cofe.v 29.1 KB
Newer Older
1
From iris.algebra Require Export base.
Robbert Krebbers's avatar
Robbert Krebbers committed
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
(** This files defines (a shallow embedding of) the category of COFEs:
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.

    In principle, it would be possible to perform a large part of the
    development on OFEs, i.e., on bisected metric spaces that are not
    necessary complete. This is because the function space A → B has a
    completion if B has one - for A, the metric itself suffices.
    That would result in a simplification of some constructions, becuase
    no completion would have to be provided. However, on the other hand,
    we would have to introduce the notion of OFEs into our alebraic
    hierarchy, which we'd rather avoid. Furthermore, on paper, justifying
    this mix of OFEs and COFEs is a little fuzzy.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
22
23
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
24
Instance: Params (@dist) 3.
25
26
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
27
Hint Extern 0 (_ {_} _) => reflexivity.
28
Hint Extern 0 (_ {_} _) => symmetry; assumption.
29
30
31

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
32
  | _ => progress simplify_eq/=
33
34
35
36
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
37
  repeat match goal with
38
  | _ => progress simplify_eq/=
39
40
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
41
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
42
43
44

Record chain (A : Type) `{Dist A} := {
  chain_car :> nat  A;
45
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
48
49
50
}.
Arguments chain_car {_ _} _ _.
Arguments chain_cauchy {_ _} _ _ _ _.
Class Compl A `{Dist A} := compl : chain A  A.

51
Record CofeMixin A `{Equiv A, Compl A} := {
52
  mixin_equiv_dist x y : x  y   n, x {n} y;
53
  mixin_dist_equivalence n : Equivalence (dist n);
54
  mixin_dist_S n x y : x {S n} y  x {n} y;
55
  mixin_conv_compl n c : compl c {n} c n
Robbert Krebbers's avatar
Robbert Krebbers committed
56
}.
57
Class Contractive `{Dist A, Dist B} (f : A  B) :=
58
  contractive n x y : ( i, i < n  x {i} y)  f x {n} f y.
Robbert Krebbers's avatar
Robbert Krebbers committed
59
60

(** Bundeled version *)
61
Structure cofeT := CofeT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
62
63
64
65
  cofe_car :> Type;
  cofe_equiv : Equiv cofe_car;
  cofe_dist : Dist cofe_car;
  cofe_compl : Compl cofe_car;
66
67
  cofe_mixin : CofeMixin cofe_car;
  cofe_car' : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
68
}.
69
70
Arguments CofeT' _ {_ _ _} _ _.
Notation CofeT A m := (CofeT' A m A).
Robbert Krebbers's avatar
Robbert Krebbers committed
71
Add Printing Constructor cofeT.
72
73
74
Hint Extern 0 (Equiv _) => eapply (@cofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@cofe_dist _) : typeclass_instances.
Hint Extern 0 (Compl _) => eapply (@cofe_compl _) : typeclass_instances.
75
76
77
78
79
80
81
82
83
84
Arguments cofe_car : simpl never.
Arguments cofe_equiv : simpl never.
Arguments cofe_dist : simpl never.
Arguments cofe_compl : simpl never.
Arguments cofe_mixin : simpl never.

(** Lifting properties from the mixin *)
Section cofe_mixin.
  Context {A : cofeT}.
  Implicit Types x y : A.
85
  Lemma equiv_dist x y : x  y   n, x {n} y.
86
87
88
  Proof. apply (mixin_equiv_dist _ (cofe_mixin A)). Qed.
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
  Proof. apply (mixin_dist_equivalence _ (cofe_mixin A)). Qed.
89
  Lemma dist_S n x y : x {S n} y  x {n} y.
90
  Proof. apply (mixin_dist_S _ (cofe_mixin A)). Qed.
91
  Lemma conv_compl n (c : chain A) : compl c {n} c n.
92
93
94
  Proof. apply (mixin_conv_compl _ (cofe_mixin A)). Qed.
End cofe_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
95
96
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

97
(** Discrete COFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
98
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
99
   more sense. *)
100
101
Class Timeless `{Equiv A, Dist A} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_ _ _} _ {_} _ _.
102
103
Class Discrete (A : cofeT) := discrete_timeless (x : A) :> Timeless x.

