big_op.v 26.9 KB
Newer Older
1
2
From iris.algebra Require Export list cmra_big_op.
From iris.base_logic Require Export base_logic.
Robbert Krebbers's avatar
Robbert Krebbers committed
3
From iris.prelude Require Import gmap fin_collections gmultiset functions.
4
Import uPred.
5

6
7
8
9
10
(* We make use of the bigops on CMRAs, so we first define a (somewhat ad-hoc)
CMRA structure on uPred. *)
Section cmra.
  Context {M : ucmraT}.

11
12
  Instance uPred_valid_inst : Valid (uPred M) := λ P,  n x, {n} x  P n x.
  Instance uPred_validN_inst : ValidN (uPred M) := λ n P,
13
14
15
16
     n' x, n'  n  {n'} x  P n' x.
  Instance uPred_op : Op (uPred M) := uPred_sep.
  Instance uPred_pcore : PCore (uPred M) := λ _, Some True%I.

17
  Instance uPred_validN_ne n : Proper (dist n ==> iff) (uPred_validN_inst n).
18
19
20
21
22
23
24
25
  Proof. intros P Q HPQ; split=> H n' x ??; by apply HPQ, H. Qed.

  Lemma uPred_validN_alt n (P : uPred M) : {n} P  P {n} True%I.
  Proof.
    unseal=> HP; split=> n' x ??; split; [done|].
    intros _. by apply HP.
  Qed.

26
  Lemma uPred_cmra_validN_op_l n P Q : {n} (P  Q)%I  {n} P.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
  Proof.
    unseal. intros HPQ n' x ??.
    destruct (HPQ n' x) as (x1&x2&->&?&?); auto.
    eapply uPred_mono with x1; eauto using cmra_includedN_l.
  Qed.

  Lemma uPred_included P Q : P  Q  Q  P.
  Proof. intros [P' ->]. apply sep_elim_l. Qed.

  Definition uPred_cmra_mixin : CMRAMixin (uPred M).
  Proof.
    apply cmra_total_mixin; try apply _ || by eauto.
    - intros n P Q ??. by cofe_subst.
    - intros P; split.
      + intros HP n n' x ?. apply HP.
      + intros HP n x. by apply (HP n).
    - intros n P HP n' x ?. apply HP; auto.
    - intros P. by rewrite left_id.
    - intros P Q _. exists True%I. by rewrite left_id.
    - intros n P Q. apply uPred_cmra_validN_op_l.
    - intros n P Q1 Q2 HP HPQ. exists True%I, P; split_and!.
      + by rewrite left_id.
      + move: HP; by rewrite HPQ=> /uPred_cmra_validN_op_l /uPred_validN_alt.
      + move: HP; rewrite HPQ=> /uPred_cmra_validN_op_l /uPred_validN_alt=> ->.
        by rewrite left_id.
  Qed.

  Canonical Structure uPredR :=
55
    CMRAT (uPred M) uPred_ofe_mixin uPred_cmra_mixin.
56
57
58
59
60
61
62
63
64
65
66

  Instance uPred_empty : Empty (uPred M) := True%I.

  Definition uPred_ucmra_mixin : UCMRAMixin (uPred M).
  Proof.
    split; last done.
    - by rewrite /empty /uPred_empty uPred_pure_eq.
    - intros P. by rewrite left_id.
  Qed.

  Canonical Structure uPredUR :=
67
    UCMRAT (uPred M) uPred_ofe_mixin uPred_cmra_mixin uPred_ucmra_mixin.
68
69
70
71
72
73
74
75

  Global Instance uPred_always_homomorphism : UCMRAHomomorphism uPred_always.
  Proof. split; [split|]. apply _. apply always_sep. apply always_pure. Qed.
  Global Instance uPred_always_if_homomorphism b :
    UCMRAHomomorphism (uPred_always_if b).
  Proof. split; [split|]. apply _. apply always_if_sep. apply always_if_pure. Qed.
  Global Instance uPred_later_homomorphism : UCMRAHomomorphism uPred_later.
  Proof. split; [split|]. apply _. apply later_sep. apply later_True. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
77
  Global Instance uPred_laterN_homomorphism n : UCMRAHomomorphism (uPred_laterN n).
  Proof. split; [split|]. apply _. apply laterN_sep. apply laterN_True. Qed.
78
79
80
81
82
83
84
85
86
87
88
  Global Instance uPred_except_0_homomorphism :
    CMRAHomomorphism uPred_except_0.
  Proof. split. apply _. apply except_0_sep. Qed.
  Global Instance uPred_ownM_homomorphism : UCMRAHomomorphism uPred_ownM.
  Proof. split; [split|]. apply _. apply ownM_op. apply ownM_empty'. Qed.
End cmra.

