pviewshifts.v 10.7 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
From iris.proofmode Require Import coq_tactics spec_patterns.
From iris.proofmode Require Export tactics.
From iris.program_logic Require Export pviewshifts.
Import uPred.

Section pvs.
Context {Λ : language} {Σ : iFunctor}.
Implicit Types P Q : iProp Λ Σ.

Global Instance sep_split_pvs E P Q1 Q2 :
  SepSplit P Q1 Q2  SepSplit (|={E}=> P) (|={E}=> Q1) (|={E}=> Q2).
Proof. rewrite /SepSplit=><-. apply pvs_sep. Qed.
Global Instance or_split_pvs E1 E2 P Q1 Q2 :
  OrSplit P Q1 Q2  OrSplit (|={E1,E2}=> P) (|={E1,E2}=> Q1) (|={E1,E2}=> Q2).
Proof. rewrite /OrSplit=><-. apply or_elim; apply pvs_mono; auto with I. Qed.
Global Instance exists_split_pvs {A} E1 E2 P (Φ : A  iProp Λ Σ) :
  ExistSplit P Φ  ExistSplit (|={E1,E2}=> P) (λ a, |={E1,E2}=> Φ a)%I.
Proof.
  rewrite /ExistSplit=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
Qed.
Global Instance frame_pvs E1 E2 R P Q :
  Frame R P Q  Frame R (|={E1,E2}=> P) (|={E1,E2}=> Q).
Proof. rewrite /Frame=><-. by rewrite pvs_frame_l. Qed.
Global Instance to_wand_pvs E1 E2 R P Q :
  ToWand R P Q  ToWand R (|={E1,E2}=> P) (|={E1,E2}=> Q).
Proof. rewrite /ToWand=>->. apply wand_intro_l. by rewrite pvs_wand_r. Qed.

Class FSASplit {A} (P : iProp Λ Σ) (E : coPset)
    (fsa : FSA Λ Σ A) (fsaV : Prop) (Φ : A  iProp Λ Σ) := {
  fsa_split : fsa E Φ  P;
  fsa_split_fsa :> FrameShiftAssertion fsaV fsa;
}.
Global Arguments fsa_split {_} _ _ _ _ _ {_}.
Global Instance fsa_split_pvs E P :
  FSASplit (|={E}=> P)%I E pvs_fsa True (λ _, P).
Proof. split. done. apply _. Qed.

Lemma tac_pvs_intro Δ E Q : Δ  Q  Δ  |={E}=> Q.
Proof. intros ->. apply pvs_intro. Qed.

Lemma tac_pvs_elim Δ Δ' E1 E2 E3 i p P Q :
  envs_lookup i Δ = Some (p, |={E1,E2}=> P)%I 
  envs_replace i p false (Esnoc Enil i P) Δ = Some Δ' 
  E2  E1  E3 
  Δ'  (|={E2,E3}=> Q)  Δ  |={E1,E3}=> Q.
Proof.
  intros ??? HQ. rewrite envs_replace_sound //; simpl. destruct p.
  - by rewrite always_elim right_id pvs_frame_r wand_elim_r HQ pvs_trans.
  - by rewrite right_id pvs_frame_r wand_elim_r HQ pvs_trans.
Qed.

Lemma tac_pvs_elim_fsa {A} (fsa : FSA Λ Σ A) fsaV Δ Δ' E i p P Q Φ :
  envs_lookup i Δ = Some (p, |={E}=> P)%I  FSASplit Q E fsa fsaV Φ 
  envs_replace i p false (Esnoc Enil i P) Δ = Some Δ' 
  Δ'  fsa E Φ  Δ  Q.
Proof.
  intros ???. rewrite -(fsa_split Q) -fsa_pvs_fsa.
  eapply tac_pvs_elim; set_solver.
Qed.