Robbert Krebbers's avatar
Robbert Krebbers committed
104
105
(** General properties *)
Section cofe.
106
107
  Context {A : cofeT}.
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
109
110
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
111
112
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
113
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
  Qed.
115
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
116
117
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
118
119
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
120
  Qed.
121
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
122
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
124
125
126
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
127
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
  Proof. induction 2; eauto using dist_S. Qed.
129
130
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
131
  Instance ne_proper {B : cofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
132
133
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
134
  Instance ne_proper_2 {B C : cofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
135
136
137
138
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
139
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
140
  Qed.
141
  Lemma contractive_S {B : cofeT} (f : A  B) `{!Contractive f} n x y :
142
143
    x {n} y  f x {S n} f y.
  Proof. eauto using contractive, dist_le with omega. Qed.
144
145
146
  Lemma contractive_0 {B : cofeT} (f : A  B) `{!Contractive f} x y :
    f x {0} f y.
  Proof. eauto using contractive with omega. Qed.
147
  Global Instance contractive_ne {B : cofeT} (f : A  B) `{!Contractive f} n :
148
    Proper (dist n ==> dist n) f | 100.
149
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
150
  Global Instance contractive_proper {B : cofeT} (f : A  B) `{!Contractive f} :
151
    Proper (() ==> ()) f | 100 := _.
152

153
154
155
156
157
  Lemma conv_compl' n (c : chain A) : compl c {n} c (S n).
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
158
159
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
160
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
161
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
End cofe.

164
165
166
Instance const_contractive {A B : cofeT} (x : A) : Contractive (@const A B x).
Proof. by intros n y1 y2. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
167
168
169
170
(** Mapping a chain *)
Program Definition chain_map `{Dist A, Dist B} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
171
Next Obligation. by intros ? A ? B f Hf c n i ?; apply Hf, chain_cauchy. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
172

Robbert Krebbers's avatar
Robbert Krebbers committed
173
(** Fixpoint *)
174
Program Definition fixpoint_chain {A : cofeT} `{Inhabited A} (f : A  A)
175
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
Next Obligation.
177
178
  intros A ? f ? n.
  induction n as [|n IH]; intros [|i] ?; simpl in *; try reflexivity || omega.
179
180
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
181
Qed.
182
183

Program Definition fixpoint_def {A : cofeT} `{Inhabited A} (f : A  A)
184
  `{!Contractive f} : A := compl (fixpoint_chain f).
185
186
187
Definition fixpoint_aux : { x | x = @fixpoint_def }. by eexists. Qed.
Definition fixpoint {A AiH} f {Hf} := proj1_sig fixpoint_aux A AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := proj2_sig fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
189

Section fixpoint.
190
  Context {A : cofeT} `{Inhabited A} (f : A  A) `{!Contractive f}.
191
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
192
  Proof.
193
194
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
195
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
  Qed.
197
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
198
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
199
  Proof.
200
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
201
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
202
203
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
204
  Qed.
205
206
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
207
208
209
210
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
End fixpoint.

(** Function space *)
Robbert Krebbers's avatar
Robbert Krebbers committed
211
Record cofeMor (A B : cofeT) : Type := CofeMor {
Robbert Krebbers's avatar
Robbert Krebbers committed
212
213
214
215
216
217
218
  cofe_mor_car :> A  B;
  cofe_mor_ne n : Proper (dist n ==> dist n) cofe_mor_car
}.
Arguments CofeMor {_ _} _ {_}.
Add Printing Constructor cofeMor.
Existing Instance cofe_mor_ne.

