coq_tactics.v 52 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2
From iris.bi Require Export bi.
From iris.bi Require Import tactics.
3
From iris.proofmode Require Export base environments classes.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5
Import bi.
6
Import env_notations.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8 9
Local Notation "b1 && b2" := (if b1 then b2 else false) : bool_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
10 11
Record envs (PROP : bi) :=
  Envs { env_persistent : env PROP; env_spatial : env PROP }.
Robbert Krebbers's avatar
Robbert Krebbers committed
12 13 14 15 16
Add Printing Constructor envs.
Arguments Envs {_} _ _.
Arguments env_persistent {_} _.
Arguments env_spatial {_} _.

Robbert Krebbers's avatar
Robbert Krebbers committed
17
Record envs_wf {PROP} (Δ : envs PROP) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
18 19 20 21 22
  env_persistent_valid : env_wf (env_persistent Δ);
  env_spatial_valid : env_wf (env_spatial Δ);
  envs_disjoint i : env_persistent Δ !! i = None  env_spatial Δ !! i = None
}.

23
Definition of_envs {PROP} (Δ : envs PROP) : PROP :=
24
  (envs_wf Δ⌝   [] env_persistent Δ  [] env_spatial Δ)%I.
25
Instance: Params (@of_envs) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
26
Arguments of_envs : simpl never.
27

28 29 30 31 32 33 34
(* We seal [envs_entails], so that it does not get unfolded by the
   proofmode's own tactics, such as [iIntros (?)]. *)
Definition envs_entails_aux : seal (λ PROP (Δ : envs PROP) (Q : PROP), (of_envs Δ  Q)).
Proof. by eexists. Qed.
Definition envs_entails := unseal envs_entails_aux.
Definition envs_entails_eq : envs_entails = _ := seal_eq envs_entails_aux.
Arguments envs_entails {PROP} Δ Q%I : rename.
35 36
Instance: Params (@envs_entails) 1.

Robbert Krebbers's avatar
Robbert Krebbers committed
37
Record envs_Forall2 {PROP : bi} (R : relation PROP) (Δ1 Δ2 : envs PROP) := {
38 39 40
  env_persistent_Forall2 : env_Forall2 R (env_persistent Δ1) (env_persistent Δ2);
  env_spatial_Forall2 : env_Forall2 R (env_spatial Δ1) (env_spatial Δ2)
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
41

42
Definition envs_dom {PROP} (Δ : envs PROP) : list ident :=
43
  env_dom (env_persistent Δ) ++ env_dom (env_spatial Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
44

45
Definition envs_lookup {PROP} (i : ident) (Δ : envs PROP) : option (bool * PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47
  let (Γp,Γs) := Δ in
  match env_lookup i Γp with
Robbert Krebbers's avatar
Robbert Krebbers committed
48 49
  | Some P => Some (true, P)
  | None => P  env_lookup i Γs; Some (false, P)
Robbert Krebbers's avatar
Robbert Krebbers committed
50 51
  end.

52
Definition envs_delete {PROP} (i : ident) (p : bool) (Δ : envs PROP) : envs PROP :=
Robbert Krebbers's avatar
Robbert Krebbers committed
53 54
  let (Γp,Γs) := Δ in
  match p with
Robbert Krebbers's avatar
Robbert Krebbers committed
55 56
  | true => Envs (env_delete i Γp) Γs
  | false => Envs Γp (env_delete i Γs)
Robbert Krebbers's avatar
Robbert Krebbers committed
57 58
  end.

59
Definition envs_lookup_delete {PROP} (i : ident)
Robbert Krebbers's avatar
Robbert Krebbers committed
60
    (Δ : envs PROP) : option (bool * PROP * envs PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
61 62 63
  let (Γp,Γs) := Δ in
  match env_lookup_delete i Γp with
  | Some (P,Γp') => Some (true, P, Envs Γp' Γs)
Robbert Krebbers's avatar
Robbert Krebbers committed
64
  | None => ''(P,Γs')  env_lookup_delete i Γs; Some (false, P, Envs Γp Γs')
Robbert Krebbers's avatar
Robbert Krebbers committed
65 66
  end.

67
Fixpoint envs_lookup_delete_list {PROP} (js : list ident) (remove_persistent : bool)
Robbert Krebbers's avatar
Robbert Krebbers committed
68
    (Δ : envs PROP) : option (bool * list PROP * envs PROP) :=
69 70 71
  match js with
  | [] => Some (true, [], Δ)
  | j :: js =>
Robbert Krebbers's avatar
Robbert Krebbers committed
72 73 74
     ''(p,P,Δ')  envs_lookup_delete j Δ;
     let Δ' := if p : bool then (if remove_persistent then Δ' else Δ) else Δ' in
     ''(q,Hs,Δ'')  envs_lookup_delete_list js remove_persistent Δ';
75 76 77
     Some (p && q, P :: Hs, Δ'')
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
78
Definition envs_snoc {PROP} (Δ : envs PROP)
79
    (p : bool) (j : ident) (P : PROP) : envs PROP :=
80 81 82
  let (Γp,Γs) := Δ in
  if p then Envs (Esnoc Γp j P) Γs else Envs Γp (Esnoc Γs j P).

Robbert Krebbers's avatar
Robbert Krebbers committed
83 84
Definition envs_app {PROP : bi} (p : bool)
    (Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
85 86 87 88 89 90
  let (Γp,Γs) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_app Γ Γp; Some (Envs Γp' Γs)
  | false => _  env_app Γ Γp; Γs'  env_app Γ Γs; Some (Envs Γp Γs')
  end.