Lemma tac_pvs_timeless Δ Δ' E1 E2 i p P Q :
  envs_lookup i Δ = Some (p,  P)%I  TimelessP P 
  envs_simple_replace i p (Esnoc Enil i P) Δ = Some Δ' 
  Δ'  (|={E1,E2}=> Q)  Δ  (|={E1,E2}=> Q).
Proof.
  intros ??? HQ. rewrite envs_simple_replace_sound //; simpl.
  destruct p.
  - rewrite always_later (pvs_timeless E1 ( P)%I) pvs_frame_r.
    by rewrite right_id wand_elim_r HQ pvs_trans; last set_solver.
  - rewrite (pvs_timeless E1 P) pvs_frame_r right_id wand_elim_r HQ.
    by rewrite pvs_trans; last set_solver.
Qed.

Lemma tac_pvs_timeless_fsa {A} (fsa : FSA Λ Σ A) fsaV Δ Δ' E i p P Q Φ :
  FSASplit Q E fsa fsaV Φ 
  envs_lookup i Δ = Some (p,  P)%I  TimelessP P 
  envs_simple_replace i p (Esnoc Enil i P) Δ = Some Δ' 
  Δ'  fsa E Φ  Δ  Q.
Proof.
  intros ????. rewrite -(fsa_split Q) -fsa_pvs_fsa.
  eauto using tac_pvs_timeless.
Qed.

Lemma tac_pvs_assert {A} (fsa : FSA Λ Σ A) fsaV Δ Δ1 Δ2 Δ2' E lr js j P Q Φ :
  FSASplit Q E fsa fsaV Φ 
  envs_split lr js Δ = Some (Δ1,Δ2) 
  envs_app false (Esnoc Enil j P) Δ2 = Some Δ2' 
  Δ1  (|={E}=> P)  Δ2'  fsa E Φ  Δ  Q.
Proof.
  intros ??? HP HQ. rewrite -(fsa_split Q) -fsa_pvs_fsa -HQ envs_split_sound //.
  rewrite HP envs_app_sound //; simpl.
  by rewrite right_id pvs_frame_r wand_elim_r.
Qed.
End pvs.

Tactic Notation "iPvsIntro" := apply tac_pvs_intro.

Tactic Notation "iPvsCore" constr(H) :=
  match goal with
  | |- _  |={_,_}=> _ =>
    eapply tac_pvs_elim with _ _ H _ _;
      [env_cbv; reflexivity || fail "iPvs:" H "not found"
      |env_cbv; reflexivity
      |try (rewrite (idemp_L ()); reflexivity)|]
  | |- _ =>
    eapply tac_pvs_elim_fsa with _ _ _ _ H _ _ _;
      [env_cbv; reflexivity || fail "iPvs:" H "not found"
      |let P := match goal with |- FSASplit ?P _ _ _ _ => P end in
       apply _ || fail "iPvs: " P "not a pvs"
      |env_cbv; reflexivity|simpl]
  end.

Tactic Notation "iPvs" open_constr(H) :=
  iPoseProof H as (fun H => iPvsCore H; last iDestructHyp H as "?").
Tactic Notation "iPvs" open_constr(H) "as" constr(pat) :=
  iPoseProof H as (fun H => iPvsCore H; last iDestructHyp H as pat).
Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1) "}"
    constr(pat) :=
  iPoseProof H as (fun H => iPvsCore H; last iDestructHyp H as { x1 } pat).
Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1)
    simple_intropattern(x2) "}" constr(pat) :=
  iPoseProof H as (fun H => iPvsCore H; last iDestructHyp H as { x1 x2 } pat).
Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) "}" constr(pat) :=
  iPoseProof H as (fun H => iPvsCore H; last iDestructHyp H as { x1 x2 x3 } pat).
Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) "}"
    constr(pat) :=
  iPoseProof H as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 x4 } pat).
Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) "}" constr(pat) :=
  iPoseProof H as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 x4 x5 } pat).
Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) "}" constr(pat) :=
  iPoseProof H as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 x4 x5 x6 } pat).
Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) "}"
    constr(pat) :=
  iPoseProof H as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 } pat).
Tactic Notation "iPvs" open_constr(H) "as" "{" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) "}" constr(pat) :=
  iPoseProof H as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 x8 } pat).

