model.tex 20.2 KB
Newer Older
1
2
3
4
\section{Model and semantics}

The semantics closely follows the ideas laid out in~\cite{catlogic}.

5
\subsection{Generic model of base logic}
6

7
The base logic including equality, later, always, and a notion of ownership is defined on $\UPred(\monoid)$ for any CMRA $\monoid$.
8

9
10
11
\typedsection{Interpretation of base assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \to \UPred(\monoid)}
Remember that $\UPred(\monoid)$ is isomorphic to $\monoid \monra \SProp$.
We are thus going to define the assertions as mapping CMRA elements to sets of step-indices.
12

13
We introduce an additional logical connective $\ownM\melt$, which will later be used to encode all of $\knowInv\iname\prop$, $\ownGGhost\melt$ and $\ownPhys\state$.
14
15

\begin{align*}
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
	\Sem{\vctx \proves t =_\type u : \Prop}_\gamma &\eqdef
	\Lam \any. \setComp{n}{\Sem{\vctx \proves t : \type}_\gamma \nequiv{n} \Sem{\vctx \proves u : \type}_\gamma} \\
	\Sem{\vctx \proves \FALSE : \Prop}_\gamma &\eqdef \Lam \any. \emptyset \\
	\Sem{\vctx \proves \TRUE : \Prop}_\gamma &\eqdef \Lam \any. \mathbb{N} \\
	\Sem{\vctx \proves \prop \land \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cap \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\
	\Sem{\vctx \proves \prop \lor \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cup \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\
	\Sem{\vctx \proves \prop \Ra \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \setComp{n}{\begin{aligned}
            \All m, \meltB.& m \leq n \land \melt \mincl \meltB \land \meltB \in \mval_m \Ra {} \\
            & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt)\end{aligned}}\\
	\Sem{\vctx \proves \All x : \type. \prop : \Prop}_\gamma &\eqdef
	\Lam \melt. \setComp{n}{ \All v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\
	\Sem{\vctx \proves \Exists x : \type. \prop : \Prop}_\gamma &\eqdef
        \Lam \melt. \setComp{n}{ \Exists v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\
  ~\\
	\Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\mcore\melt) \\
	\Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{n = 0 \lor n-1 \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt)}\\
	\Sem{\vctx \proves \prop * \propB : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{\begin{aligned}\Exists \meltB_1, \meltB_2. &\melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \land {}\\& n \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB_1) \land n \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\meltB_2)\end{aligned}}
\\
	\Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \setComp{n}{\begin{aligned}
            \All m, \meltB.& m \leq n \land  \melt\mtimes\meltB \in \mval_m \Ra {} \\
            & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt\mtimes\meltB)\end{aligned}} \\
        \Sem{\vctx \proves \ownM{\melt} : \Prop}_\gamma &\eqdef \Lam\meltB. \setComp{n}{\melt \mincl[n] \meltB}  \\
        \Sem{\vctx \proves \mval(\melt) : \Prop}_\gamma &\eqdef \Lam\any. \setComp{n}{\melt \in \mval_n} \\
43
44
\end{align*}

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

%\subsection{Iris model}

% \subsection{Semantic structures: propositions}
% \ralf{This needs to be synced with the Coq development again.}