91
Definition envs_simple_replace {PROP : bi} (i : ident) (p : bool)
Robbert Krebbers's avatar
Robbert Krebbers committed
92
    (Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94 95 96 97 98
  let (Γp,Γs) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_replace i Γ Γp; Some (Envs Γp' Γs)
  | false => _  env_app Γ Γp; Γs'  env_replace i Γ Γs; Some (Envs Γp Γs')
  end.

99
Definition envs_replace {PROP : bi} (i : ident) (p q : bool)
Robbert Krebbers's avatar
Robbert Krebbers committed
100
    (Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103
  if eqb p q then envs_simple_replace i p Γ Δ
  else envs_app q Γ (envs_delete i p Δ).

Robbert Krebbers's avatar
Robbert Krebbers committed
104
Definition env_spatial_is_nil {PROP} (Δ : envs PROP) : bool :=
Robbert Krebbers's avatar
Robbert Krebbers committed
105 106
  if env_spatial Δ is Enil then true else false.

Robbert Krebbers's avatar
Robbert Krebbers committed
107
Definition envs_clear_spatial {PROP} (Δ : envs PROP) : envs PROP :=
108 109
  Envs (env_persistent Δ) Enil.

Robbert Krebbers's avatar
Robbert Krebbers committed
110
Definition envs_clear_persistent {PROP} (Δ : envs PROP) : envs PROP :=
111 112
  Envs Enil (env_spatial Δ).

Robbert Krebbers's avatar
Robbert Krebbers committed
113
Fixpoint envs_split_go {PROP}
114
    (js : list ident) (Δ1 Δ2 : envs PROP) : option (envs PROP * envs PROP) :=
115 116 117
  match js with
  | [] => Some (Δ1, Δ2)
  | j :: js =>
Robbert Krebbers's avatar
Robbert Krebbers committed
118 119
     ''(p,P,Δ1')  envs_lookup_delete j Δ1;
     if p : bool then envs_split_go js Δ1 Δ2 else
120 121
     envs_split_go js Δ1' (envs_snoc Δ2 false j P)
  end.
122 123
(* if [d = Right] then [result = (remaining hyps, hyps named js)] and
   if [d = Left] then [result = (hyps named js, remaining hyps)] *)
124
Definition envs_split {PROP} (d : direction)
125
    (js : list ident) (Δ : envs PROP) : option (envs PROP * envs PROP) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
126
  ''(Δ1,Δ2)  envs_split_go js Δ (envs_clear_spatial Δ);
127
  if d is Right then Some (Δ1,Δ2) else Some (Δ2,Δ1).
128

Robbert Krebbers's avatar
Robbert Krebbers committed
129
(* Coq versions of the tactics *)
Robbert Krebbers's avatar
Robbert Krebbers committed
130 131 132 133 134 135 136
Section bi_tactics.
Context {PROP : bi}.
Implicit Types Γ : env PROP.
Implicit Types Δ : envs PROP.
Implicit Types P Q : PROP.

Lemma of_envs_eq Δ :
137
  of_envs Δ = (envs_wf Δ⌝   [] env_persistent Δ  [] env_spatial Δ)%I.
138 139
Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
140 141 142 143 144 145 146 147 148 149
Lemma envs_lookup_delete_Some Δ Δ' i p P :
  envs_lookup_delete i Δ = Some (p,P,Δ')
   envs_lookup i Δ = Some (p,P)  Δ' = envs_delete i p Δ.
Proof.
  rewrite /envs_lookup /envs_delete /envs_lookup_delete.
  destruct Δ as [Γp Γs]; rewrite /= !env_lookup_delete_correct.
  destruct (Γp !! i), (Γs !! i); naive_solver.
Qed.

Lemma envs_lookup_sound Δ i p P :
150 151
  envs_lookup i Δ = Some (p,P) 
  of_envs Δ  ?p P  of_envs (envs_delete i p Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
152
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
  rewrite /envs_lookup /envs_delete /of_envs=>?. apply pure_elim_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
154
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
155 156
  - rewrite pure_True ?left_id; last (destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh).
157 158
    rewrite (env_lookup_perm Γp) //= affinely_persistently_and.
    by rewrite and_sep_affinely_persistently -assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
159
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
160 161 162 163
    rewrite pure_True ?left_id; last (destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh).
    rewrite (env_lookup_perm Γs) //=. by rewrite !assoc -(comm _ P).
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
Lemma envs_lookup_persistent_sound Δ i P :
165
  envs_lookup i Δ = Some (true,P)  of_envs Δ   P  of_envs Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
166
Proof.
167
  intros. rewrite -persistently_and_affinely_sep_l. apply and_intro; last done.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
  rewrite envs_lookup_sound //; simpl.
169
  by rewrite -persistently_and_affinely_sep_l and_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172
Qed.

Lemma envs_lookup_split Δ i p P :
173
  envs_lookup i Δ = Some (p,P)  of_envs Δ  ?p P  (?p P - of_envs Δ).
Robbert Krebbers's avatar
Robbert Krebbers committed
174
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
  rewrite /envs_lookup /of_envs=>?. apply pure_elim_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
177 178
  - rewrite pure_True // left_id (env_lookup_perm Γp) //=
            affinely_persistently_and and_sep_affinely_persistently.
179
    cancel [ P]%I. apply wand_intro_l. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
181
    rewrite (env_lookup_perm Γs) //=. rewrite pure_True // left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
182 183 184 185
    cancel [P]. apply wand_intro_l. solve_sep_entails.
Qed.

