_r'.
  Qed.

  Lemma big_andL_elem_of (Φ : A  PROP) l x `{!Absorbing (Φ x)} :
    x  l  ([ list] y  l, Φ y)  Φ x.
  Proof.
    intros [i ?]%elem_of_list_lookup; eauto using (big_andL_lookup (λ _, Φ)).
  Qed.

  Lemma big_andL_fmap {B} (f : A  B) (Φ : nat  B  PROP) l :
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
  Proof. by rewrite big_opL_fmap. Qed.

  Lemma big_andL_andL Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
  Proof. by rewrite big_opL_opL. Qed.

  Lemma big_andL_and Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
  Proof. auto using and_intro, big_andL_mono, and_elim_l, and_elim_r. Qed.

  Lemma big_andL_persistently Φ l :
521
    <pers> ([ list] kx  l, Φ k x)  [ list] kx  l, <pers> (Φ k x).
522 523
  Proof. apply (big_opL_commute _). Qed.

524
  Lemma big_andL_forall `{BiAffine PROP} Φ l :
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
  Proof.
    apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_andL_lookup. }
    revert Φ. induction l as [|x l IH]=> Φ; [by auto using big_andL_nil'|].
    rewrite big_andL_cons. apply and_intro.
    - by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
    - rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

  Global Instance big_andL_nil_persistent Φ :
    Persistent ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
  Global Instance big_andL_persistent Φ l :
    ( k x, Persistent (Φ k x))  Persistent ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
End and_list.
543

544
(** ** Big ops over finite maps *)
Robbert Krebbers's avatar
Robbert Krebbers committed
545
Section map.
546 547
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
Robbert Krebbers's avatar
Robbert Krebbers committed
548
  Implicit Types Φ Ψ : K  A  PROP.
549

Robbert Krebbers's avatar
Robbert Krebbers committed
550 551 552 553
  Lemma big_sepM_mono Φ Ψ m :
    ( k x, m !! k = Some x  Φ k x  Ψ k x) 
    ([ map] k  x  m, Φ k x)  [ map] k  x  m, Ψ k x.
  Proof. apply big_opM_forall; apply _ || auto. Qed.
554 555
  Lemma big_sepM_proper Φ Ψ m :
    ( k x, m !! k = Some x  Φ k x  Ψ k x) 
556
    ([ map] k  x  m, Φ k x)  ([ map] k  x  m, Ψ k x).
557
  Proof. apply big_opM_proper. Qed.
558
  Lemma big_sepM_subseteq `{BiAffine PROP} Φ m1 m2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
559 560
    m2  m1  ([ map] k  x  m1, Φ k x)  [ map] k  x  m2, Φ k x.
  Proof. intros. by apply big_sepL_submseteq, map_to_list_submseteq. Qed.
561

562 563
  Global Instance big_sepM_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
Robbert Krebbers's avatar
Robbert Krebbers committed
564 565
           (big_opM (@bi_sep PROP) (K:=K) (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_sepM_mono=> ???; apply Hf. Qed.
566

Robbert Krebbers's avatar
Robbert Krebbers committed
567
  Lemma big_sepM_empty Φ : ([ map] kx  , Φ k x)  emp.
568
  Proof. by rewrite big_opM_empty. Qed.
569
  Lemma big_sepM_empty' `{BiAffine PROP} P Φ : P  [ map] kx  , Φ k x.
Robbert Krebbers's avatar
Robbert Krebbers committed
570
  Proof. rewrite big_sepM_empty. apply: affine. Qed.
571

572
  Lemma big_sepM_insert Φ m i x :
573
    m !! i = None 
574
    ([ map] ky  <[i:=x]> m, Φ k y)  Φ i x  [ map] ky  m, Φ k y.
575
  Proof. apply big_opM_insert. Qed.
576

577
  Lemma big_sepM_delete Φ m i x :
578
    m !! i = Some x 
579
    ([ map] ky  m, Φ k y)  Φ i x  [ map] ky  delete i m, Φ k y.
580
  Proof. apply big_opM_delete. Qed.
581

582 583 584 585 586 587 588 589 590 591 592 593 594
  Lemma big_sepM_insert_2 Φ m i x :
    TCOr ( x, Affine (Φ i x)) (Absorbing (Φ i x)) 
    Φ i x - ([ map] ky  m, Φ k y) - [ map] ky  <[i:=x]> m, Φ k y.
  Proof.
    intros Ha. apply wand_intro_r. destruct (m !! i) as [y|] eqn:Hi; last first.
    { by rewrite -big_sepM_insert. }
    assert (TCOr (Affine (Φ i y)) (Absorbing (Φ i x))).
    { destruct Ha; try apply _. }
    rewrite big_sepM_delete // assoc.
    rewrite (sep_elim_l (Φ i x)) -big_sepM_insert ?lookup_delete //.
    by rewrite insert_delete.
  Qed.