Arguments uPredR : clear implicits.
Arguments uPredUR : clear implicits.

(* Notations *)
89
Notation "'[∗]' Ps" := (big_op (M:=uPredUR _) Ps) (at level 20) : uPred_scope.
90

91
Notation "'[∗' 'list' ] k ↦ x ∈ l , P" := (big_opL (M:=uPredUR _) l (λ k x, P))
92
  (at level 200, l at level 10, k, x at level 1, right associativity,
93
94
   format "[∗  list ]  k ↦ x  ∈  l ,  P") : uPred_scope.
Notation "'[∗' 'list' ] x ∈ l , P" := (big_opL (M:=uPredUR _) l (λ _ x, P))
95
  (at level 200, l at level 10, x at level 1, right associativity,
96
   format "[∗  list ]  x  ∈  l ,  P") : uPred_scope.
97

98
Notation "'[∗' 'map' ] k ↦ x ∈ m , P" := (big_opM (M:=uPredUR _) m (λ k x, P))
99
  (at level 200, m at level 10, k, x at level 1, right associativity,
100
101
   format "[∗  map ]  k ↦ x  ∈  m ,  P") : uPred_scope.
Notation "'[∗' 'map' ] x ∈ m , P" := (big_opM (M:=uPredUR _) m (λ _ x, P))
102
  (at level 200, m at level 10, x at level 1, right associativity,
103
   format "[∗  map ]  x  ∈  m ,  P") : uPred_scope.
104

105
Notation "'[∗' 'set' ] x ∈ X , P" := (big_opS (M:=uPredUR _) X (λ x, P))
106
  (at level 200, X at level 10, x at level 1, right associativity,
107
   format "[∗  set ]  x  ∈  X ,  P") : uPred_scope.
108

Robbert Krebbers's avatar
Robbert Krebbers committed
109
110
111
112
Notation "'[∗' 'mset' ] x ∈ X , P" := (big_opMS (M:=uPredUR _) X (λ x, P))
  (at level 200, X at level 10, x at level 1, right associativity,
   format "[∗  mset ]  x  ∈  X ,  P") : uPred_scope.

113
(** * Persistence and timelessness of lists of uPreds *)
114
Class PersistentL {M} (Ps : list (uPred M)) :=
115
  persistentL : Forall PersistentP Ps.
116
Arguments persistentL {_} _ {_}.
117

118
119
120
121
Class TimelessL {M} (Ps : list (uPred M)) :=
  timelessL : Forall TimelessP Ps.
Arguments timelessL {_} _ {_}.

122
(** * Properties *)
123
Section big_op.
124
Context {M : ucmraT}.
125
126
127
Implicit Types Ps Qs : list (uPred M).
Implicit Types A : Type.

128
129
Global Instance big_sep_mono' :
  Proper (Forall2 () ==> ()) (big_op (M:=uPredUR M)).
130
131
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

132
Lemma big_sep_app Ps Qs : [] (Ps ++ Qs)  [] Ps  [] Qs.
133
Proof. by rewrite big_op_app. Qed.
134

135
Lemma big_sep_contains Ps Qs : Qs `contains` Ps  [] Ps  [] Qs.
136
Proof. intros. apply uPred_included. by apply: big_op_contains. Qed.
137
Lemma big_sep_elem_of Ps P : P  Ps  [] Ps  P.
138
Proof. intros. apply uPred_included. by apply: big_sep_elem_of. Qed.
139
140
141
142
143
144
Lemma big_sep_elem_of_acc Ps P : P  Ps  [] Ps  P  (P - [] Ps).
Proof.
  intros (Ps1&Ps2&->)%elem_of_list_split.
  rewrite !big_sep_app /=. rewrite assoc (comm _ _ P) -assoc.
  by apply sep_mono_r, wand_intro_l.
Qed.
145

146
(** ** Persistence *)
147
Global Instance big_sep_persistent Ps : PersistentL Ps  PersistentP ([] Ps).
148
149
150
151
152
153
154
155
156
157
158
159
160
Proof. induction 1; apply _. Qed.

Global Instance nil_persistent : PersistentL (@nil (uPred M)).
Proof. constructor. Qed.
Global Instance cons_persistent P Ps :
  PersistentP P  PersistentL Ps  PersistentL (P :: Ps).
Proof. by constructor. Qed.
Global Instance app_persistent Ps Ps' :
  PersistentL Ps  PersistentL Ps'  PersistentL (Ps ++ Ps').
Proof. apply Forall_app_2. Qed.

