cofe.v 13.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
Require Export modures.base.
Robbert Krebbers's avatar
Robbert Krebbers committed
2 3 4

(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
5
Instance: Params (@dist) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
6 7 8 9
Notation "x ={ n }= y" := (dist n x y)
  (at level 70, n at next level, format "x  ={ n }=  y").
Hint Extern 0 (?x ={_}= ?x) => reflexivity.
Hint Extern 0 (_ ={_}= _) => symmetry; assumption.
10 11 12 13 14 15 16 17

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
  | _ => progress simplify_equality'
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
18 19
  repeat match goal with
  | _ => progress simplify_equality'
20 21
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
22
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Record chain (A : Type) `{Dist A} := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car n ={n}= chain_car i
}.
Arguments chain_car {_ _} _ _.
Arguments chain_cauchy {_ _} _ _ _ _.
Class Compl A `{Dist A} := compl : chain A  A.

Class Cofe A `{Equiv A, Compl A} := {
  equiv_dist x y : x  y   n, x ={n}= y;
  dist_equivalence n :> Equivalence (dist n);
  dist_S n x y : x ={S n}= y  x ={n}= y;
  dist_0 x y : x ={0}= y;
  conv_compl (c : chain A) n : compl c ={n}= c n
}.
Hint Extern 0 (_ ={0}= _) => apply dist_0.
Class Contractive `{Dist A, Dist B} (f : A -> B) :=
  contractive n : Proper (dist n ==> dist (S n)) f.

(** Bundeled version *)
Structure cofeT := CofeT {
  cofe_car :> Type;
  cofe_equiv : Equiv cofe_car;
  cofe_dist : Dist cofe_car;
  cofe_compl : Compl cofe_car;
  cofe_cofe : Cofe cofe_car
}.
Arguments CofeT _ {_ _ _ _}.
Add Printing Constructor cofeT.
Existing Instances cofe_equiv cofe_dist cofe_compl cofe_cofe.
54 55 56 57 58
Arguments cofe_car _ : simpl never.
Arguments cofe_equiv _ _ _ : simpl never.
Arguments cofe_dist _ _ _ _ : simpl never.
Arguments cofe_compl _ _ : simpl never.
Arguments cofe_cofe _ : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
59 60 61 62 63 64 65 66 67 68 69 70 71 72

(** General properties *)
Section cofe.
  Context `{Cofe A}.
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
    * by intros x; rewrite equiv_dist.
    * by intros x y; rewrite !equiv_dist.
    * by intros x y z; rewrite !equiv_dist; intros; transitivity y.
  Qed.
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (dist n).
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
Robbert Krebbers's avatar
Robbert Krebbers committed
73 74
    * by transitivity x1; [|transitivity y1].
    * by transitivity x2; [|transitivity y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
75 76 77
  Qed.
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (dist n).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
79 80 81 82 83
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
  Lemma dist_le x y n n' : x ={n}= y  n'  n  x ={n'}= y.
  Proof. induction 2; eauto using dist_S. Qed.
84
  Instance ne_proper `{Cofe B} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
85 86
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
87
  Instance ne_proper_2 `{Cofe B, Cofe C} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
88 89 90 91
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
92
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94
  Qed.
  Lemma compl_ne (c1 c2: chain A) n : c1 n ={n}= c2 n  compl c1 ={n}= compl c2.
Robbert Krebbers's avatar
Robbert Krebbers committed
95
  Proof. intros. by rewrite (conv_compl c1 n) (conv_compl c2 n). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
96 97
  Lemma compl_ext (c1 c2 : chain A) : ( i, c1 i  c2 i)  compl c1  compl c2.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using compl_ne. Qed.
98 99 100 101 102
  Global Instance contractive_ne `{Cofe B} (f : A  B) `{!Contractive f} n :
    Proper (dist n ==> dist n) f | 100.
  Proof. by intros x1 x2 ?; apply dist_S, contractive. Qed.
  Global Instance contractive_proper `{Cofe B} (f : A  B) `{!Contractive f} :
    Proper (() ==> ()) f | 100 := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
103 104
End cofe.