595 596 597 598 599 600 601
  Lemma big_sepM_lookup_acc Φ m i x :
    m !! i = Some x 
    ([ map] ky  m, Φ k y)  Φ i x  (Φ i x - ([ map] ky  m, Φ k y)).
  Proof.
    intros. rewrite big_sepM_delete //. by apply sep_mono_r, wand_intro_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
602
  Lemma big_sepM_lookup Φ m i x `{!Absorbing (Φ i x)} :
603
    m !! i = Some x  ([ map] ky  m, Φ k y)  Φ i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
604
  Proof. intros. rewrite big_sepM_lookup_acc //. by rewrite sep_elim_l. Qed.
605

Robbert Krebbers's avatar
Robbert Krebbers committed
606
  Lemma big_sepM_lookup_dom (Φ : K  PROP) m i `{!Absorbing (Φ i)} :
Robbert Krebbers's avatar
Robbert Krebbers committed
607 608
    is_Some (m !! i)  ([ map] k_  m, Φ k)  Φ i.
  Proof. intros [x ?]. by eapply (big_sepM_lookup (λ i x, Φ i)). Qed.
609

610
  Lemma big_sepM_singleton Φ i x : ([ map] ky  {[i:=x]}, Φ k y)  Φ i x.
611
  Proof. by rewrite big_opM_singleton. Qed.
612

Robbert Krebbers's avatar
Robbert Krebbers committed
613
  Lemma big_sepM_fmap {B} (f : A  B) (Φ : K  B  PROP) m :
614
    ([ map] ky  f <$> m, Φ k y)  ([ map] ky  m, Φ k (f y)).
615
  Proof. by rewrite big_opM_fmap. Qed.
616

Robbert Krebbers's avatar
Robbert Krebbers committed
617 618 619
  Lemma big_sepM_insert_override Φ m i x x' :
    m !! i = Some x  (Φ i x  Φ i x') 
    ([ map] ky  <[i:=x']> m, Φ k y)  ([ map] ky  m, Φ k y).
620
  Proof. apply big_opM_insert_override. Qed.
621

Robbert Krebbers's avatar
Robbert Krebbers committed
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
  Lemma big_sepM_insert_override_1 Φ m i x x' :
    m !! i = Some x 
    ([ map] ky  <[i:=x']> m, Φ k y) 
      (Φ i x' - Φ i x) - ([ map] ky  m, Φ k y).
  Proof.
    intros ?. apply wand_intro_l.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
    by rewrite assoc wand_elim_l -big_sepM_delete.
  Qed.

  Lemma big_sepM_insert_override_2 Φ m i x x' :
    m !! i = Some x 
    ([ map] ky  m, Φ k y) 
      (Φ i x - Φ i x') - ([ map] ky  <[i:=x']> m, Φ k y).
  Proof.
    intros ?. apply wand_intro_l.
    rewrite {1}big_sepM_delete //; rewrite assoc wand_elim_l.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
  Qed.

Dan Frumin's avatar
Dan Frumin committed
642 643 644 645 646 647 648 649 650 651 652
  Lemma big_sepM_insert_acc Φ m i x :
    m !! i = Some x 
    ([ map] ky  m, Φ k y) 
      Φ i x  ( x', Φ i x' - ([ map] ky  <[i:=x']> m, Φ k y)).
  Proof.
    intros ?. rewrite {1}big_sepM_delete //. apply sep_mono; [done|].
    apply forall_intro=> x'.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
    by apply wand_intro_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
653
  Lemma big_sepM_fn_insert {B} (Ψ : K  A  B  PROP) (f : K  B) m i x b :
654
    m !! i = None 
655 656
       ([ map] ky  <[i:=x]> m, Ψ k y (<[i:=b]> f k))
     (Ψ i x b  [ map] ky  m, Ψ k y (f k)).
657
  Proof. apply big_opM_fn_insert. Qed.
658