% \[
% \begin{array}[t]{rcl}
% %  \protStatus &::=& \enabled \ALT \disabled \\[0.4em]
% \textdom{Res} &\eqdef&
% \{\, \rs = (\pres, \ghostRes) \mid
% \pres \in \textdom{State} \uplus \{\munit\} \land \ghostRes \in \mcarp{\monoid} \,\} \\[0.5em]
% (\pres, \ghostRes) \rtimes
% (\pres', \ghostRes') &\eqdef&
% \begin{cases}
% (\pres, \ghostRes \mtimes \ghostRes')  & \mbox{if $\pres' = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$} \\
% (\pres', \ghostRes \mtimes \ghostRes') & \mbox{if $\pres = \munit$ and $\ghostRes \mtimes \ghostRes' \neq \mzero$}
% \end{cases}
% \\[0.5em]
% %
% \rs \leq \rs' & \eqdef &
% \Exists \rs''. \rs' = \rs \rtimes \rs''\\[1em]
% %
% \UPred(\textdom{Res}) &\eqdef& 
% \{\, p \subseteq \mathbb{N} \times \textdom{Res} \mid
% \All (k,\rs) \in p.
% \All j\leq k.
% \All \rs' \geq \rs.
% (j,\rs')\in p \,\}\\[0.5em]
% \restr{p}{k} &\eqdef& 
% \{\, (j, \rs) \in p \mid j < k \,\}\\[0.5em]
% p \nequiv{n} q & \eqdef & \restr{p}{n} = \restr{q}{n}\\[1em]
% %
% \textdom{PreProp} & \cong  &
% \latert\big( \textdom{World} \monra \UPred(\textdom{Res})
% \big)\\[0.5em]
% %
% \textdom{World} & \eqdef &
% \mathbb{N} \fpfn \textdom{PreProp}\\[0.5em]
% %
% w \nequiv{n} w' & \eqdef & 
% n = 0 \lor
% \bigl(\dom(w) = \dom(w') \land \All i\in\dom(w). w(i) \nequiv{n} w'(i)\bigr)
% \\[0.5em]
% %
% w \leq w' & \eqdef & 
% \dom(w) \subseteq \dom(w') \land \All i \in \dom(w). w(i) = w'(i) 
% \\[0.5em]
% %
% \textdom{Prop} & \eqdef & \textdom{World} \monra \UPred(\textdom{Res})
% \end{array}
% \]

% For $p,q\in\UPred(\textdom{Res})$ with $p \nequiv{n} q$ defined
% as above, $\UPred(\textdom{Res})$ is a 
% c.o.f.e.

% $\textdom{Prop}$ is a c.o.f.e., which exists by America and Rutten's theorem~\cite{America-Rutten:JCSS89}.
% We do not need to consider how the object is constructed. 
% We only need the isomorphism, given by maps
% \begin{align*}
% 	\wIso &: \latert \bigl(World \monra \UPred(\textdom{Res})\bigr) \to \textdom{PreProp} \\
% 	\wIso^{-1} &: \textdom{PreProp} \to \latert \bigl(World \monra \UPred(\textdom{Res})\bigr)
% \end{align*}
% which are inverses to each other. 
% Note: this is an isomorphism in $\cal U$, i.e., $\wIso$ and
% $\wIso^{-1}$ are both non-expansive.

% $\textdom{World}$ is a c.o.f.e.\ with the family of equivalence
% relations defined as shown above.

% \subsection{Semantic structures: types and environments}

% For a set $X$, write $\Delta X$ for the discrete c.o.f.e.\ with $x \nequiv{n}
% x'$ iff $n = 0$ or $x = x'$
% \[
% \begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
% \Sem{\textsort{Unit}} &\eqdef& \Delta \{ \star \} \\
% \Sem{\textsort{InvName}} &\eqdef& \Delta \mathbb{N}  \\
% \Sem{\textsort{InvMask}} &\eqdef& \Delta \pset{\mathbb{N}} \\
% \Sem{\textsort{Monoid}} &\eqdef& \Delta |\monoid|
% \end{array}
% \qquad\qquad
% \begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
% \Sem{\textsort{Val}} &\eqdef& \Delta \textdom{Val} \\
% \Sem{\textsort{Exp}} &\eqdef& \Delta \textdom{Exp} \\
% \Sem{\textsort{Ectx}} &\eqdef& \Delta \textdom{Ectx} \\
% \Sem{\textsort{State}} &\eqdef& \Delta \textdom{State} \\
% \end{array}
% \qquad\qquad
% \begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
% \Sem{\sort \times \sort'} &\eqdef& \Sem{\sort} \times \Sem{\sort} \\
% \Sem{\sort \to \sort'} &\eqdef& \Sem{\sort} \to \Sem{\sort} \\
% \Sem{\Prop} &\eqdef& \textdom{Prop} \\
% \end{array}
% \]

% The balance of our signature $\Sig$ is interpreted as follows.
% For each base type $\type$ not covered by the preceding table, we pick an object $X_\type$ in $\cal U$ and define
% \[
% \Sem{\type} \eqdef X_\type
% \]
% For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick an arrow $\Sem{\sigfn} : \Sem{\type_1} \times \dots \times \Sem{\type_n} \to \Sem{\type_{n+1}}$ in $\cal U$.