219
220
221
222
223
Section cofe_mor.
  Context {A B : cofeT}.
  Global Instance cofe_mor_proper (f : cofeMor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, cofe_mor_ne. Qed.
  Instance cofe_mor_equiv : Equiv (cofeMor A B) := λ f g,  x, f x  g x.
224
  Instance cofe_mor_dist : Dist (cofeMor A B) := λ n f g,  x, f x {n} g x.
225
226
227
228
229
230
  Program Definition fun_chain `(c : chain (cofeMor A B)) (x : A) : chain B :=
    {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Instance cofe_mor_compl : Compl (cofeMor A B) := λ c,
    {| cofe_mor_car x := compl (fun_chain c x) |}.
  Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
231
232
    intros c n x y Hx. by rewrite (conv_compl n (fun_chain c x))
      (conv_compl n (fun_chain c y)) /= Hx.
233
234
235
236
  Qed.
  Definition cofe_mor_cofe_mixin : CofeMixin (cofeMor A B).
  Proof.
    split.
237
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
238
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
239
    - intros n; split.
240
241
      + by intros f x.
      + by intros f g ? x.
242
      + by intros f g h ?? x; trans (g x).
243
    - by intros n f g ? x; apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
244
245
    - intros n c x; simpl.
      by rewrite (conv_compl n (fun_chain c x)) /=.
246
  Qed.
247
  Canonical Structure cofe_mor : cofeT := CofeT (cofeMor A B) cofe_mor_cofe_mixin.
248
249
250
251
252
253
254
255
256
257
258

  Global Instance cofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@cofe_mor_car A B).
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
  Global Instance cofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@cofe_mor_car A B) := ne_proper_2 _.
  Lemma cofe_mor_ext (f g : cofeMor A B) : f  g   x, f x  g x.
  Proof. done. Qed.
End cofe_mor.

Arguments cofe_mor : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
Infix "-n>" := cofe_mor (at level 45, right associativity).
260
261
Instance cofe_more_inhabited {A B : cofeT} `{Inhabited B} :
  Inhabited (A -n> B) := populate (CofeMor (λ _, inhabitant)).
Robbert Krebbers's avatar
Robbert Krebbers committed
262

263
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
264
265
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
266
267
Definition cconst {A B : cofeT} (x : B) : A -n> B := CofeMor (const x).
Instance: Params (@cconst) 2.
268

Robbert Krebbers's avatar
Robbert Krebbers committed
269
270
271
272
273
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
274
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
275
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
276

Ralf Jung's avatar
Ralf Jung committed
277
(* Function space maps *)
278
Definition cofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
279
  (h : A -n> B) : A' -n> B' := g  h  f.
280
Instance cofe_mor_map_ne {A A' B B'} n :
Ralf Jung's avatar
Ralf Jung committed
281
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@cofe_mor_map A A' B B').
282
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
283

284
Definition cofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
Ralf Jung's avatar
Ralf Jung committed
285
  (A -n> B) -n> (A' -n>  B') := CofeMor (cofe_mor_map f g).
286
Instance cofe_morC_map_ne {A A' B B'} n :
Ralf Jung's avatar
Ralf Jung committed
287
288
289
  Proper (dist n ==> dist n ==> dist n) (@cofe_morC_map A A' B B').
Proof.
  intros f f' Hf g g' Hg ?. rewrite /= /cofe_mor_map.
290
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
291
292
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
293
(** unit *)
294
295
296
297
298
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
  Instance unit_compl : Compl unit := λ _, ().
  Definition unit_cofe_mixin : CofeMixin unit.
  Proof. by repeat split; try exists 0. Qed.
299
  Canonical Structure unitC : cofeT := CofeT unit unit_cofe_mixin.
300
  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
  Proof. done. Qed.
302
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
304

(** Product *)
305
306
307
308
309
310
311
312
313
314
315
316
317
Section product.
  Context {A B : cofeT}.