Robbert Krebbers's avatar
Robbert Krebbers committed
659
  Lemma big_sepM_fn_insert' (Φ : K  PROP) m i x P :
660
    m !! i = None 
661
    ([ map] ky  <[i:=x]> m, <[i:=P]> Φ k)  (P  [ map] ky  m, Φ k).
662
  Proof. apply big_opM_fn_insert'. Qed.
663

664 665 666 667 668 669
  Lemma big_sepM_union Φ m1 m2 :
    m1 ## m2 
    ([ map] ky  m1  m2, Φ k y)
     ([ map] ky  m1, Φ k y)  ([ map] ky  m2, Φ k y).
  Proof. apply big_opM_union. Qed.

670
  Lemma big_sepM_sepM Φ Ψ m :
671
    ([ map] kx  m, Φ k x  Ψ k x)
672
     ([ map] kx  m, Φ k x)  ([ map] kx  m, Ψ k x).
673
  Proof. apply big_opM_opM. Qed.
674

675 676 677
  Lemma big_sepM_and Φ Ψ m :
    ([ map] kx  m, Φ k x  Ψ k x)
     ([ map] kx  m, Φ k x)  ([ map] kx  m, Ψ k x).
Robbert Krebbers's avatar
Robbert Krebbers committed
678
  Proof. auto using and_intro, big_sepM_mono, and_elim_l, and_elim_r. Qed.
679

680
  Lemma big_sepM_persistently `{BiAffine PROP} Φ m :
681
    (<pers> ([ map] kx  m, Φ k x))  ([ map] kx  m, <pers> (Φ k x)).
682
  Proof. apply (big_opM_commute _). Qed.
683

684
  Lemma big_sepM_forall `{BiAffine PROP} Φ m :
685
    ( k x, Persistent (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
686
    ([ map] kx  m, Φ k x)  ( k x, m !! k = Some x  Φ k x).
687 688 689
  Proof.
    intros. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
Robbert Krebbers's avatar
Robbert Krebbers committed
690 691
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepM_lookup. }
    induction m as [|i x m ? IH] using map_ind; auto using big_sepM_empty'.
692
    rewrite big_sepM_insert // -persistent_and_sep. apply and_intro.
693
    - rewrite (forall_elim i) (forall_elim x) lookup_insert.
694
      by rewrite pure_True // True_impl.
695
    - rewrite -IH. apply forall_mono=> k; apply forall_mono=> y.
696 697
      apply impl_intro_l, pure_elim_l=> ?.
      rewrite lookup_insert_ne; last by intros ?; simplify_map_eq.
698
      by rewrite pure_True // True_impl.
699 700 701
  Qed.

  Lemma big_sepM_impl Φ Ψ m :
Robbert Krebbers's avatar
Robbert Krebbers committed
702
    ([ map] kx  m, Φ k x) -
703
     ( k x, m !! k = Some x  Φ k x - Ψ k x) -
Robbert Krebbers's avatar
Robbert Krebbers committed
704
    [ map] kx  m, Ψ k x.
705
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
706 707
    apply wand_intro_l. induction m as [|i x m ? IH] using map_ind.
    { by rewrite sep_elim_r. }
708
    rewrite !big_sepM_insert // intuitionistically_sep_dup.
709
    rewrite -assoc [( _  _)%I]comm -!assoc assoc. apply sep_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
710
    - rewrite (forall_elim i) (forall_elim x) pure_True ?lookup_insert //.
711
      by rewrite True_impl intuitionistically_elim wand_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
712
    - rewrite comm -IH /=.
713
      apply sep_mono_l, affinely_mono, persistently_mono, forall_mono=> k.
Robbert Krebbers's avatar
Robbert Krebbers committed
714 715 716
      apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?.
      rewrite lookup_insert_ne; last by intros ?; simplify_map_eq.
      by rewrite pure_True // True_impl.
717
  Qed.
718

719
  Global Instance big_sepM_empty_persistent Φ :
720
    Persistent ([ map] kx  , Φ k x).
721
  Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
722
  Global Instance big_sepM_persistent Φ m :
723
    ( k x, Persistent (Φ k x))  Persistent ([ map] kx  m, Φ k x).
724
  Proof. intros. apply big_sepL_persistent=> _ [??]; apply _. Qed.
725

726 727 728
  Global Instance big_sepM_empty_affine Φ :
    Affine ([ map] kx  , Φ k x).
  Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
729 730
  Global Instance big_sepM_affine Φ m :
    ( k x, Affine (Φ k x))  Affine ([ map] kx  m, Φ k x).
731
  Proof. intros. apply big_sepL_affine=> _ [??]; apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
End map.