Tactic Notation "iPvs" open_constr(lem) constr(Hs) :=
  iPoseProof lem Hs as (fun H => iPvsCore H; last iDestructHyp H as "?").
Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" constr(pat) :=
  iPoseProof lem Hs as (fun H => iPvsCore H; last iDestructHyp H as pat).
Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{"
    simple_intropattern(x1) "}" constr(pat) :=
  iPoseProof lem Hs as (fun H => iPvsCore H; last iDestructHyp H as { x1 } pat).
Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{"
    simple_intropattern(x1) simple_intropattern(x2) "}" constr(pat) :=
  iPoseProof lem Hs as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 } pat).
Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{"
    simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3) "}"
    constr(pat) :=
  iPoseProof lem Hs as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 } pat).
Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{"
    simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3)
    simple_intropattern(x4) "}" constr(pat) :=
  iPoseProof lem Hs as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 x4 } pat).
Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{"
    simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3)
    simple_intropattern(x4) simple_intropattern(x5) "}" constr(pat) :=
  iPoseProof lem Hs as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 x4 x5 } pat).
Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{"
    simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3)
    simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6) "}"
    constr(pat) :=
  iPoseProof lem Hs as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 x4 x5 x6 } pat).
Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{"
    simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3)
    simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6)
    simple_intropattern(x7) "}" constr(pat) :=
  iPoseProof lem Hs as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 } pat).
Tactic Notation "iPvs" open_constr(lem) constr(Hs) "as" "{"
    simple_intropattern(x1) simple_intropattern(x2) simple_intropattern(x3)
    simple_intropattern(x4) simple_intropattern(x5) simple_intropattern(x6)
    simple_intropattern(x7) simple_intropattern(x8) "}" constr(pat) :=
  iPoseProof lem Hs as (fun H =>
    iPvsCore H; last iDestructHyp H as { x1 x2 x3 x4 x5 x6 x7 x8 } pat).

Tactic Notation "iTimeless" constr(H) :=
  match goal with
  | |- _  |={_,_}=> _ =>
     eapply tac_pvs_timeless with _ H _ _;
       [env_cbv; reflexivity || fail "iTimeless:" H "not found"
       |let P := match goal with |- TimelessP ?P => P end in
        apply _ || fail "iTimeless: " P "not timeless"
       |env_cbv; reflexivity|simpl]
  | |- _ =>
     eapply tac_pvs_timeless_fsa with _ _ _ _ H _ _ _;
       [let P := match goal with |- FSASplit ?P _ _ _ _ => P end in
        apply _ || fail "iTimeless: " P "not a pvs"
       |env_cbv; reflexivity || fail "iTimeless:" H "not found"
       |let P := match goal with |- TimelessP ?P => P end in
        apply _ || fail "iTimeless: " P "not timeless"
       |env_cbv; reflexivity|simpl]
  end.

Tactic Notation "iTimeless" constr(H) "as" constr(Hs) :=
  iTimeless H; iDestruct H as Hs.

Tactic Notation "iPvsAssert" constr(Q) "as" constr(pat) "with" constr(Hs) :=
  let H := iFresh in
  let Hs := spec_pat.parse_one Hs in
  lazymatch Hs with
  | SSplit ?lr ?Hs =>
     eapply tac_pvs_assert with _ _ _ _ _ _ lr Hs H Q _;
       [let P := match goal with |- FSASplit ?P _ _ _ _ => P end in
        apply _ || fail "iPvsAssert: " P "not a pvs"
       |env_cbv; reflexivity || fail "iPvsAssert:" Hs "not found"
       |env_cbv; reflexivity|
       |simpl; iDestructHyp H as pat]
  | ?pat => fail "iPvsAssert: invalid pattern" pat
  end.
Tactic Notation "iPvsAssert" constr(Q) "as" constr(pat) :=
  iPvsAssert Q as pat with "[]".