Global Instance fmap_persistent {A} (f : A  uPred M) xs :
  ( x, PersistentP (f x))  PersistentL (f <$> xs).
161
Proof. intros. apply Forall_fmap, Forall_forall; auto. Qed.
162
163
164
165
166
Global Instance zip_with_persistent {A B} (f : A  B  uPred M) xs ys :
  ( x y, PersistentP (f x y))  PersistentL (zip_with f xs ys).
Proof.
  unfold PersistentL=> ?; revert ys; induction xs=> -[|??]; constructor; auto.
Qed.
167
168
169
170
171
Global Instance imap_persistent {A} (f : nat  A  uPred M) xs :
  ( i x, PersistentP (f i x))  PersistentL (imap f xs).
Proof.
  rewrite /PersistentL /imap=> ?. generalize 0. induction xs; constructor; auto.
Qed.
172
173

(** ** Timelessness *)
174
Global Instance big_sep_timeless Ps : TimelessL Ps  TimelessP ([] Ps).
175
176
177
178
179
180
181
182
183
184
185
186
187
Proof. induction 1; apply _. Qed.

Global Instance nil_timeless : TimelessL (@nil (uPred M)).
Proof. constructor. Qed.
Global Instance cons_timeless P Ps :
  TimelessP P  TimelessL Ps  TimelessL (P :: Ps).
Proof. by constructor. Qed.
Global Instance app_timeless Ps Ps' :
  TimelessL Ps  TimelessL Ps'  TimelessL (Ps ++ Ps').
Proof. apply Forall_app_2. Qed.

Global Instance fmap_timeless {A} (f : A  uPred M) xs :
  ( x, TimelessP (f x))  TimelessL (f <$> xs).
188
Proof. intros. apply Forall_fmap, Forall_forall; auto. Qed.
189
190
191
192
193
Global Instance zip_with_timeless {A B} (f : A  B  uPred M) xs ys :
  ( x y, TimelessP (f x y))  TimelessL (zip_with f xs ys).
Proof.
  unfold TimelessL=> ?; revert ys; induction xs=> -[|??]; constructor; auto.
Qed.
194
195
196
197
198
199
200
201
202
203
204
205
Global Instance imap_timeless {A} (f : nat  A  uPred M) xs :
  ( i x, TimelessP (f i x))  TimelessL (imap f xs).
Proof.
  rewrite /TimelessL /imap=> ?. generalize 0. induction xs; constructor; auto.
Qed.

(** ** Big ops over lists *)
Section list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types Φ Ψ : nat  A  uPred M.

206
  Lemma big_sepL_nil Φ : ([ list] ky  nil, Φ k y)  True.
207
208
  Proof. done. Qed.
  Lemma big_sepL_cons Φ x l :
209
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
210
  Proof. by rewrite big_opL_cons. Qed.
211
  Lemma big_sepL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
212
213
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_sepL_app Φ l1 l2 :
214
215
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
216
217
  Proof. by rewrite big_opL_app. Qed.

218
219
  Lemma big_sepL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
220
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
221
  Proof. apply big_opL_forall; apply _. Qed.
222
223
  Lemma big_sepL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
224
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
225
  Proof. apply big_opL_proper. Qed.
226
227
228

  Global Instance big_sepL_mono' l :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
229
230
           (big_opL (M:=uPredUR M) l).
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
231
232

  Lemma big_sepL_lookup Φ l i x :
233
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
234
  Proof. intros. apply uPred_included. by apply: big_opL_lookup. Qed.
235

Robbert Krebbers's avatar
Robbert Krebbers committed
236
  Lemma big_sepL_elem_of (Φ : A  uPred M) l x :
237
    x  l  ([ list] y  l, Φ y)  Φ x.
238
  Proof. intros. apply uPred_included. by apply: big_opL_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
239

240
  Lemma big_sepL_fmap {B} (f : A  B) (Φ : nat  B  uPred M) l :
241
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
242
  Proof. by rewrite big_opL_fmap. Qed.
243
244

  Lemma big_sepL_sepL Φ Ψ l :
245
246
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
247
  Proof. by rewrite big_opL_opL. Qed.
248
249

  Lemma big_sepL_later Φ l :
250
     ([ list] kx  l, Φ k x)  ([ list] kx  l,  Φ k x).
251
  Proof. apply (big_opL_commute _). Qed.
252

Robbert Krebbers's avatar
Robbert Krebbers committed
253
254
255
256
  Lemma big_sepL_laterN Φ n l :
    ^n ([ list] kx  l, Φ k x)  ([ list] kx  l, ^n Φ k x).
  Proof. apply (big_opL_commute _). Qed.