(** ** Big ops over two maps *)
Section map2.
  Context `{Countable K} {A B : Type}.
  Implicit Types Φ Ψ : K  A  B  PROP.

  Lemma big_sepM2_empty Φ : ([ map] ky1;y2  ; , Φ k y1 y2)  emp.
  Proof.
    rewrite /big_sepM2 pure_True ?left_id //.
    intros k. rewrite !lookup_empty; split; by inversion 1.
  Qed.
  Lemma big_sepM2_empty' `{BiAffine PROP} P Φ : P  [ map] ky1;y2  ;, Φ k y1 y2.
  Proof. rewrite big_sepM2_empty. apply (affine _). Qed.

  Lemma big_sepM2_insert Φ m1 m2 i x1 x2 :
    (m1 !! i = None  m2 !! i = None) 
    ([ map] ky1;y2  <[i:=x1]>m1; <[i:=x2]>m2, Φ k y1 y2)
     Φ i x1 x2  [ map] ky1;y2  m1;m2, Φ k y1 y2.
  Proof.
    intros Hm. rewrite /big_sepM2 -map_insert_zip_with.
  Admitted.
(*
  Lemma big_sepM2_cons_inv_l Φ x1 m1 m2 :
    ([∗ map] k↦y1;y2 ∈ x1 :: m1; m2, Φ k y1 y2) -∗
    ∃ x2 m2', ⌜ m2 = x2 :: m2' ⌝ ∧
              Φ 0 x1 x2 ∗ [∗ map] k↦y1;y2 ∈ m1;m2', Φ (S k) y1 y2.
  Proof.
    destruct m2 as [|x2 m2]; simpl; auto using False_elim.
    by rewrite -(exist_intro x2) -(exist_intro m2) pure_True // left_id.
  Qed.
  Lemma big_sepM2_cons_inv_r Φ x2 m1 m2 :
    ([∗ map] k↦y1;y2 ∈ m1; x2 :: m2, Φ k y1 y2) -∗
    ∃ x1 m1', ⌜ m1 = x1 :: m1' ⌝ ∧
              Φ 0 x1 x2 ∗ [∗ map] k↦y1;y2 ∈ m1';m2, Φ (S k) y1 y2.
  Proof.
    destruct m1 as [|x1 m1]; simpl; auto using False_elim.
    by rewrite -(exist_intro x1) -(exist_intro m1) pure_True // left_id.
  Qed.
*)

  Lemma big_sepM2_singleton Φ i x1 x2 :
    ([ map] ky1;y2  {[ i := x1 ]}; {[ i := x2 ]}, Φ k y1 y2)  Φ i x1 x2.
  Proof. rewrite /big_sepM2. Admitted.

  Lemma big_sepM2_dom Φ m1 m2 :
    ([ map] ky1;y2  m1; m2, Φ k y1 y2) -  dom (gset K) m1 = dom (gset K) m2 .
  Proof. Admitted.