Lemma envs_lookup_delete_sound Δ Δ' i p P :
186
  envs_lookup_delete i Δ = Some (p,P,Δ')  of_envs Δ  ?p P  of_envs Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
187 188
Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound. Qed.

189
Lemma envs_lookup_delete_list_sound Δ Δ' js rp p Ps :
190 191
  envs_lookup_delete_list js rp Δ = Some (p, Ps,Δ') 
  of_envs Δ  ?p [] Ps  of_envs Δ'.
192 193
Proof.
  revert Δ Δ' p Ps. induction js as [|j js IH]=> Δ Δ'' p Ps ?; simplify_eq/=.
194
  { by rewrite affinely_persistently_emp left_id. }
195 196 197
  destruct (envs_lookup_delete j Δ) as [[[q1 P] Δ']|] eqn:Hj; simplify_eq/=.
  apply envs_lookup_delete_Some in Hj as [Hj ->].
  destruct (envs_lookup_delete_list js rp _) as [[[q2 Ps'] ?]|] eqn:?; simplify_eq/=.
198
  rewrite -affinely_persistently_if_sep_2 -assoc. destruct q1; simpl.
199
  - destruct rp.
Robbert Krebbers's avatar
Robbert Krebbers committed
200
    + rewrite envs_lookup_sound //; simpl.
201
      by rewrite IH // (affinely_persistently_affinely_persistently_if q2).
Robbert Krebbers's avatar
Robbert Krebbers committed
202
    + rewrite envs_lookup_persistent_sound //.
203 204
      by rewrite IH // (affinely_persistently_affinely_persistently_if q2).
  - rewrite envs_lookup_sound // IH //; simpl. by rewrite affinely_persistently_if_elim.
205 206
Qed.

207 208 209 210 211 212 213 214 215 216 217 218 219 220
Lemma envs_lookup_snoc Δ i p P :
  envs_lookup i Δ = None  envs_lookup i (envs_snoc Δ p i P) = Some (p, P).
Proof.
  rewrite /envs_lookup /envs_snoc=> ?.
  destruct Δ as [Γp Γs], p, (Γp !! i); simplify_eq; by rewrite env_lookup_snoc.
Qed.
Lemma envs_lookup_snoc_ne Δ i j p P :
  i  j  envs_lookup i (envs_snoc Δ p j P) = envs_lookup i Δ.
Proof.
  rewrite /envs_lookup /envs_snoc=> ?.
  destruct Δ as [Γp Γs], p; simplify_eq; by rewrite env_lookup_snoc_ne.
Qed.

Lemma envs_snoc_sound Δ p i P :
221
  envs_lookup i Δ = None  of_envs Δ  ?p P - of_envs (envs_snoc Δ p i P).
222
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
223
  rewrite /envs_lookup /envs_snoc /of_envs=> ?; apply pure_elim_l=> Hwf.
224 225
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?, (Γs !! i) eqn:?; simplify_eq/=.
  apply wand_intro_l; destruct p; simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
226
  - apply and_intro; [apply pure_intro|].
227
    + destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
228
      intros j; destruct (ident_beq_reflect j i); naive_solver.
229
    + by rewrite affinely_persistently_and and_sep_affinely_persistently assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
  - apply and_intro; [apply pure_intro|].
231
    + destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
232
      intros j; destruct (ident_beq_reflect j i); naive_solver.
233 234 235
    + solve_sep_entails.
Qed.

236
Lemma envs_app_sound Δ Δ' p Γ :
237 238
  envs_app p Γ Δ = Some Δ' 
  of_envs Δ  (if p then  [] Γ else [] Γ) - of_envs Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
239
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
240
  rewrite /of_envs /envs_app=> ?; apply pure_elim_l=> Hwf.
Robbert Krebbers's avatar
Robbert Krebbers committed
241 242 243
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_app Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
244
    apply wand_intro_l, and_intro; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
245 246 247 248
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
    + rewrite (env_app_perm _ _ Γp') //.
249
      rewrite big_opL_app affinely_persistently_and and_sep_affinely_persistently.
250
      solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
251 252
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_app Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
253
    apply wand_intro_l, and_intro; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
254 255 256
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
257
    + rewrite (env_app_perm _ _ Γs') // big_opL_app. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
258 259
Qed.

260
Lemma envs_app_singleton_sound Δ Δ' p j Q :
261
  envs_app p (Esnoc Enil j Q) Δ = Some Δ'  of_envs Δ  ?p Q - of_envs Δ'.
262 263
Proof. move=> /envs_app_sound. destruct p; by rewrite /= right_id. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
264 265
Lemma envs_simple_replace_sound' Δ Δ' i p Γ :
  envs_simple_replace i p Γ Δ = Some Δ' 
266
  of_envs (envs_delete i p Δ)  (if p then  [] Γ else [] Γ) - of_envs Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
267 268
Proof.
  rewrite /envs_simple_replace /envs_delete /of_envs=> ?.
Robbert Krebbers's avatar
Robbert Krebbers committed
269
  apply pure_elim_l=> Hwf. destruct Δ as [Γp Γs], p; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
270 271
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_replace i Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
272
    apply wand_intro_l, and_intro; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
273 274 275 276
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
    + rewrite (env_replace_perm _ _ Γp') //.
277
      rewrite big_opL_app affinely_persistently_and and_sep_affinely_persistently.
278
      solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
279 280
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_replace i Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
281
    apply wand_intro_l, and_intro; [apply pure_intro|].
Robbert Krebbers's avatar
Robbert Krebbers committed
282 283 284
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
285
    + rewrite (env_replace_perm _ _ Γs') // big_opL_app. solve_sep_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
286 287
Qed.