257
  Lemma big_sepL_always Φ l :
258
    ( [ list] kx  l, Φ k x)  ([ list] kx  l,  Φ k x).
259
  Proof. apply (big_opL_commute _). Qed.
260
261

  Lemma big_sepL_always_if p Φ l :
262
    ?p ([ list] kx  l, Φ k x)  ([ list] kx  l, ?p Φ k x).
263
  Proof. apply (big_opL_commute _). Qed.
264
265
266

  Lemma big_sepL_forall Φ l :
    ( k x, PersistentP (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
267
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
268
269
270
271
272
273
274
  Proof.
    intros HΦ. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
      apply impl_intro_l, pure_elim_l=> ?; by apply big_sepL_lookup. }
    revert Φ HΦ. induction l as [|x l IH]=> Φ HΦ.
    { rewrite big_sepL_nil; auto with I. }
    rewrite big_sepL_cons. rewrite -always_and_sep_l; apply and_intro.
275
    - by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
276
277
278
279
    - rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

  Lemma big_sepL_impl Φ Ψ l :
Ralf Jung's avatar
Ralf Jung committed
280
     ( k x, l !! k = Some x  Φ k x  Ψ k x)  ([ list] kx  l, Φ k x)
281
     [ list] kx  l, Ψ k x.
282
283
284
285
286
287
288
  Proof.
    rewrite always_and_sep_l. do 2 setoid_rewrite always_forall.
    setoid_rewrite always_impl; setoid_rewrite always_pure.
    rewrite -big_sepL_forall -big_sepL_sepL. apply big_sepL_mono; auto=> k x ?.
    by rewrite -always_wand_impl always_elim wand_elim_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
289
  Global Instance big_sepL_nil_persistent Φ :
290
    PersistentP ([ list] kx  [], Φ k x).
291
  Proof. rewrite /big_opL. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
292
  Global Instance big_sepL_persistent Φ l :
293
    ( k x, PersistentP (Φ k x))  PersistentP ([ list] kx  l, Φ k x).
294
  Proof. rewrite /big_opL. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
295
  Global Instance big_sepL_nil_timeless Φ :
296
    TimelessP ([ list] kx  [], Φ k x).
297
  Proof. rewrite /big_opL. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
298
  Global Instance big_sepL_timeless Φ l :
299
    ( k x, TimelessP (Φ k x))  TimelessP ([ list] kx  l, Φ k x).
300
  Proof. rewrite /big_opL. apply _. Qed.
301
302
End list.

303

304
(** ** Big ops over finite maps *)
305
306
307
Section gmap.
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
308
  Implicit Types Φ Ψ : K  A  uPred M.
309

310
  Lemma big_sepM_mono Φ Ψ m1 m2 :
311
    m2  m1  ( k x, m2 !! k = Some x  Φ k x  Ψ k x) 
312
    ([ map] k  x  m1, Φ k x)  [ map] k  x  m2, Ψ k x.
313
  Proof.
314
    intros Hm HΦ. trans ([ map] kx  m2, Φ k x)%I.
315
316
317
    - apply uPred_included. apply: big_op_contains.
      by apply fmap_contains, map_to_list_contains.
    - apply big_opM_forall; apply _ || auto.
318
  Qed.
319
320
  Lemma big_sepM_proper Φ Ψ m :
    ( k x, m !! k = Some x  Φ k x  Ψ k x) 
321
    ([ map] k  x  m, Φ k x)  ([ map] k  x  m, Ψ k x).
322
  Proof. apply big_opM_proper. Qed.
323
324

  Global Instance big_sepM_mono' m :
325
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
326
327
           (big_opM (M:=uPredUR M) m).
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
328

329
  Lemma big_sepM_empty Φ : ([ map] kx  , Φ k x)  True.
330
  Proof. by rewrite big_opM_empty. Qed.
331

332
  Lemma big_sepM_insert Φ m i x :
333
    m !! i = None 
334
    ([ map] ky  <[i:=x]> m, Φ k y)  Φ i x  [ map] ky  m, Φ k y.
335
  Proof. apply: big_opM_insert. Qed.
336

337
  Lemma big_sepM_delete Φ m i x :
338
    m !! i = Some x 
339
    ([ map] ky  m, Φ k y)  Φ i x  [ map] ky  delete i m, Φ k y.
340
  Proof. apply: big_opM_delete. Qed.
341

342
343
344
345
346
347
348
  Lemma big_sepM_lookup_acc Φ m i x :
    m !! i = Some x 
    ([ map] ky  m, Φ k y)  Φ i x  (Φ i x - ([ map] ky  m, Φ k y)).
  Proof.
    intros. rewrite big_sepM_delete //. by apply sep_mono_r, wand_intro_l.
  Qed.