(*
  Lemma big_sepM2_app Φ m1 m2 m1' m2' :
    ([∗ map] k↦y1;y2 ∈ m1; m1', Φ k y1 y2) -∗
    ([∗ map] k↦y1;y2 ∈ m2; m2', Φ (length m1 + k) y1 y2) -∗
    ([∗ map] k↦y1;y2 ∈ m1 ++ m2; m1' ++ m2', Φ k y1 y2).
  Proof.
    apply wand_intro_r. revert Φ m1'. induction m1 as [|x1 m1 IH]=> Φ -[|x1' m1'] /=.
    - by rewrite left_id.
    - rewrite left_absorb. apply False_elim.
    - rewrite left_absorb. apply False_elim.
    - by rewrite -assoc IH.
  Qed.
  Lemma big_sepM2_app_inv_l Φ m1' m1'' m2 :
    ([∗ map] k↦y1;y2 ∈ m1' ++ m1''; m2, Φ k y1 y2) -∗
    ∃ m2' m2'', ⌜ m2 = m2' ++ m2'' ⌝ ∧
                ([∗ map] k↦y1;y2 ∈ m1';m2', Φ k y1 y2) ∗
                ([∗ map] k↦y1;y2 ∈ m1'';m2'', Φ (length m1' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length m1') m2))
      -(exist_intro (drop (length m1') m2)) take_drop pure_True // left_id.
    revert Φ m2. induction m1' as [|x1 m1' IH]=> Φ -[|x2 m2] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.
  Lemma big_sepM2_app_inv_r Φ m1 m2' m2'' :
    ([∗ map] k↦y1;y2 ∈ m1; m2' ++ m2'', Φ k y1 y2) -∗
    ∃ m1' m1'', ⌜ m1 = m1' ++ m1'' ⌝ ∧
                ([∗ map] k↦y1;y2 ∈ m1';m2', Φ k y1 y2) ∗
                ([∗ map] k↦y1;y2 ∈ m1'';m2'', Φ (length m2' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length m2') m1))
      -(exist_intro (drop (length m2') m1)) take_drop pure_True // left_id.
    revert Φ m1. induction m2' as [|x2 m2' IH]=> Φ -[|x1 m1] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.

  Lemma big_sepM2_mono Φ Ψ m1 m2 :
    (∀ k y1 y2, m1 !! k = Some y1 → m2 !! k = Some y2 → Φ k y1 y2 ⊢ Ψ k y1 y2) →
    ([∗ map] k ↦ y1;y2 ∈ m1;m2, Φ k y1 y2) ⊢ [∗ map] k ↦ y1;y2 ∈ m1;m2, Ψ k y1 y2.
  Proof.
    intros H. rewrite !big_sepM2_alt. f_equiv. apply big_sepL_mono=> k [y1 y2].
    rewrite lookup_zip_with=> ?; simplify_option_eq; auto.
  Qed.
  Lemma big_sepM2_proper Φ Ψ m1 m2 :
    (∀ k y1 y2, m1 !! k = Some y1 → m2 !! k = Some y2 → Φ k y1 y2 ⊣⊢ Ψ k y1 y2) →
    ([∗ map] k ↦ y1;y2 ∈ m1;m2, Φ k y1 y2) ⊣⊢ [∗ map] k ↦ y1;y2 ∈ m1;m2, Ψ k y1 y2.
  Proof.
    intros; apply (anti_symm _);
      apply big_sepM2_mono; auto using equiv_entails, equiv_entails_sym.
  Qed.

  Global Instance big_sepM2_ne n :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (dist n)))
      ==> (=) ==> (=) ==> (dist n))
           (big_sepM2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof.
    intros Φ1 Φ2 HΦ x1 ? <- x2 ? <-. rewrite !big_sepM2_alt. f_equiv.
    f_equiv=> k [y1 y2]. apply HΦ.
  Qed.
  Global Instance big_sepM2_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (⊢)))
      ==> (=) ==> (=) ==> (⊢))
           (big_sepM2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf m1 ? <- m2 ? <-. apply big_sepM2_mono; intros; apply Hf. Qed.
  Global Instance big_sepM2_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (⊣⊢)))
      ==> (=) ==> (=) ==> (⊣⊢))
           (big_sepM2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf m1 ? <- m2 ? <-. apply big_sepM2_proper; intros; apply Hf. Qed.

  Lemma big_sepM2_lookup_acc Φ m1 m2 i x1 x2 :
    m1 !! i = Some x1 → m2 !! i = Some x2 →
    ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) ⊢
    Φ i x1 x2 ∗ (Φ i x1 x2 -∗ ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2)).
  Proof.
    intros Hm1 Hm2. rewrite big_sepM2_alt. apply pure_elim_l=> Hl.
    rewrite {1}big_sepL_lookup_acc; last by rewrite lookup_zip_with; simplify_option_eq.
    by rewrite pure_True // left_id.
  Qed.