288 289
Lemma envs_simple_replace_singleton_sound' Δ Δ' i p j Q :
  envs_simple_replace i p (Esnoc Enil j Q) Δ = Some Δ' 
290
  of_envs (envs_delete i p Δ)  ?p Q - of_envs Δ'.
291 292
Proof. move=> /envs_simple_replace_sound'. destruct p; by rewrite /= right_id. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
293 294
Lemma envs_simple_replace_sound Δ Δ' i p P Γ :
  envs_lookup i Δ = Some (p,P)  envs_simple_replace i p Γ Δ = Some Δ' 
295
  of_envs Δ  ?p P  ((if p then  [] Γ else [] Γ) - of_envs Δ').
Robbert Krebbers's avatar
Robbert Krebbers committed
296 297
Proof. intros. by rewrite envs_lookup_sound// envs_simple_replace_sound'//. Qed.

298 299 300
Lemma envs_simple_replace_singleton_sound Δ Δ' i p P j Q :
  envs_lookup i Δ = Some (p,P) 
  envs_simple_replace i p (Esnoc Enil j Q) Δ = Some Δ' 
301
  of_envs Δ  ?p P  (?p Q - of_envs Δ').
302 303 304 305
Proof.
  intros. by rewrite envs_lookup_sound// envs_simple_replace_singleton_sound'//.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
306
Lemma envs_replace_sound' Δ Δ' i p q Γ :
307
  envs_replace i p q Γ Δ = Some Δ' 
308
  of_envs (envs_delete i p Δ)  (if q then  [] Γ else [] Γ) - of_envs Δ'.
Robbert Krebbers's avatar
Robbert Krebbers committed
309 310 311 312 313 314
Proof.
  rewrite /envs_replace; destruct (eqb _ _) eqn:Hpq.
  - apply eqb_prop in Hpq as ->. apply envs_simple_replace_sound'.
  - apply envs_app_sound.
Qed.

315 316
Lemma envs_replace_singleton_sound' Δ Δ' i p q j Q :
  envs_replace i p q (Esnoc Enil j Q) Δ = Some Δ' 
317
  of_envs (envs_delete i p Δ)  ?q Q - of_envs Δ'.
318 319
Proof. move=> /envs_replace_sound'. destruct q; by rewrite /= ?right_id. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
320 321
Lemma envs_replace_sound Δ Δ' i p q P Γ :
  envs_lookup i Δ = Some (p,P)  envs_replace i p q Γ Δ = Some Δ' 
322
  of_envs Δ  ?p P  ((if q then  [] Γ else [] Γ) - of_envs Δ').
Robbert Krebbers's avatar
Robbert Krebbers committed
323 324
Proof. intros. by rewrite envs_lookup_sound// envs_replace_sound'//. Qed.

325 326 327
Lemma envs_replace_singleton_sound Δ Δ' i p q P j Q :
  envs_lookup i Δ = Some (p,P) 
  envs_replace i p q (Esnoc Enil j Q) Δ = Some Δ' 
328
  of_envs Δ  ?p P  (?q Q - of_envs Δ').
329 330
Proof. intros. by rewrite envs_lookup_sound// envs_replace_singleton_sound'//. Qed.

331 332
Lemma envs_lookup_envs_clear_spatial Δ j :
  envs_lookup j (envs_clear_spatial Δ)
Robbert Krebbers's avatar
Robbert Krebbers committed
333
  = ''(p,P)  envs_lookup j Δ; if p : bool then Some (p,P) else None.
Robbert Krebbers's avatar
Robbert Krebbers committed
334
Proof.
335 336 337
  rewrite /envs_lookup /envs_clear_spatial.
  destruct Δ as [Γp Γs]; simpl; destruct (Γp !! j) eqn:?; simplify_eq/=; auto.
  by destruct (Γs !! j).
Robbert Krebbers's avatar
Robbert Krebbers committed
338 339
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
340
Lemma envs_clear_spatial_sound Δ :
341
  of_envs Δ  of_envs (envs_clear_spatial Δ)  [] env_spatial Δ.
342
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
343 344 345
  rewrite /of_envs /envs_clear_spatial /=. apply pure_elim_l=> Hwf.
  rewrite right_id -persistent_and_sep_assoc. apply and_intro; [|done].
  apply pure_intro. destruct Hwf; constructor; simpl; auto using Enil_wf.
346 347
Qed.