% An environment $\vctx$ is interpreted as the set of
% maps $\rho$, with $\dom(\rho) = \dom(\vctx)$ and
% $\rho(x)\in\Sem{\vctx(x)}$,
% and 
% $\rho\nequiv{n} \rho' \iff n=0 \lor \bigl(\dom(\rho)=\dom(\rho') \land
% \All x\in\dom(\rho). \rho(x) \nequiv{n} \rho'(x)\bigr)$.

% \ralf{Re-check all the following definitions with the Coq development.}
% %\typedsection{Validity}{valid : \pset{\textdom{Prop}} \in Sets}
% %
% %\begin{align*}
% %valid(p) &\iff \All n \in \mathbb{N}. \All \rs \in \textdom{Res}. \All W \in \textdom{World}. (n, \rs) \in p(W)
% %\end{align*}

% \typedsection{Later modality}{\later : \textdom{Prop} \to \textdom{Prop} \in {\cal U}}

% \begin{align*}
% 	\later p &\eqdef \Lam W. \{\, (n + 1, r) \mid (n, r) \in p(W) \,\} \cup \{\, (0, r) \mid r \in \textdom{Res} \,\}
% \end{align*}
168
% \begin{lem}
169
170
171
172
173
% 	$\later{}$ is well-defined: $\later {p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\later{}$ itself is a \emph{contractive} map.
% \end{lem}

% \typedsection{Always modality}{\always{} : \textdom{Prop} \to \textdom{Prop} \in {\cal U}}

174
% \begin{align*}
175
% 	\always{p} \eqdef \Lam W. \{\, (n, r) \mid (n, \munit) \in p(W) \,\}
176
% \end{align*}
177
178
% \begin{lem}
% 	$\always{}$ is well-defined: $\always{p}$ is a valid proposition (this amounts to showing non-expansiveness), and $\always{}$ itself is a non-expansive map.
179
180
% \end{lem}

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
% % PDS: p \Rightarrow q not defined.
% %\begin{lem}\label{lem:always-impl-valid}
% %\begin{align*}
% %&\forall p, q \in \textdom{Prop}.~\\
% %&\qquad
% %  (\forall n \in \mathbb{N}.~\forall \rs \in \textdom{Res}.~\forall W \in \textdom{World}.~(n, \rs) \in p(W) \Rightarrow (n, \rs) \in q(W)) \Leftrightarrow~valid(\always{(p \Rightarrow q)})
% %\end{align*}
% %\end{lem}

% \typedsection{Invariant definition}{inv : \Delta(\mathbb{N}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}}
% \begin{align*}
% 	\mathit{inv}(\iota, p) &\eqdef \Lam W. \{\, (n, r) \mid \iota\in\dom(W) \land W(\iota) \nequiv{n+1}_{\textdom{PreProp}} \wIso(p) \,\}
% \end{align*}
% \begin{lem}
% 	$\mathit{inv}$ is well-defined: $\mathit{inv}(\iota, p)$ is a valid proposition (this amounts to showing non-expansiveness), and $\mathit{inv}$ itself is a non-expansive map.
% \end{lem}
197