349
  Lemma big_sepM_lookup Φ m i x :
350
    m !! i = Some x  ([ map] ky  m, Φ k y)  Φ i x.
351
352
  Proof. intros. apply uPred_included. by apply: big_opM_lookup. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
353
354
355
  Lemma big_sepM_lookup_dom (Φ : K  uPred M) m i :
    is_Some (m !! i)  ([ map] k_  m, Φ k)  Φ i.
  Proof. intros [x ?]. by eapply (big_sepM_lookup (λ i x, Φ i)). Qed.
356

357
  Lemma big_sepM_singleton Φ i x : ([ map] ky  {[i:=x]}, Φ k y)  Φ i x.
358
  Proof. by rewrite big_opM_singleton. Qed.
359

360
  Lemma big_sepM_fmap {B} (f : A  B) (Φ : K  B  uPred M) m :
361
    ([ map] ky  f <$> m, Φ k y)  ([ map] ky  m, Φ k (f y)).
362
  Proof. by rewrite big_opM_fmap. Qed.
363

364
  Lemma big_sepM_insert_override (Φ : K  uPred M) m i x y :
365
    m !! i = Some x 
366
    ([ map] k_  <[i:=y]> m, Φ k)  ([ map] k_  m, Φ k).
367
  Proof. apply: big_opM_insert_override. Qed.
368

369
  Lemma big_sepM_fn_insert {B} (Ψ : K  A  B  uPred M) (f : K  B) m i x b :
370
    m !! i = None 
371
372
       ([ map] ky  <[i:=x]> m, Ψ k y (<[i:=b]> f k))
     (Ψ i x b  [ map] ky  m, Ψ k y (f k)).
373
374
  Proof. apply: big_opM_fn_insert. Qed.

375
376
  Lemma big_sepM_fn_insert' (Φ : K  uPred M) m i x P :
    m !! i = None 
377
    ([ map] ky  <[i:=x]> m, <[i:=P]> Φ k)  (P  [ map] ky  m, Φ k).
378
  Proof. apply: big_opM_fn_insert'. Qed.
379

380
  Lemma big_sepM_sepM Φ Ψ m :
381
382
       ([ map] kx  m, Φ k x  Ψ k x)
     ([ map] kx  m, Φ k x)  ([ map] kx  m, Ψ k x).
383
  Proof. apply: big_opM_opM. Qed.
384

385
  Lemma big_sepM_later Φ m :
386
     ([ map] kx  m, Φ k x)  ([ map] kx  m,  Φ k x).
387
  Proof. apply (big_opM_commute _). Qed.
388

Robbert Krebbers's avatar
Robbert Krebbers committed
389
390
391
392
  Lemma big_sepM_laterN Φ n m :
    ^n ([ map] kx  m, Φ k x)  ([ map] kx  m, ^n Φ k x).
  Proof. apply (big_opM_commute _). Qed.

393
  Lemma big_sepM_always Φ m :
394
    ( [ map] kx  m, Φ k x)  ([ map] kx  m,  Φ k x).
395
  Proof. apply (big_opM_commute _). Qed.
396
397

  Lemma big_sepM_always_if p Φ m :
398
    ?p ([ map] kx  m, Φ k x)  ([ map] kx  m, ?p Φ k x).
399
  Proof. apply (big_opM_commute _). Qed.
400
401
402

  Lemma big_sepM_forall Φ m :
    ( k x, PersistentP (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
403
    ([ map] kx  m, Φ k x)  ( k x, m !! k = Some x  Φ k x).
404
405
406
  Proof.
    intros. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
407
      apply impl_intro_l, pure_elim_l=> ?; by apply big_sepM_lookup. }
408
409
410
    induction m as [|i x m ? IH] using map_ind; [rewrite ?big_sepM_empty; auto|].
    rewrite big_sepM_insert // -always_and_sep_l. apply and_intro.
    - rewrite (forall_elim i) (forall_elim x) lookup_insert.
411
      by rewrite pure_True // True_impl.
412
    - rewrite -IH. apply forall_mono=> k; apply forall_mono=> y.
413
414
      apply impl_intro_l, pure_elim_l=> ?.
      rewrite lookup_insert_ne; last by intros ?; simplify_map_eq.
415
      by rewrite pure_True // True_impl.
416
417
418
  Qed.