348
Lemma env_spatial_is_nil_affinely_persistently Δ :
349
  env_spatial_is_nil Δ = true  of_envs Δ   of_envs Δ.
Robbert Krebbers's avatar
Robbert Krebbers committed
350 351
Proof.
  intros. unfold of_envs; destruct Δ as [? []]; simplify_eq/=.
352 353
  rewrite !right_id {1}affinely_and_r persistently_and.
  by rewrite persistently_affinely persistently_idemp persistently_pure.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
Lemma envs_lookup_envs_delete Δ i p P :
  envs_wf Δ 
  envs_lookup i Δ = Some (p,P)  envs_lookup i (envs_delete i p Δ) = None.
Proof.
  rewrite /envs_lookup /envs_delete=> -[?? Hdisj] Hlookup.
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - rewrite env_lookup_env_delete //. revert Hlookup.
    destruct (Hdisj i) as [->| ->]; [|done]. by destruct (Γs !! _).
  - rewrite env_lookup_env_delete //. by destruct (Γp !! _).
Qed.
Lemma envs_lookup_envs_delete_ne Δ i j p :
  i  j  envs_lookup i (envs_delete j p Δ) = envs_lookup i Δ.
Proof.
  rewrite /envs_lookup /envs_delete=> ?. destruct Δ as [Γp Γs],p; simplify_eq/=.
  - by rewrite env_lookup_env_delete_ne.
  - destruct (Γp !! i); simplify_eq/=; by rewrite ?env_lookup_env_delete_ne.
Qed.

Lemma envs_split_go_sound js Δ1 Δ2 Δ1' Δ2' :
  ( j P, envs_lookup j Δ1 = Some (false, P)  envs_lookup j Δ2 = None) 
Robbert Krebbers's avatar
Robbert Krebbers committed
376
  envs_split_go js Δ1 Δ2 = Some (Δ1',Δ2') 
377
  of_envs Δ1  of_envs Δ2  of_envs Δ1'  of_envs Δ2'.
378 379 380
Proof.
  revert Δ1 Δ2 Δ1' Δ2'.
  induction js as [|j js IH]=> Δ1 Δ2 Δ1' Δ2' Hlookup HΔ; simplify_eq/=; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
381 382
  apply pure_elim with (envs_wf Δ1)=> [|Hwf].
  { by rewrite /of_envs !and_elim_l sep_elim_l. }
383 384 385 386 387 388 389 390 391 392
  destruct (envs_lookup_delete j Δ1)
    as [[[[] P] Δ1'']|] eqn:Hdel; simplify_eq; auto.
  apply envs_lookup_delete_Some in Hdel as [??]; subst.
  rewrite envs_lookup_sound //; rewrite /= (comm _ P) -assoc.
  rewrite -(IH _ _ _ _ _ HΔ); last first.
  { intros j' P'; destruct (decide (j = j')) as [->|].
    - by rewrite (envs_lookup_envs_delete _ _ _ P).
    - rewrite envs_lookup_envs_delete_ne // envs_lookup_snoc_ne //. eauto. }
  rewrite (envs_snoc_sound Δ2 false j P) /= ?wand_elim_r; eauto.
Qed.
393
Lemma envs_split_sound Δ d js Δ1 Δ2 :
394
  envs_split d js Δ = Some (Δ1,Δ2)  of_envs Δ  of_envs Δ1  of_envs Δ2.
395
Proof.
396
  rewrite /envs_split=> ?. rewrite -(idemp bi_and (of_envs Δ)).
Robbert Krebbers's avatar
Robbert Krebbers committed
397
  rewrite {2}envs_clear_spatial_sound.
398 399
  rewrite (env_spatial_is_nil_affinely_persistently (envs_clear_spatial _)) //.
  rewrite -persistently_and_affinely_sep_l.
400
  rewrite (and_elim_l (bi_persistently _)%I)
401
          persistently_and_affinely_sep_r affinely_persistently_elim.
402 403 404
  destruct (envs_split_go _ _) as [[Δ1' Δ2']|] eqn:HΔ; [|done].
  apply envs_split_go_sound in HΔ as ->; last first.
  { intros j P. by rewrite envs_lookup_envs_clear_spatial=> ->. }
405
  destruct d; simplify_eq/=; solve_sep_entails.
406 407
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
408
Global Instance envs_Forall2_refl (R : relation PROP) :
409 410
  Reflexive R  Reflexive (envs_Forall2 R).
Proof. by constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
Global Instance envs_Forall2_sym (R : relation PROP) :
412 413
  Symmetric R  Symmetric (envs_Forall2 R).
Proof. intros ??? [??]; by constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
414
Global Instance envs_Forall2_trans (R : relation PROP) :
415 416
  Transitive R  Transitive (envs_Forall2 R).
Proof. intros ??? [??] [??] [??]; constructor; etrans; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
417
Global Instance envs_Forall2_antisymm (R R' : relation PROP) :
418 419
  AntiSymm R R'  AntiSymm (envs_Forall2 R) (envs_Forall2 R').
Proof. intros ??? [??] [??]; constructor; by eapply (anti_symm _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
420
Lemma envs_Forall2_impl (R R' : relation PROP) Δ1 Δ2 :
421 422 423
  envs_Forall2 R Δ1 Δ2  ( P Q, R P Q  R' P Q)  envs_Forall2 R' Δ1 Δ2.
Proof. intros [??] ?; constructor; eauto using env_Forall2_impl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
424
Global Instance of_envs_mono : Proper (envs_Forall2 () ==> ()) (@of_envs PROP).
425
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
426 427
  intros [Γp1 Γs1] [Γp2 Γs2] [Hp Hs]; apply and_mono; simpl in *.
  - apply pure_mono=> -[???]. constructor;
428 429 430
      naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
  - by repeat f_equiv.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
431 432
Global Instance of_envs_proper :
  Proper (envs_Forall2 () ==> ()) (@of_envs PROP).
433
Proof.
434 435
  intros Δ1 Δ2 HΔ; apply (anti_symm ()); apply of_envs_mono;
    eapply (envs_Forall2_impl ()); [| |symmetry|]; eauto using equiv_entails.
436
Qed.
437
Global Instance Envs_proper (R : relation PROP) :
Robbert Krebbers's avatar
Robbert Krebbers committed
438
  Proper (env_Forall2 R ==> env_Forall2 R ==> envs_Forall2 R) (@Envs PROP).
439 440
Proof. by constructor. Qed.