Robbert Krebbers's avatar
Robbert Krebbers committed
105 106 107 108 109 110
(** Mapping a chain *)
Program Definition chain_map `{Dist A, Dist B} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A ? B ? f Hf c n i ?; apply Hf, chain_cauchy. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
111 112 113 114
(** Timeless elements *)
Class Timeless `{Dist A, Equiv A} (x : A) := timeless y : x ={1}= y  x  y.
Arguments timeless {_ _ _} _ {_} _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
115
(** Fixpoint *)
116 117
Program Definition fixpoint_chain `{Cofe A, Inhabited A} (f : A  A)
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter i f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
118 119
Next Obligation.
  intros A ???? f ? x n; induction n as [|n IH]; intros i ?; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
120
  destruct i as [|i]; simpl; first lia; apply contractive, IH; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
Qed.
122 123
Program Definition fixpoint `{Cofe A, Inhabited A} (f : A  A)
  `{!Contractive f} : A := compl (fixpoint_chain f).
Robbert Krebbers's avatar
Robbert Krebbers committed
124 125

Section fixpoint.
126 127
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129
  Proof.
    apply equiv_dist; intros n; unfold fixpoint.
130
    rewrite (conv_compl (fixpoint_chain f) n).
Robbert Krebbers's avatar
Robbert Krebbers committed
131
    by rewrite {1}(chain_cauchy (fixpoint_chain f) n (S n)); last lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
132
  Qed.
133 134
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
    ( z, f z ={n}= g z)  fixpoint f ={n}= fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
135
  Proof.
136
    intros Hfg; unfold fixpoint.
Robbert Krebbers's avatar
Robbert Krebbers committed
137 138
    rewrite (conv_compl (fixpoint_chain f) n) (conv_compl (fixpoint_chain g) n).
    induction n as [|n IH]; simpl in *; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
139 140
    rewrite Hfg; apply contractive, IH; auto using dist_S.
  Qed.
141 142
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
143 144
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
End fixpoint.
145
Global Opaque fixpoint.
Robbert Krebbers's avatar
Robbert Krebbers committed
146 147

(** Function space *)
Robbert Krebbers's avatar
Robbert Krebbers committed
148
Record cofeMor (A B : cofeT) : Type := CofeMor {
Robbert Krebbers's avatar
Robbert Krebbers committed
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  cofe_mor_car :> A  B;
  cofe_mor_ne n : Proper (dist n ==> dist n) cofe_mor_car
}.
Arguments CofeMor {_ _} _ {_}.
Add Printing Constructor cofeMor.
Existing Instance cofe_mor_ne.

Instance cofe_mor_proper `(f : cofeMor A B) : Proper (() ==> ()) f := _.
Instance cofe_mor_equiv {A B : cofeT} : Equiv (cofeMor A B) := λ f g,
   x, f x  g x.
Instance cofe_mor_dist (A B : cofeT) : Dist (cofeMor A B) := λ n f g,
   x, f x ={n}= g x.
Program Definition fun_chain `(c : chain (cofeMor A B)) (x : A) : chain B :=
  {| chain_car n := c n x |}.
Next Obligation. intros A B c x n i ?. by apply (chain_cauchy c). Qed.
Program Instance cofe_mor_compl (A B : cofeT) : Compl (cofeMor A B) := λ c,
  {| cofe_mor_car x := compl (fun_chain c x) |}.
Next Obligation.
  intros A B c n x y Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
168 169
  rewrite (conv_compl (fun_chain c x) n) (conv_compl (fun_chain c y) n) /= Hxy.
  apply (chain_cauchy c); lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
Qed.
Instance cofe_mor_cofe (A B : cofeT) : Cofe (cofeMor A B).
Proof.
  split.
  * intros X Y; split; [intros HXY n k; apply equiv_dist, HXY|].
    intros HXY k; apply equiv_dist; intros n; apply HXY.
  * intros n; split.
    + by intros f x.
    + by intros f g ? x.
    + by intros f g h ?? x; transitivity (g x).
  * by intros n f g ? x; apply dist_S.
  * by intros f g x.
  * intros c n x; simpl.
    rewrite (conv_compl (fun_chain c x) n); apply (chain_cauchy c); lia.
Qed.
185 186 187 188 189
Instance cofe_mor_car_ne A B n :
  Proper (dist n ==> dist n ==> dist n) (@cofe_mor_car A B).
Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
Instance cofe_mor_car_proper A B :
  Proper (() ==> () ==> ()) (@cofe_mor_car A B) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
190 191 192 193
Lemma cofe_mor_ext {A B} (f g : cofeMor A B) : f  g   x, f x  g x.
Proof. done. Qed.
Canonical Structure cofe_mor (A B : cofeT) : cofeT := CofeT (cofeMor A B).
Infix "-n>" := cofe_mor (at level 45, right associativity).
194 195
Instance cofe_more_inhabited (A B : cofeT)
  `{Inhabited B} : Inhabited (A -n> B) := populate (CofeMor (λ _, inhabitant)).
Robbert Krebbers's avatar
Robbert Krebbers committed
196 197 198 199 200 201 202 203 204 205