  Lemma big_sepM_impl Φ Ψ m :
Ralf Jung's avatar
Ralf Jung committed
419
     ( k x, m !! k = Some x  Φ k x  Ψ k x)  ([ map] kx  m, Φ k x)
420
     [ map] kx  m, Ψ k x.
421
422
  Proof.
    rewrite always_and_sep_l. do 2 setoid_rewrite always_forall.
423
    setoid_rewrite always_impl; setoid_rewrite always_pure.
424
425
426
    rewrite -big_sepM_forall -big_sepM_sepM. apply big_sepM_mono; auto=> k x ?.
    by rewrite -always_wand_impl always_elim wand_elim_l.
  Qed.
427

Robbert Krebbers's avatar
Robbert Krebbers committed
428
  Global Instance big_sepM_empty_persistent Φ :
429
    PersistentP ([ map] kx  , Φ k x).
430
  Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
431
  Global Instance big_sepM_persistent Φ m :
432
    ( k x, PersistentP (Φ k x))  PersistentP ([ map] kx  m, Φ k x).
433
  Proof. intros. apply big_sep_persistent, fmap_persistent=>-[??] /=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
434
  Global Instance big_sepM_nil_timeless Φ :
435
    TimelessP ([ map] kx  , Φ k x).
436
  Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
437
  Global Instance big_sepM_timeless Φ m :
438
    ( k x, TimelessP (Φ k x))  TimelessP ([ map] kx  m, Φ k x).
439
  Proof. intro. apply big_sep_timeless, fmap_timeless=> -[??] /=; auto. Qed.
440
441
End gmap.

442

443
(** ** Big ops over finite sets *)
444
445
446
Section gset.
  Context `{Countable A}.
  Implicit Types X : gset A.
447
  Implicit Types Φ : A  uPred M.
448

449
  Lemma big_sepS_mono Φ Ψ X Y :
450
    Y  X  ( x, x  Y  Φ x  Ψ x) 
451
    ([ set] x  X, Φ x)  [ set] x  Y, Ψ x.
452
  Proof.
453
    intros HX HΦ. trans ([ set] x  Y, Φ x)%I.
454
455
456
    - apply uPred_included. apply: big_op_contains.
      by apply fmap_contains, elements_contains.
    - apply big_opS_forall; apply _ || auto.
457
  Qed.
458
459
  Lemma big_sepS_proper Φ Ψ X :
    ( x, x  X  Φ x  Ψ x) 
460
    ([ set] x  X, Φ x)  ([ set] x  X, Ψ x).
461
  Proof. apply: big_opS_proper. Qed.
462

463
  Global Instance big_sepS_mono' X :
464
465
466
     Proper (pointwise_relation _ () ==> ()) (big_opS (M:=uPredUR M) X).
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.

467
  Lemma big_sepS_empty Φ : ([ set] x  , Φ x)  True.
468
  Proof. by rewrite big_opS_empty. Qed.
469

470
  Lemma big_sepS_insert Φ X x :
471
    x  X  ([ set] y  {[ x ]}  X, Φ y)  (Φ x  [ set] y  X, Φ y).
472
473
  Proof. apply: big_opS_insert. Qed.

474
  Lemma big_sepS_fn_insert {B} (Ψ : A  B  uPred M) f X x b :
475
    x  X 
476
477
       ([ set] y  {[ x ]}  X, Ψ y (<[x:=b]> f y))
     (Ψ x b  [ set] y  X, Ψ y (f y)).
478
479
  Proof. apply: big_opS_fn_insert. Qed.

480
  Lemma big_sepS_fn_insert' Φ X x P :
481
    x  X  ([ set] y  {[ x ]}  X, <[x:=P]> Φ y)  (P  [ set] y  X, Φ y).
482
  Proof. apply: big_opS_fn_insert'. Qed.
483

Robbert Krebbers's avatar
Robbert Krebbers committed
484
485
486
487
488
  Lemma big_sepS_union Φ X Y :
    X  Y 
    ([ set] y  X  Y, Φ y)  ([ set] y  X, Φ y)  ([ set] y  Y, Φ y).
  Proof. apply: big_opS_union. Qed.

489
  Lemma big_sepS_delete Φ X x :
490
    x  X  ([ set] y  X, Φ y)  Φ x  [ set] y  X  {[ x ]}, Φ y.
491
  Proof. apply: big_opS_delete. Qed.
492

493
  Lemma big_sepS_elem_of Φ X x : x  X  ([ set] y  X, Φ y)  Φ x.
494
  Proof. intros. apply uPred_included. by apply: big_opS_elem_of. Qed.
495

496
497
498
499
500
501
502
  Lemma big_sepS_elem_of_acc Φ X x :
    x  X 
    ([ set] y  X, Φ y)  Φ x  (Φ x - ([ set] y  X, Φ y)).
  Proof.
    intros. rewrite big_sepS_delete //. by apply sep_mono_r, wand_intro_l.
  Qed.