441
Global Instance envs_entails_proper :
442
  Proper (envs_Forall2 () ==> () ==> iff) (@envs_entails PROP).
443
Proof. rewrite envs_entails_eq. solve_proper. Qed.
444
Global Instance envs_entails_flip_mono :
445
  Proper (envs_Forall2 () ==> flip () ==> flip impl) (@envs_entails PROP).
446
Proof. rewrite envs_entails_eq=> Δ1 Δ2 ? P1 P2 <- <-. by f_equiv. Qed.
447

Robbert Krebbers's avatar
Robbert Krebbers committed
448
(** * Adequacy *)
449
Lemma tac_adequate P : envs_entails (Envs Enil Enil) P  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
450
Proof.
451 452
  rewrite envs_entails_eq /of_envs /= persistently_True_emp
          affinely_persistently_emp left_id=><-.
Robbert Krebbers's avatar
Robbert Krebbers committed
453
  apply and_intro=> //. apply pure_intro; repeat constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
454 455 456
Qed.

(** * Basic rules *)
457 458 459 460 461
Lemma tac_eval Δ Q Q' :
  Q = Q' 
  envs_entails Δ Q'  envs_entails Δ Q.
Proof. by intros ->. Qed.

462 463 464 465 466 467 468
Class AffineEnv (Γ : env PROP) := affine_env : Forall Affine Γ.
Global Instance affine_env_nil : AffineEnv Enil.
Proof. constructor. Qed.
Global Instance affine_env_snoc Γ i P :
  Affine P  AffineEnv Γ  AffineEnv (Esnoc Γ i P).
Proof. by constructor. Qed.

469
(* If the BI is affine, no need to walk on the whole environment. *)
470
Global Instance affine_env_bi `(BiAffine PROP) Γ : AffineEnv Γ | 0.
471 472
Proof. induction Γ; apply _. Qed.

473
Instance affine_env_spatial Δ :
474 475 476
  AffineEnv (env_spatial Δ)  Affine ([] env_spatial Δ).
Proof. intros H. induction H; simpl; apply _. Qed.

477 478
Lemma tac_emp_intro Δ : AffineEnv (env_spatial Δ)  envs_entails Δ emp.
Proof. intros. by rewrite envs_entails_eq (affine (of_envs Δ)). Qed.
479

Robbert Krebbers's avatar
Robbert Krebbers committed
480 481 482
Lemma tac_assumption Δ Δ' i p P Q :
  envs_lookup_delete i Δ = Some (p,P,Δ') 
  FromAssumption p P Q 
483 484
  (if env_spatial_is_nil Δ' then TCTrue
   else TCOr (Absorbing Q) (AffineEnv (env_spatial Δ'))) 
485
  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
486
Proof.
487
  intros ?? H. rewrite envs_entails_eq envs_lookup_delete_sound //.
Robbert Krebbers's avatar
Robbert Krebbers committed
488
  destruct (env_spatial_is_nil Δ') eqn:?.
489
  - by rewrite (env_spatial_is_nil_affinely_persistently Δ') // sep_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
490
  - rewrite from_assumption. destruct H; by rewrite sep_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
491
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
492 493 494 495

Lemma tac_rename Δ Δ' i j p P Q :
  envs_lookup i Δ = Some (p,P) 
  envs_simple_replace i p (Esnoc Enil j P) Δ = Some Δ' 
496 497
  envs_entails Δ' Q 
  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
498
Proof.
499
  rewrite envs_entails_eq=> ?? <-. rewrite envs_simple_replace_singleton_sound //.
500
  by rewrite wand_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
501
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
502

Robbert Krebbers's avatar
Robbert Krebbers committed
503
Lemma tac_clear Δ Δ' i p P Q :
Robbert Krebbers's avatar
Robbert Krebbers committed
504 505
  envs_lookup_delete i Δ = Some (p,P,Δ') 
  (if p then TCTrue else TCOr (Affine P) (Absorbing Q)) 
506
  envs_entails Δ' Q 
507
  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
508
Proof.
509
  rewrite envs_entails_eq=> ?? HQ. rewrite envs_lookup_delete_sound //.
510
  by destruct p; rewrite /= HQ sep_elim_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
511
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
512 513

(** * False *)
514
Lemma tac_ex_falso Δ Q : envs_entails Δ False  envs_entails Δ Q.
515
Proof. by rewrite envs_entails_eq -(False_elim Q). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
516

Robbert Krebbers's avatar
Robbert Krebbers committed
517 518 519
Lemma tac_false_destruct Δ i p P Q :
  envs_lookup i Δ = Some (p,P) 
  P = False%I 
520
  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
521
Proof.
522
  rewrite envs_entails_eq => ??. subst. rewrite envs_lookup_sound //; simpl.
523
  by rewrite affinely_persistently_if_elim sep_elim_l False_elim.
Robbert Krebbers's avatar
Robbert Krebbers committed
524 525
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
526
(** * Pure *)
527
Lemma tac_pure_intro Δ Q φ : FromPure false Q φ  φ  envs_entails Δ Q.
528
Proof. intros ??. rewrite envs_entails_eq -(from_pure _ Q). by apply pure_intro. Qed.
529