198
199
200
201
202
203
% \typedsection{World satisfaction}{\wsat{-}{-}{-}{-} : 
% 	\textdom{State} \times
% 	\pset{\mathbb{N}} \times
% 	\textdom{Res} \times
% 	\textdom{World} \to \psetdown{\mathbb{N}} \in {\cal U}}
% \ralf{Make this Dave-compatible: Explicitly compose all the things in $s$}
204
% \begin{align*}
205
% 	\wsat{\state}{\mask}{\rs}{W} &=
206
% 	\begin{aligned}[t]
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
% 		\{\, n + 1 \in \mathbb{N} \mid &\Exists  \rsB:\mathbb{N} \fpfn \textdom{Res}. (\rs \rtimes \rsB).\pres = \state \land{}\\
% 		&\quad \All \iota \in \dom(W). \iota \in \dom(W) \leftrightarrow \iota \in \dom(\rsB) \land {}\\
% 		&\quad\quad \iota \in \mask \ra (n, \rsB(\iota)) \in \wIso^{-1}(W(\iota))(W) \,\} \cup \{ 0 \}
% 	\end{aligned}
% \end{align*}
% \begin{lem}\label{lem:fullsat-nonexpansive}
% 	$\wsat{-}{-}{-}{-}$ is well-defined: It maps into $\psetdown{\mathbb{N}}$. (There is no need for it to be a non-expansive map, it doesn't itself live in $\cal U$.)
% \end{lem}

% \begin{lem}\label{lem:fullsat-weaken-mask}
% 	\begin{align*}
% 		\MoveEqLeft
% 		\All \state \in \Delta(\textdom{State}).
% 		\All \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}).
% 		\All \rs, \rsB \in \Delta(\textdom{Res}).
% 		\All W \in \textdom{World}. \\&
% 		\mask_1 \subseteq \mask_2 \implies (\wsat{\state}{\mask_2}{\rs}{W}) \subseteq (\wsat{\state}{\mask_1}{\rs}{W})
% 	\end{align*}
% \end{lem}

% \begin{lem}\label{lem:nequal_ext_world}
% 	\begin{align*}
% 		&
% 		\All n \in \mathbb{N}.
% 		\All W_1, W_1', W_2 \in \textdom{World}.
% 		W_1 \nequiv{n} W_2 \land W_1 \leq W_1' \implies \Exists W_2' \in \textdom{World}. W_1' \nequiv{n} W_2' \land W_2 \leq W_2'
% 	\end{align*}
% \end{lem}

% \typedsection{Timeless}{\textit{timeless} : \textdom{Prop} \to \textdom{Prop}}

% \begin{align*}
% 	\textit{timeless}(p) \eqdef 
% 	\begin{aligned}[t]
% 		\Lam W.
% 		\{\, (n, r) &\mid \All W' \geq W. \All k \leq n. \All r' \in \textdom{Res}. \\
243
% 		&\qquad
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
% 		k > 0 \land (k - 1, r') \in p(W') \implies (k, r') \in p(W') \,\}
% 	\end{aligned}
% \end{align*}

% \begin{lem}
% 	\textit{timeless} is well-defined: \textit{timeless}(p) is a valid proposition, and \textit{timeless} itself is a non-expansive map.
% \end{lem}

% % PDS: \Ra undefined.
% %\begin{lem}
% %\begin{align*}
% %&
% %  \All p \in \textdom{Prop}.
% %  \All \mask \in \pset{\mathbb{N}}.
% %valid(\textit{timeless}(p) \Ra (\later p \vs[\mask][\mask] p))
% %\end{align*}
% %\end{lem}

% \typedsection{View-shift}{\mathit{vs} : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \textdom{Prop} \to \textdom{Prop} \in {\cal U}}
% \begin{align*}
% 	\mathit{vs}_{\mask_1}^{\mask_2}(q) &= \Lam W.
% 	\begin{aligned}[t]
% 		\{\, (n, \rs) &\mid \All W_F \geq W. \All \rs_F, \mask_F, \state. \All k \leq n.\\
% 		&\qquad 
% 		k \in (\wsat{\state}{\mask_1 \cup \mask_F}{\rs \rtimes \rs_F}{W_F}) \land k > 0 \land \mask_F \sep (\mask_1 \cup \mask_2) \implies{} \\
269
% 		&\qquad
270
% 		\Exists W' \geq W_F. \Exists \rs'. k \in (\wsat{\state}{\mask_2 \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k, \rs') \in q(W')
271
272
273
% 		\,\}
% 	\end{aligned}
% \end{align*}
274
275
276
% \begin{lem}
% 	$\mathit{vs}$ is well-defined: $\mathit{vs}_{\mask_1}^{\mask_2}(q)$ is a valid proposition, and $\mathit{vs}$ is a non-expansive map.
% \end{lem}
277
278