503
  Lemma big_sepS_singleton Φ x : ([ set] y  {[ x ]}, Φ y)  Φ x.
504
  Proof. apply: big_opS_singleton. Qed.
505

506
  Lemma big_sepS_filter (P : A  Prop) `{ x, Decision (P x)} Φ X :
Ralf Jung's avatar
Ralf Jung committed
507
    ([ set] y  filter P X, Φ y)  ([ set] y  X, P y  Φ y).
508
509
510
511
512
513
514
515
516
517
518
  Proof.
    induction X as [|x X ? IH] using collection_ind_L.
    { by rewrite filter_empty_L !big_sepS_empty. }
    destruct (decide (P x)).
    - rewrite filter_union_L filter_singleton_L //.
      rewrite !big_sepS_insert //; last set_solver.
      by rewrite IH pure_True // left_id.
    - rewrite filter_union_L filter_singleton_not_L // left_id_L.
      by rewrite !big_sepS_insert // IH pure_False // False_impl left_id.
  Qed.

519
  Lemma big_sepS_sepS Φ Ψ X :
520
    ([ set] y  X, Φ y  Ψ y)  ([ set] y  X, Φ y)  ([ set] y  X, Ψ y).
521
  Proof. apply: big_opS_opS. Qed.
522

523
  Lemma big_sepS_later Φ X :  ([ set] y  X, Φ y)  ([ set] y  X,  Φ y).
524
  Proof. apply (big_opS_commute _). Qed.
525

Robbert Krebbers's avatar
Robbert Krebbers committed
526
527
528
529
  Lemma big_sepS_laterN Φ n X :
    ^n ([ set] y  X, Φ y)  ([ set] y  X, ^n Φ y).
  Proof. apply (big_opS_commute _). Qed.

530
  Lemma big_sepS_always Φ X :  ([ set] y  X, Φ y)  ([ set] y  X,  Φ y).
531
  Proof. apply (big_opS_commute _). Qed.
532

533
  Lemma big_sepS_always_if q Φ X :
534
    ?q ([ set] y  X, Φ y)  ([ set] y  X, ?q Φ y).
535
  Proof. apply (big_opS_commute _). Qed.
536
537

  Lemma big_sepS_forall Φ X :
Ralf Jung's avatar
Ralf Jung committed
538
    ( x, PersistentP (Φ x))  ([ set] x  X, Φ x)  ( x, x  X  Φ x).
539
540
541
  Proof.
    intros. apply (anti_symm _).
    { apply forall_intro=> x.
542
      apply impl_intro_l, pure_elim_l=> ?; by apply big_sepS_elem_of. }
543
    induction X as [|x X ? IH] using collection_ind_L.
544
545
    { rewrite big_sepS_empty; auto. }
    rewrite big_sepS_insert // -always_and_sep_l. apply and_intro.
546
    - by rewrite (forall_elim x) pure_True ?True_impl; last set_solver.
547
    - rewrite -IH. apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?.
548
      by rewrite pure_True ?True_impl; last set_solver.
549
550
551
  Qed.

  Lemma big_sepS_impl Φ Ψ X :
Ralf Jung's avatar
Ralf Jung committed
552
     ( x, x  X  Φ x  Ψ x)  ([ set] x  X, Φ x)  [ set] x  X, Ψ x.
553
554
  Proof.
    rewrite always_and_sep_l always_forall.
555
    setoid_rewrite always_impl; setoid_rewrite always_pure.
556
557
558
    rewrite -big_sepS_forall -big_sepS_sepS. apply big_sepS_mono; auto=> x ?.
    by rewrite -always_wand_impl always_elim wand_elim_l.
  Qed.
559

560
  Global Instance big_sepS_empty_persistent Φ : PersistentP ([ set] x  , Φ x).
561
  Proof. rewrite /big_opS elements_empty. apply _. Qed.
562
  Global Instance big_sepS_persistent Φ X :
563
    ( x, PersistentP (Φ x))  PersistentP ([ set] x  X, Φ x).
564
  Proof. rewrite /big_opS. apply _. Qed.
565
  Global Instance big_sepS_nil_timeless Φ : TimelessP ([ set] x  , Φ x).
566
  Proof. rewrite /big_opS elements_empty. apply _. Qed.
567
  Global Instance big_sepS_timeless Φ X :
568
    ( x, TimelessP (Φ x))  TimelessP ([ set] x  X, Φ x).
569
  Proof. rewrite /big_opS. apply _. Qed.
570
End gset.
Robbert Krebbers's avatar
Robbert Krebbers committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610


(** ** Big ops over finite multisets *)
Section gmultiset.
  Context `{Countable A}.
  Implicit Types X : gmultiset A.
  Implicit Types Φ : A  uPred M.