Robbert Krebbers's avatar
Robbert Krebbers committed
530
Lemma tac_pure Δ Δ' i p P φ Q :
Robbert Krebbers's avatar
Robbert Krebbers committed
531 532
  envs_lookup_delete i Δ = Some (p, P, Δ') 
  IntoPure P φ 
533
  (if p then TCTrue else TCOr (Affine P) (Absorbing Q)) 
534
  (φ  envs_entails Δ' Q)  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
535
Proof.
536
  rewrite envs_entails_eq=> ?? HPQ HQ.
537
  rewrite envs_lookup_delete_sound //; simpl. destruct p; simpl.
538
  - rewrite (into_pure P) -persistently_and_affinely_sep_l persistently_pure.
Robbert Krebbers's avatar
Robbert Krebbers committed
539
    by apply pure_elim_l.
540
  - destruct HPQ.
541
    + rewrite -(affine_affinely P) (into_pure P) -persistent_and_affinely_sep_l.
542
      by apply pure_elim_l.
543 544
    + rewrite (into_pure P) (persistent_absorbingly_affinely  _ %I) absorbingly_sep_lr.
      rewrite -persistent_and_affinely_sep_l. apply pure_elim_l=> ?. by rewrite HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
545 546
Qed.

547
Lemma tac_pure_revert Δ φ Q : envs_entails Δ (⌜φ⌝  Q)  (φ  envs_entails Δ Q).
548
Proof. rewrite envs_entails_eq. intros HΔ ?. by rewrite HΔ pure_True // left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
549

Robbert Krebbers's avatar
Robbert Krebbers committed
550 551 552 553 554 555 556 557
(** * Always modalities *)
Class FilterPersistentEnv
    (M : always_modality PROP) (C : PROP  Prop) (Γ1 Γ2 : env PROP) := {
  filter_persistent_env :
    ( P, C P   P  M ( P)) 
     ([] Γ1)  M ( ([] Γ2));
  filter_persistent_env_wf : env_wf Γ1  env_wf Γ2;
  filter_persistent_env_dom i : Γ1 !! i = None  Γ2 !! i = None;
558
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
Global Instance filter_persistent_env_nil M C : FilterPersistentEnv M C Enil Enil.
Proof.
  split=> // HC /=. rewrite !persistently_pure !affinely_True_emp.
  by rewrite affinely_emp -always_modality_emp.
Qed.
Global Instance filter_persistent_env_snoc M (C : PROP  Prop) Γ Γ' i P :
  C P 
  FilterPersistentEnv M C Γ Γ' 
  FilterPersistentEnv M C (Esnoc Γ i P) (Esnoc Γ' i P).
Proof.
  intros ? [HΓ Hwf Hdom]; split; simpl.
  - intros HC. rewrite affinely_persistently_and HC // HΓ //.
    by rewrite always_modality_and -affinely_persistently_and.
  - inversion 1; constructor; auto.
  - intros j. destruct (ident_beq _ _); naive_solver.
Qed.
Global Instance filter_persistent_env_snoc_not M (C : PROP  Prop) Γ Γ' i P :
  FilterPersistentEnv M C Γ Γ' 
  FilterPersistentEnv M C (Esnoc Γ i P) Γ' | 100.
Proof.
  intros [HΓ Hwf Hdom]; split; simpl.
  - intros HC. by rewrite and_elim_r HΓ.
  - inversion 1; auto.
  - intros j. destruct (ident_beq _ _); naive_solver.
Qed.
584

Robbert Krebbers's avatar
Robbert Krebbers committed
585 586 587 588 589 590 591
Class FilterSpatialEnv
    (M : always_modality PROP) (C : PROP  Prop) (Γ1 Γ2 : env PROP) := {
  filter_spatial_env :
    ( P, C P  P  M P)  ( P, Absorbing (M P)) 
    ([] Γ1)  M ([] Γ2);
  filter_spatial_env_wf : env_wf Γ1  env_wf Γ2;
  filter_spatial_env_dom i : Γ1 !! i = None  Γ2 !! i = None;
592
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
Global Instance filter_spatial_env_nil M C : FilterSpatialEnv M C Enil Enil.
Proof. split=> // HC /=. by rewrite -always_modality_emp. Qed.
Global Instance filter_spatial_env_snoc M (C : PROP  Prop) Γ Γ' i P :
  C P 
  FilterSpatialEnv M C Γ Γ' 
  FilterSpatialEnv M C (Esnoc Γ i P) (Esnoc Γ' i P).
Proof.
  intros ? [HΓ Hwf Hdom]; split; simpl.
  - intros HC ?. by rewrite {1}(HC P) // HΓ // always_modality_sep.
  - inversion 1; constructor; auto.
  - intros j. destruct (ident_beq _ _); naive_solver.
Qed.

Global Instance filter_spatial_env_snoc_not M (C : PROP  Prop) Γ Γ' i P :
  FilterSpatialEnv M C Γ Γ' 
  FilterSpatialEnv M C (Esnoc Γ i P) Γ' | 100.
Proof.
  intros [HΓ Hwf Hdom]; split; simpl.
  - intros HC ?. by rewrite HΓ // sep_elim_r.
  - inversion 1; auto.
  - intros j. destruct (ident_beq _ _); naive_solver.
Qed.
615

Robbert Krebbers's avatar
Robbert Krebbers committed
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
Ltac tac_always_cases :=
  simplify_eq/=;
  repeat match goal with
  | H : TCAnd _ _ |- _ => destruct H
  | H : TCEq ?x _ |- _ => inversion H; subst x; clear H
  | H : TCForall _ _ |- _ => apply TCForall_Forall in H
  | H : FilterPersistentEnv _ _ _ _ |- _ => destruct H
  | H : FilterSpatialEnv _ _ _ _ |- _ => destruct H
  end; simpl; auto using Enil_wf.