  Lemma big_sepM2_lookup Φ m1 m2 i x1 x2 `{!Absorbing (Φ i x1 x2)} :
    m1 !! i = Some x1 → m2 !! i = Some x2 →
    ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) ⊢ Φ i x1 x2.
  Proof. intros. rewrite big_sepM2_lookup_acc //. by rewrite sep_elim_l. Qed.

  Lemma big_sepM2_fmap_l {A'} (f : A → A') (Φ : nat → A' → B → PROP) m1 m2 :
    ([∗ map] k↦y1;y2 ∈ f <$> m1; m2, Φ k y1 y2)
    ⊣⊢ ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k (f y1) y2).
  Proof.
    rewrite !big_sepM2_alt fmap_length zip_with_fmap_l zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.
  Lemma big_sepM2_fmap_r {B'} (g : B → B') (Φ : nat → A → B' → PROP) m1 m2 :
    ([∗ map] k↦y1;y2 ∈ m1; g <$> m2, Φ k y1 y2)
    ⊣⊢ ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 (g y2)).
  Proof.
    rewrite !big_sepM2_alt fmap_length zip_with_fmap_r zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.

  Lemma big_sepM2_sepM2 Φ Ψ m1 m2 :
    ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2 ∗ Ψ k y1 y2)
    ⊣⊢ ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) ∗ ([∗ map] k↦y1;y2 ∈ m1;m2, Ψ k y1 y2).
  Proof.simpl
    rewrite !big_sepM2_alt big_sepL_sepL !persistent_and_affinely_sep_l.
    rewrite -assoc (assoc _ _ (<affine> _)%I). rewrite -(comm bi_sep (<affine> _)%I).
    rewrite -assoc (assoc _ _ (<affine> _)%I) -!persistent_and_affinely_sep_l.
    by rewrite affinely_and_r persistent_and_affinely_sep_l idemp.
  Qed.

  Lemma big_sepM2_and Φ Ψ m1 m2 :
    ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2 ∧ Ψ k y1 y2)
    ⊢ ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) ∧ ([∗ map] k↦y1;y2 ∈ m1;m2, Ψ k y1 y2).
  Proof. auto using and_intro, big_sepM2_mono, and_elim_l, and_elim_r. Qed.

  Lemma big_sepM2_persistently `{BiAffine PROP} Φ m1 m2 :
    <pers> ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2)
    ⊣⊢ [∗ map] k↦y1;y2 ∈ m1;m2, <pers> (Φ k y1 y2).
  Proof.
    by rewrite !big_sepM2_alt persistently_and persistently_pure big_sepL_persistently.
  Qed.

  Lemma big_sepM2_impl Φ Ψ m1 m2 :
    ([∗ map] k↦y1;y2 ∈ m1;m2, Φ k y1 y2) -∗
    □ (∀ k x1 x2,
      ⌜m1 !! k = Some x1⌝ → ⌜m2 !! k = Some x2⌝ → Φ k x1 x2 -∗ Ψ k x1 x2) -∗
    [∗ map] k↦y1;y2 ∈ m1;m2, Ψ k y1 y2.
  Proof.
    apply wand_intro_l. revert Φ Ψ m2.
    induction m1 as [|x1 m1 IH]=> Φ Ψ [|x2 m2] /=; [by rewrite sep_elim_r..|].
    rewrite intuitionistically_sep_dup -assoc [(□ _ ∗ _)%I]comm -!assoc assoc.
    apply sep_mono.
    - rewrite (forall_elim 0) (forall_elim x1) (forall_elim x2) !pure_True // !True_impl.
      by rewrite intuitionistically_elim wand_elim_l.
    - rewrite comm -(IH (Φ ∘ S) (Ψ ∘ S)) /=.
      apply sep_mono_l, affinely_mono, persistently_mono.
      apply forall_intro=> k. by rewrite (forall_elim (S k)).
  Qed.
*)
  Global Instance big_sepM2_empty_persistent Φ :
    Persistent ([ map] ky1;y2  ; , Φ k y1 y2).
  Proof. rewrite big_sepM2_empty. apply _. Qed.
  Global Instance big_sepM2_persistent Φ m1 m2 :
    ( k x1 x2, Persistent (Φ k x1 x2)) 
    Persistent ([ map] ky1;y2  m1;m2, Φ k y1 y2).
  Proof. (* rewrite big_sepM2_alt. apply _. Qed. *) Admitted.