  Lemma big_sepMS_mono Φ Ψ X Y :
    Y  X  ( x, x  Y  Φ x  Ψ x) 
    ([ mset] x  X, Φ x)  [ mset] x  Y, Ψ x.
  Proof.
    intros HX HΦ. trans ([ mset] x  Y, Φ x)%I.
    - apply uPred_included. apply: big_op_contains.
      by apply fmap_contains, gmultiset_elements_contains.
    - apply big_opMS_forall; apply _ || auto.
  Qed.
  Lemma big_sepMS_proper Φ Ψ X :
    ( x, x  X  Φ x  Ψ x) 
    ([ mset] x  X, Φ x)  ([ mset] x  X, Ψ x).
  Proof. apply: big_opMS_proper. Qed.

  Global Instance big_sepMS_mono' X :
     Proper (pointwise_relation _ () ==> ()) (big_opMS (M:=uPredUR M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_sepMS_empty Φ : ([ mset] x  , Φ x)  True.
  Proof. by rewrite big_opMS_empty. Qed.

  Lemma big_sepMS_union Φ X Y :
    ([ mset] y  X  Y, Φ y)  ([ mset] y  X, Φ y)  [ mset] y  Y, Φ y.
  Proof. apply: big_opMS_union. Qed.

  Lemma big_sepMS_delete Φ X x :
    x  X  ([ mset] y  X, Φ y)  Φ x  [ mset] y  X  {[ x ]}, Φ y.
  Proof. apply: big_opMS_delete. Qed.

  Lemma big_sepMS_elem_of Φ X x : x  X  ([ mset] y  X, Φ y)  Φ x.
  Proof. intros. apply uPred_included. by apply: big_opMS_elem_of. Qed. 

611
612
613
614
615
616
617
  Lemma big_sepMS_elem_of_acc Φ X x :
    x  X 
    ([ mset] y  X, Φ y)  Φ x  (Φ x - ([ mset] y  X, Φ y)).
  Proof.
    intros. rewrite big_sepMS_delete //. by apply sep_mono_r, wand_intro_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
618
619
620
621
622
623
624
625
626
627
  Lemma big_sepMS_singleton Φ x : ([ mset] y  {[ x ]}, Φ y)  Φ x.
  Proof. apply: big_opMS_singleton. Qed.

  Lemma big_sepMS_sepMS Φ Ψ X :
    ([ mset] y  X, Φ y  Ψ y)  ([ mset] y  X, Φ y)  ([ mset] y  X, Ψ y).
  Proof. apply: big_opMS_opMS. Qed.

  Lemma big_sepMS_later Φ X :  ([ mset] y  X, Φ y)  ([ mset] y  X,  Φ y).
  Proof. apply (big_opMS_commute _). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
628
629
630
631
  Lemma big_sepMS_laterN Φ n X :
    ^n ([ mset] y  X, Φ y)  ([ mset] y  X, ^n Φ y).
  Proof. apply (big_opMS_commute _). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
  Lemma big_sepMS_always Φ X :  ([ mset] y  X, Φ y)  ([ mset] y  X,  Φ y).
  Proof. apply (big_opMS_commute _). Qed.

  Lemma big_sepMS_always_if q Φ X :
    ?q ([ mset] y  X, Φ y)  ([ mset] y  X, ?q Φ y).
  Proof. apply (big_opMS_commute _). Qed.

  Global Instance big_sepMS_empty_persistent Φ : PersistentP ([ mset] x  , Φ x).
  Proof. rewrite /big_opMS gmultiset_elements_empty. apply _. Qed.
  Global Instance big_sepMS_persistent Φ X :
    ( x, PersistentP (Φ x))  PersistentP ([ mset] x  X, Φ x).
  Proof. rewrite /big_opMS. apply _. Qed.
  Global Instance big_sepMS_nil_timeless Φ : TimelessP ([ mset] x  , Φ x).
  Proof. rewrite /big_opMS gmultiset_elements_empty. apply _. Qed.
  Global Instance big_sepMS_timeless Φ X :
    ( x, TimelessP (Φ x))  TimelessP ([ mset] x  X, Φ x).
  Proof. rewrite /big_opMS. apply _. Qed.
End gmultiset.
650
End big_op.