Lemma tac_always_intro Γp Γs Γp' Γs' M Q Q' :
  FromAlways M Q' Q 
  match always_modality_persistent_spec M with
  | AIEnvForall C => TCAnd (TCForall C (env_to_list Γp)) (TCEq Γp Γp')
  | AIEnvFilter C => FilterPersistentEnv M C Γp Γp'
  | AIEnvIsEmpty => TCAnd (TCEq Γp Enil) (TCEq Γp' Enil)
  | AIEnvClear => TCEq Γp' Enil
  | AIEnvId => TCEq Γp Γp'
  end 
  match always_modality_spatial_spec M with
  | AIEnvForall C => TCAnd (TCForall C (env_to_list Γs)) (TCEq Γs Γs')
  | AIEnvFilter C => FilterSpatialEnv M C Γs Γs'
  | AIEnvIsEmpty => TCAnd (TCEq Γs Enil) (TCEq Γs' Enil)
  | AIEnvClear => TCEq Γs' Enil
  | AIEnvId => TCEq Γs Γs'
  end 
  envs_entails (Envs Γp' Γs') Q  envs_entails (Envs Γp Γs) Q'.
Proof.
644
  rewrite envs_entails_eq /FromAlways /of_envs /= => <- HΓp HΓs <-.
Robbert Krebbers's avatar
Robbert Krebbers committed
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
  apply pure_elim_l=> -[???]. assert (envs_wf (Envs Γp' Γs')).
  { split; simpl in *.
    - destruct (always_modality_persistent_spec M); tac_always_cases.
    - destruct (always_modality_spatial_spec M); tac_always_cases.
    - destruct (always_modality_persistent_spec M),
        (always_modality_spatial_spec M); tac_always_cases; naive_solver. }
  rewrite pure_True // left_id. rewrite -always_modality_sep. apply sep_mono.
  - destruct (always_modality_persistent_spec M) eqn:?; tac_always_cases.
    + by rewrite {1}affinely_elim_emp (always_modality_emp M)
        persistently_True_emp affinely_persistently_emp.
    + eauto using always_modality_persistent_forall_big_and.
    + eauto using always_modality_persistent_filter.
    + by rewrite {1}affinely_elim_emp (always_modality_emp M)
        persistently_True_emp affinely_persistently_emp.
    + eauto using always_modality_persistent_id.
  - destruct (always_modality_spatial_spec M) eqn:?; tac_always_cases.
    + by rewrite -always_modality_emp.
    + eauto using always_modality_spatial_forall_big_sep.
    + eauto using always_modality_spatial_filter,
        always_modality_spatial_filter_absorbing.
    + rewrite -(always_modality_spatial_clear M) // -always_modality_emp.
      by rewrite -absorbingly_True_emp absorbingly_pure -True_intro.
    + by destruct (always_modality_spatial_id M).
668
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
669 670

Lemma tac_persistent Δ Δ' i p P P' Q :
671
  envs_lookup i Δ = Some (p, P) 
672
  IntoPersistent p P P' 
673
  (if p then TCTrue else TCOr (Affine P) (Absorbing Q)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
674
  envs_replace i p true (Esnoc Enil i P') Δ = Some Δ' 
675
  envs_entails Δ' Q  envs_entails Δ Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
676
Proof.
677
  rewrite envs_entails_eq=>?? HPQ ? HQ. rewrite envs_replace_singleton_sound //=.
678 679 680
  destruct p; simpl.
  - by rewrite -(into_persistent _ P) /= wand_elim_r.
  - destruct HPQ.
681
    + rewrite -(affine_affinely P) (_ : P = bi_persistently_if false P)%I //
682 683
              (into_persistent _ P) wand_elim_r //.
    + rewrite (_ : P = bi_persistently_if false P)%I // (into_persistent _ P).
684 685
      by rewrite {1}(persistent_absorbingly_affinely (bi_persistently _)%I)
                 absorbingly_sep_l wand_elim_r HQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
686 687 688
Qed.

(** * Implication and wand *)
689
Lemma envs_app_singleton_sound_foo Δ Δ' p j Q :
690
  envs_app p (Esnoc Enil j Q) Δ = Some Δ'  of_envs Δ  ?p Q  of_envs Δ'.
691 692
Proof. intros. apply wand_elim_l'. eapply envs_app_singleton_sound. eauto. Qed.

693 694
Lemma tac_impl_intro Δ Δ' i P P' Q R :
  FromImpl R P Q 
695
  (if env_spatial_is_nil Δ then TCTrue else Persistent P) 
696
  envs_app false (Esnoc Enil i P') Δ = Some Δ' 
697
  FromAffinely P' P 
698
  envs_entails Δ' Q  envs_entails Δ R.
Robbert Krebbers's avatar
Robbert Krebbers committed
699
Proof.
700
  rewrite /FromImpl envs_entails_eq => <- ??? <-. destruct (env_spatial_is_nil Δ) eqn:?.
701
  - rewrite (env_spatial_is_nil_affinely_persistently Δ) //; simpl. apply impl_intro_l.
702
    rewrite envs_app_singleton_sound //; simpl.