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
  Instance prod_compl : Compl (A * B) := λ c,
    (compl (chain_map fst c), compl (chain_map snd c)).
  Definition prod_cofe_mixin : CofeMixin (A * B).
  Proof.
    split.
318
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
319
      rewrite !equiv_dist; naive_solver.
320
321
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
    - intros n c; split. apply (conv_compl n (chain_map fst c)).
      apply (conv_compl n (chain_map snd c)).
324
  Qed.
325
  Canonical Structure prodC : cofeT := CofeT (A * B) prod_cofe_mixin.
326
327
328
  Global Instance pair_timeless (x : A) (y : B) :
    Timeless x  Timeless y  Timeless (x,y).
  Proof. by intros ?? [x' y'] [??]; split; apply (timeless _). Qed.
329
330
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
331
332
333
334
335
336
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

Instance prod_map_ne {A A' B B' : cofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
337
338
339
340
341
342
343
344
345
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

346
347
(** Functors *)
Structure cFunctor := CFunctor {
348
  cFunctor_car : cofeT  cofeT  cofeT;
349
350
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
351
352
  cFunctor_ne {A1 A2 B1 B2} n :
    Proper (dist n ==> dist n) (@cFunctor_map A1 A2 B1 B2);
353
354
355
356
357
358
  cFunctor_id {A B : cofeT} (x : cFunctor_car A B) :
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
359
Existing Instance cFunctor_ne.
360
361
Instance: Params (@cFunctor_map) 5.

362
363
364
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

365
366
367
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

368
369
370
371
372
373
374
Definition cFunctor_diag (F: cFunctor) (A: cofeT) : cofeT := cFunctor_car F A A.
Coercion cFunctor_diag : cFunctor >-> Funclass.

Program Definition constCF (B : cofeT) : cFunctor :=
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

375
Instance constCF_contractive B : cFunctorContractive (constCF B).
376
Proof. rewrite /cFunctorContractive; apply _. Qed.
377
378
379
380
381

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.

382
383
384
385
386
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
387
388
389
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
390
391
392
393
394
395
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.

396
397
398
399
400
401
402
403
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

Ralf Jung's avatar
Ralf Jung committed
404
405
406
407
408
Program Definition cofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := cofe_mor (cFunctor_car F1 B A) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    cofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
|}.
409
410
411
412
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
  apply cofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
Qed.
Ralf Jung's avatar
Ralf Jung committed
413
Next Obligation.
414
415
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
416
417
Qed.
Next Obligation.
418
419
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
420
421
Qed.

422
423
424
425
426
427
428
429
Instance cofe_morCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (cofe_morCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
  apply cofe_morC_map_ne; apply cFunctor_contractive=>i ?; split; by apply Hfg.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
(** Sum *)
Section sum.
  Context {A B : cofeT}.

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
  Global Instance inl_ne : Proper (dist n ==> dist n) (@inl A B) := _.
  Global Instance inr_ne : Proper (dist n ==> dist n) (@inr A B) := _.
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

  Program Definition inl_chain (c : chain (A + B)) (a : A) : chain A :=
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
  Program Definition inr_chain (c : chain (A + B)) (b : B) : chain B :=
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

  Instance sum_compl : Compl (A + B) := λ c,
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.

  Definition sum_cofe_mixin : CofeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
    - intros n c; rewrite /compl /sum_compl.
      feed inversion (chain_cauchy c 0 n); first auto with lia; constructor.
      + rewrite (conv_compl n (inl_chain c _)) /=. destruct (c n); naive_solver.
      + rewrite (conv_compl n (inr_chain c _)) /=. destruct (c n); naive_solver.
  Qed.
  Canonical Structure sumC : cofeT := CofeT (A + B) sum_cofe_mixin.

  Global Instance inl_timeless (x : A) : Timeless x  Timeless (inl x).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance inr_timeless (y : B) : Timeless y  Timeless (inr y).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance sum_discrete_cofe : Discrete A  Discrete B  Discrete sumC.
  Proof. intros ?? [?|?]; apply _. Qed.
End sum.

Arguments sumC : clear implicits.
Typeclasses Opaque sum_dist.