(** Identity and composition *)
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
  f1 ={n}= f2  g1 ={n}= g2  f1  g1 ={n}= f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
206
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

(** Pre-composition as a functor *)
Local Instance ccompose_l_ne' {A B C} (f : B -n> A) n :
  Proper (dist n ==> dist n) (λ g : A -n> C, g  f).
Proof. by intros g1 g2 ?; apply ccompose_ne. Qed.
Definition ccompose_l {A B C} (f : B -n> A) : (A -n> C) -n> (B -n> C) :=
  CofeMor (λ g : A -n> C, g  f).
Instance ccompose_l_ne {A B C} : Proper (dist n ==> dist n) (@ccompose_l A B C).
Proof. by intros n f1 f2 Hf g x; apply ccompose_ne. Qed.

(** unit *)
Instance unit_dist : Dist unit := λ _ _ _, True.
Instance unit_compl : Compl unit := λ _, ().
Instance unit_cofe : Cofe unit.
Proof. by repeat split; try exists 0. Qed.

(** Product *)
Instance prod_dist `{Dist A, Dist B} : Dist (A * B) := λ n,
  prod_relation (dist n) (dist n).
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227 228 229
Instance pair_ne `{Dist A, Dist B} :
  Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
Instance fst_ne `{Dist A, Dist B} : Proper (dist n ==> dist n) (@fst A B) := _.
Instance snd_ne `{Dist A, Dist B} : Proper (dist n ==> dist n) (@snd A B) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
Instance prod_compl `{Compl A, Compl B} : Compl (A * B) := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
231
  (compl (chain_map fst c), compl (chain_map snd c)).
Robbert Krebbers's avatar
Robbert Krebbers committed
232 233 234 235 236 237 238 239
Instance prod_cofe `{Cofe A, Cofe B} : Cofe (A * B).
Proof.
  split.
  * intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
    rewrite !equiv_dist; naive_solver.
  * apply _.
  * by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
  * by split.
Robbert Krebbers's avatar
Robbert Krebbers committed
240 241
  * intros c n; split. apply (conv_compl (chain_map fst c) n).
    apply (conv_compl (chain_map snd c) n).
Robbert Krebbers's avatar
Robbert Krebbers committed
242
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245
Instance pair_timeless `{Dist A, Equiv A, Dist B, Equiv B} (x : A) (y : B) :
  Timeless x  Timeless y  Timeless (x,y).
Proof. by intros ?? [x' y'] [??]; split; apply (timeless _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
246
Canonical Structure prodC (A B : cofeT) : cofeT := CofeT (A * B).
247
Instance prod_map_ne `{Dist A, Dist A', Dist B, Dist B'} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
248 249 250 251 252 253 254 255 256 257
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