279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
% %\begin{lem}\label{lem:prim_view_shift_trans}
% %\begin{align*}
% %\MoveEqLeft
% %  \All \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}).
% %  \All p, q \in \textdom{Prop}. \All W \in \textdom{World}.
% %  \All n \in \mathbb{N}.\\
% %&
% %  \mask_2 \subseteq \mask_1 \cup \mask_3 \land
% %  \bigl(\All W' \geq W. \All r \in \textdom{Res}. \All k \leq n. (k, r) \in p(W') \implies (k, r) \in vs_{\mask_2}^{\mask_3}(q)(W')\bigr) \\
% %&\qquad
% %  {}\implies \All r \in \textdom{Res}. (n, r) \in vs_{\mask_1}^{\mask_2}(p)(W) \implies (n, r) \in vs_{\mask_1}^{\mask_3}(q)(W)
% %\end{align*}
% %\end{lem}

% % PDS: E_1 ==>> E_2 undefined.
% %\begin{lem}
% %\begin{align*}
% %&
% %  \forall \mask_1, \mask_2, \mask_3 \in \Delta(\pset{\mathbb{N}}).~
% %  \forall p_1, p_2, p_3 \in \textdom{Prop}.~\\
% %&\qquad
% %  \mask_2 \subseteq \mask_1 \cup \mask_3 \Rightarrow
% %  valid(((p_1 \vs[\mask_1][\mask_2] p_2) \land (p_2 \vs[\mask_2][\mask_3] p_3)) \Rightarrow (p_1 \vs[\mask_1][\mask_3] p_3))
% %\end{align*}
% %\end{lem}

% %\begin{lem}
% %\begin{align*}
% %\MoveEqLeft
% %  \All \iota \in \mathbb{N}.
% %  \All p \in \textdom{Prop}.
% %  \All W \in \textdom{World}.
% %  \All \rs \in \textdom{Res}.
% %  \All n \in \mathbb{N}. \\
% %&
% %  (n, \rs) \in inv(\iota, p)(W) \implies (n, \rs) \in vs_{\{ \iota \}}^{\emptyset}(\later p)(W)
% %\end{align*}
% %\end{lem}

% % PDS: * undefined.
% %\begin{lem}
% %\begin{align*}
% %&
% %  \forall \iota \in \mathbb{N}.~
% %  \forall p \in \textdom{Prop}.~
% %  \forall W \in \textdom{World}.~
% %  \forall \rs \in \textdom{Res}.~
% %  \forall n \in \mathbb{N}.~\\
% %&\qquad
% %  (n, \rs) \in (inv(\iota, p) * \later p)(W) \Rightarrow (n, \rs) \in vs^{\{ \iota \}}_{\emptyset}(\top)(W)
% %\end{align*}
% %\end{lem}

% % \begin{lem}
% % \begin{align*}
% % &
% %   \forall \mask_1, \mask_2 \in \Delta(\pset{\mathbb{N}}).~
% %   valid(\bot \vs[\mask_1][\mask_2] \bot)
% % \end{align*}
% % \end{lem}

% % PDS: E_1 ==>> E_2 undefined.
% %\begin{lem}
% %\begin{align*}
% %&
% %  \forall p, q \in \textdom{Prop}.~
% %  \forall \mask \in \pset{\mathbb{N}}.~
% %valid(\always{(p \Rightarrow q)} \Rightarrow (p \vs[\mask][\mask] q))
% %\end{align*}
% %\end{lem}

% % PDS: E # E' and E_1 ==>> E_2 undefined.
% %\begin{lem}
% %\begin{align*}
% %&
% %  \forall p_1, p_2, p_3 \in \textdom{Prop}.~
% %  \forall \mask_1, \mask_2, \mask \in \pset{\mathbb{N}}.~
% %valid(\mask \sep \mask_1 \Ra \mask \sep \mask_2 \Ra (p_1 \vs[\mask_1][\mask_2] p_2) \Rightarrow (p_1 * p_3 \vs[\mask_1 \cup \mask][\mask_2 \cup \mask] p_2 * p_3))
% %\end{align*}
% %\end{lem}