Instance sum_map_ne {A A' B B' : cofeT} n :
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@sum_map A A' B B').
Proof.
  intros f f' Hf g g' Hg ??; destruct 1; constructor; [by apply Hf|by apply Hg].
Qed.
Definition sumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  sumC A B -n> sumC A' B' := CofeMor (sum_map f g).
Instance sumC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@sumC_map A A' B B').
Proof. intros f f' Hf g g' Hg [?|?]; constructor; [apply Hf|apply Hg]. Qed.

Program Definition sumCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := sumC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    sumC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply sumC_map_ne; apply cFunctor_ne.
Qed.
Next Obligation. by intros F1 F2 A B [?|?]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [?|?]; simpl;
    by rewrite !cFunctor_compose.
Qed.

Instance sumCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (sumCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply sumC_map_ne; apply cFunctor_contractive.
Qed.

513
514
515
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
516
  Instance discrete_dist : Dist A := λ n x y, x  y.
517
  Instance discrete_compl : Compl A := λ c, c 0.
518
  Definition discrete_cofe_mixin : CofeMixin A.
519
520
  Proof.
    split.
521
522
523
    - intros x y; split; [done|intros Hn; apply (Hn 0)].
    - done.
    - done.
524
525
    - intros n c. rewrite /compl /discrete_compl /=;
      symmetry; apply (chain_cauchy c 0 n). omega.
526
527
528
  Qed.
End discrete_cofe.

529
530
531
532
533
534
535
536
Notation discreteC A := (CofeT A discrete_cofe_mixin).
Notation leibnizC A := (CofeT A (@discrete_cofe_mixin _ equivL _)).

Instance discrete_discrete_cofe `{Equiv A, @Equivalence A ()} :
  Discrete (discreteC A).
Proof. by intros x y. Qed.
Instance leibnizC_leibniz A : LeibnizEquiv (leibnizC A).
Proof. by intros x y. Qed.
537

Robbert Krebbers's avatar
Robbert Krebbers committed
538
539
Canonical Structure natC := leibnizC nat.
Canonical Structure boolC := leibnizC bool.
540

541
542
543
544
(* Option *)
Section option.
  Context {A : cofeT}.

545
  Instance option_dist : Dist (option A) := λ n, option_Forall2 (dist n).
546
  Lemma dist_option_Forall2 n mx my : mx {n} my  option_Forall2 (dist n) mx my.
547
  Proof. done. Qed.
548
549

  Program Definition option_chain (c : chain (option A)) (x : A) : chain A :=
550
    {| chain_car n := from_option id x (c n) |}.
551
552
553
554
555
556
557
558
559
560
  Next Obligation. intros c x n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
  Instance option_compl : Compl (option A) := λ c,
    match c 0 with Some x => Some (compl (option_chain c x)) | None => None end.

  Definition option_cofe_mixin : CofeMixin (option A).
  Proof.
    split.
    - intros mx my; split; [by destruct 1; constructor; apply equiv_dist|].
      intros Hxy; destruct (Hxy 0); constructor; apply equiv_dist.
      by intros n; feed inversion (Hxy n).
561
    - apply _.
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    - destruct 1; constructor; by apply dist_S.
    - intros n c; rewrite /compl /option_compl.
      feed inversion (chain_cauchy c 0 n); first auto with lia; constructor.
      rewrite (conv_compl n (option_chain c _)) /=. destruct (c n); naive_solver.
  Qed.
  Canonical Structure optionC := CofeT (option A) option_cofe_mixin.
  Global Instance option_discrete : Discrete A  Discrete optionC.
  Proof. destruct 2; constructor; by apply (timeless _). Qed.