Typeclasses Opaque prod_dist.
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
  Instance discrete_dist : Dist A := λ n x y,
    match n with 0 => True | S n => x  y end.
  Instance discrete_compl : Compl A := λ c, c 1.
  Instance discrete_cofe : Cofe A.
  Proof.
    split.
    * intros x y; split; [by intros ? []|intros Hn; apply (Hn 1)].
    * intros [|n]; [done|apply _].
    * by intros [|n].
    * done.
    * intros c [|n]; [done|apply (chain_cauchy c 1 (S n)); lia].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
274 275
  Global Instance discrete_timeless (x : A) : Timeless x.
  Proof. by intros y. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
276
  Definition discreteC : cofeT := CofeT A.
277
End discrete_cofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
278
Arguments discreteC _ {_ _}.
279

Robbert Krebbers's avatar
Robbert Krebbers committed
280
Definition leibnizC (A : Type) : cofeT := @discreteC A equivL _.
Robbert Krebbers's avatar
Robbert Krebbers committed
281 282
Canonical Structure natC := leibnizC nat.
Canonical Structure boolC := leibnizC bool.
283

284 285
(** Later *)
Inductive later (A : Type) : Type := Later { later_car : A }.
286
Add Printing Constructor later.
287 288
Arguments Later {_} _.
Arguments later_car {_} _.
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
Section later.
  Instance later_equiv `{Equiv A} : Equiv (later A) := λ x y,
    later_car x  later_car y.
  Instance later_dist `{Dist A} : Dist (later A) := λ n x y,
    match n with 0 => True | S n => later_car x ={n}= later_car y end.
  Program Definition later_chain `{Dist A} (c : chain (later A)) : chain A :=
    {| chain_car n := later_car (c (S n)) |}.
  Next Obligation. intros A ? c n i ?; apply (chain_cauchy c (S n)); lia. Qed.
  Instance later_compl `{Compl A} : Compl (later A) := λ c,
    Later (compl (later_chain c)).
  Instance later_cofe `{Cofe A} : Cofe (later A).
  Proof.
    split.
    * intros x y; unfold equiv, later_equiv; rewrite !equiv_dist.
      split. intros Hxy [|n]; [done|apply Hxy]. intros Hxy n; apply (Hxy (S n)).
    * intros [|n]; [by split|split]; unfold dist, later_dist.
      + by intros [x].
      + by intros [x] [y].
      + by intros [x] [y] [z] ??; transitivity y.
    * intros [|n] [x] [y] ?; [done|]; unfold dist, later_dist; by apply dist_S.
    * done.
    * intros c [|n]; [done|by apply (conv_compl (later_chain c) n)].
  Qed.
  Canonical Structure laterC (A : cofeT) : cofeT := CofeT (later A).

315 316
  Global Instance Later_contractive `{Dist A} : Contractive (@Later A).
  Proof. by intros n ??. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
317 318
  Definition later_map {A B} (f : A  B) (x : later A) : later B :=
    Later (f (later_car x)).
319 320 321 322
  Global Instance later_map_ne `{Cofe A, Cofe B} (f : A  B) n :
    Proper (dist (pred n) ==> dist (pred n)) f 
    Proper (dist n ==> dist n) (later_map f) | 0.
  Proof. destruct n as [|n]; intros Hf [x] [y] ?; do 2 red; simpl; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
323
  Lemma later_fmap_id {A} (x : later A) : later_map id x = x.
324 325
  Proof. by destruct x. Qed.
  Lemma later_fmap_compose {A B C} (f : A  B) (g : B  C) (x : later A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
326
    later_map (g  f) x = later_map g (later_map f x).
327 328
  Proof. by destruct x. Qed.
  Definition laterC_map {A B} (f : A -n> B) : laterC A -n> laterC B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
329
    CofeMor (later_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
330
  Instance laterC_map_contractive (A B : cofeT) : Contractive (@laterC_map A B).
331 332
  Proof. intros n f g Hf n'; apply Hf. Qed.
End later.