  Global Instance Some_ne : Proper (dist n ==> dist n) (@Some A).
  Proof. by constructor. Qed.
  Global Instance is_Some_ne n : Proper (dist n ==> iff) (@is_Some A).
  Proof. destruct 1; split; eauto. Qed.
  Global Instance Some_dist_inj : Inj (dist n) (dist n) (@Some A).
  Proof. by inversion_clear 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
577
578
579
  Global Instance from_option_ne {B} (R : relation B) (f : A  B) n :
    Proper (dist n ==> R) f  Proper (R ==> dist n ==> R) (from_option f).
  Proof. destruct 3; simpl; auto. Qed.
580
581
582
583
584

  Global Instance None_timeless : Timeless (@None A).
  Proof. inversion_clear 1; constructor. Qed.
  Global Instance Some_timeless x : Timeless x  Timeless (Some x).
  Proof. by intros ?; inversion_clear 1; constructor; apply timeless. Qed.
585
586
587
588
589
590
591
592
593
594
595
596
597

  Lemma dist_None n mx : mx {n} None  mx = None.
  Proof. split; [by inversion_clear 1|by intros ->]. Qed.
  Lemma dist_Some_inv_l n mx my x :
    mx {n} my  mx = Some x   y, my = Some y  x {n} y.
  Proof. destruct 1; naive_solver. Qed.
  Lemma dist_Some_inv_r n mx my y :
    mx {n} my  my = Some y   x, mx = Some x  x {n} y.
  Proof. destruct 1; naive_solver. Qed.
  Lemma dist_Some_inv_l' n my x : Some x {n} my   x', Some x' = my  x {n} x'.
  Proof. intros ?%(dist_Some_inv_l _ _ _ x); naive_solver. Qed.
  Lemma dist_Some_inv_r' n mx y : mx {n} Some y   y', mx = Some y'  y {n} y'.
  Proof. intros ?%(dist_Some_inv_r _ _ _ y); naive_solver. Qed.
598
599
End option.

600
Typeclasses Opaque option_dist.
601
602
Arguments optionC : clear implicits.

Robbert Krebbers's avatar
Robbert Krebbers committed
603
604
605
Instance option_fmap_ne {A B : cofeT} n:
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@fmap option _ A B).
Proof. intros f f' Hf ?? []; constructor; auto. Qed.
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
Definition optionC_map {A B} (f : A -n> B) : optionC A -n> optionC B :=
  CofeMor (fmap f : optionC A  optionC B).
Instance optionC_map_ne A B n : Proper (dist n ==> dist n) (@optionC_map A B).
Proof. by intros f f' Hf []; constructor; apply Hf. Qed.

Program Definition optionCF (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := optionC (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := optionC_map (cFunctor_map F fg)
|}.
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply optionC_map_ne, cFunctor_ne.
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(option_fmap_id x).
  apply option_fmap_setoid_ext=>y; apply cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -option_fmap_compose.
  apply option_fmap_setoid_ext=>y; apply cFunctor_compose.
Qed.

Instance optionCF_contractive F :
  cFunctorContractive F  cFunctorContractive (optionCF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply optionC_map_ne, cFunctor_contractive.
Qed.

633
(** Later *)
634
Inductive later (A : Type) : Type := Next { later_car : A }.
635
Add Printing Constructor later.
636
Arguments Next {_} _.
637
Arguments later_car {_} _.
638
Lemma later_eta {A} (x : later A) : Next (later_car x) = x.
Robbert Krebbers's avatar
Robbert Krebbers committed
639
Proof. by destruct x. Qed.
640

641
Section later.
642
643
644
  Context {A : cofeT}.
  Instance later_equiv : Equiv (later A) := λ x y, later_car x  later_car y.
  Instance later_dist : Dist (later A) := λ n x y,
645
    match n with 0 => True | S n => later_car x {n} later_car y end.
646
  Program Definition later_chain (c : chain (later A)) : chain A :=
647
    {| chain_car n := later_car (c (S n)) |}.
648
  Next Obligation. intros c n i ?; apply (chain_cauchy c (S n)); lia. Qed.
649
  Instance later_compl : Compl (later A) := λ c, Next (compl (later_chain c)).
650
  Definition later_cofe_mixin : CofeMixin (later A).
651
652
  Proof.
    split.
653
654
    - intros x y; unfold equiv, later_equiv; rewrite !equiv_dist.
      split. intros Hxy [|n]; [done|apply Hxy]. intros Hxy n; apply (Hxy (S n)).
655
    - intros [|n]; [by split|split]; unfold dist, later_dist.
656
657
      + by intros [x].
      + by intros [x] [y].
658
      + by intros [x] [y] [z] ??; trans y.
659
    - intros [|n] [x] [y] ?; [done|]; unfold dist, later_dist; by apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
660
    - intros [|n] c; [done|by apply (conv_compl n (later_chain c))].
661
  Qed.
662
  Canonical Structure laterC : cofeT := CofeT (later A) later_cofe_mixin.
663
664
  Global Instance Next_contractive : Contractive (@Next A).
  Proof. intros [|n] x y Hxy; [done|]; apply Hxy; lia. Qed.
665
  Global Instance Later_inj n : Inj (dist n) (dist (S n)) (@Next A).
Robbert Krebbers's avatar
Robbert Krebbers committed
666
  Proof. by intros x y. Qed.
667
End later.
668
669
670
671

Arguments laterC : clear implicits.

Definition later_map {A B} (f : A  B) (x : later A) : later B :=
672
  Next (f (later_car x)).
673
674
675
676
677
678
679
680
681
Instance later_map_ne {A B : cofeT} (f : A  B) n :
  Proper (dist (pred n) ==> dist (pred n)) f 
  Proper (dist n ==> dist n) (later_map f) | 0.
Proof. destruct n as [|n]; intros Hf [x] [y] ?; do 2 red; simpl; auto. Qed.
Lemma later_map_id {A} (x : later A) : later_map id x = x.
Proof. by destruct x. Qed.
Lemma later_map_compose {A B C} (f : A  B) (g : B  C) (x : later A) :
  later_map (g  f) x = later_map g (later_map f x).
Proof. by destruct x. Qed.
682
683
684
Lemma later_map_ext {A B : cofeT} (f g : A  B) x :
  ( x, f x  g x)  later_map f x  later_map g x.
Proof. destruct x; intros Hf; apply Hf. Qed.
685
686
687
Definition laterC_map {A B} (f : A -n> B) : laterC A -n> laterC B :=
  CofeMor (later_map f).
Instance laterC_map_contractive (A B : cofeT) : Contractive (@laterC_map A B).
688
Proof. intros [|n] f g Hf n'; [done|]; apply Hf; lia. Qed.
689

690
691
692
Program Definition laterCF (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := laterC (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := laterC_map (cFunctor_map F fg)
693
|}.
694
695
696
697
Next Obligation.
  intros F A1 A2 B1 B2 n fg fg' ?.
  by apply (contractive_ne laterC_map), cFunctor_ne.
Qed.
698
Next Obligation.
699
700
701
702
703
704
705
706
  intros F A B x; simpl. rewrite -{2}(later_map_id x).
  apply later_map_ext=>y. by rewrite cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -later_map_compose.
  apply later_map_ext=>y; apply cFunctor_compose.
Qed.

707
Instance laterCF_contractive F : cFunctorContractive (laterCF F).
708
Proof.
709
  intros A1 A2 B1 B2 n fg fg' Hfg.
710
  apply laterC_map_contractive => i ?. by apply cFunctor_ne, Hfg.
711
Qed.
712
713
714
715

(** Notation for writing functors *)
Notation "∙" := idCF : cFunctor_scope.
Notation "F1 -n> F2" := (cofe_morCF F1%CF F2%CF) : cFunctor_scope.
716
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
717
Notation "F1 + F2" := (sumCF F1%CF F2%CF) : cFunctor_scope.
718
719
Notation "▶ F"  := (laterCF F%CF) (at level 20, right associativity) : cFunctor_scope.
Coercion constCF : cofeT >-> cFunctor.