% \typedsection{Weakest precondition}{\mathit{wp} : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \to \textdom{Prop}) \to \textdom{Prop} \in {\cal U}}

% % \begin{align*}
% % 	\mathit{wp}_\mask(\expr, q) &\eqdef \Lam W.
% % 	\begin{aligned}[t]
% % 		\{\, (n, \rs) &\mid \All W_F \geq W; k \leq n; \rs_F; \state; \mask_F \sep \mask. k > 0 \land k \in (\wsat{\state}{\mask \cup \mask_F}{\rs \rtimes \rs_F}{W_F}) \implies{}\\
% % 		&\qquad
% % 		(\expr \in \textdom{Val} \implies \Exists W' \geq W_F. \Exists \rs'. \\
% % 		&\qquad\qquad
% % 		k \in (\wsat{\state}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k, \rs') \in q(\expr)(W'))~\land \\
% % 		&\qquad
% % 		(\All\ectx,\expr_0,\expr'_0,\state'. \expr = \ectx[\expr_0] \land \cfg{\state}{\expr_0} \step \cfg{\state'}{\expr'_0} \implies \Exists W' \geq W_F. \Exists \rs'. \\
% % 		&\qquad\qquad
% % 		k - 1 \in (\wsat{\state'}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land (k-1, \rs') \in wp_\mask(\ectx[\expr_0'], q)(W'))~\land \\
% % 		&\qquad
% % 		(\All\ectx,\expr'. \expr = \ectx[\fork{\expr'}] \implies \Exists W' \geq W_F. \Exists \rs', \rs_1', \rs_2'. \\
% % 		&\qquad\qquad
% % 		k - 1 \in (\wsat{\state}{\mask \cup \mask_F}{\rs' \rtimes \rs_F}{W'}) \land \rs' = \rs_1' \rtimes \rs_2'~\land \\
% % 		&\qquad\qquad
% % 		(k-1, \rs_1') \in \mathit{wp}_\mask(\ectx[\textsf{fRet}], q)(W') \land
% % 		(k-1, \rs_2') \in \mathit{wp}_\top(\expr', \Lam\any. \top)(W'))
% % 		\,\}
% % 	\end{aligned}
% % \end{align*}
% \begin{lem}
% 	$\mathit{wp}$ is well-defined: $\mathit{wp}_{\mask}(\expr, q)$ is a valid proposition, and $\mathit{wp}$ is a non-expansive map. Besides, the dependency on the recursive occurrence is contractive, so $\mathit{wp}$ has a fixed-point.
% \end{lem}
387

388
389
390
391
% \begin{lem}
% 	$\mathit{wp}$ on values and non-mask-changing $\mathit{vs}$ agree:
% 	\[ \mathit{wp}_\mask(\val, q) = \mathit{vs}_{\mask}^{\mask}(q \: \val)  \]
% \end{lem}
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
% \begin{align*}
% 	\Sem{\vctx \proves x : \sort}_\gamma &= \gamma(x) \\
% 	\Sem{\vctx \proves \sigfn(\term_1, \dots, \term_n) : \type_{n+1}}_\gamma &= \Sem{\sigfn}(\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \dots, \Sem{\vctx \proves \term_n : \type_n}_\gamma) \ \WHEN \sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn \\
% 	\Sem{\vctx \proves \Lam x. \term : \sort \to \sort'}_\gamma &=
% 	\Lam v : \Sem{\sort}. \Sem{\vctx, x : \sort \proves \term : \sort'}_{\gamma[x \mapsto v]} \\
% 	\Sem{\vctx \proves \term~\termB : \sort'}_\gamma &=
% 	\Sem{\vctx \proves \term : \sort \to \sort'}_\gamma(\Sem{\vctx \proves \termB : \sort}_\gamma) \\
% 	\Sem{\vctx \proves \unitval : \unitsort}_\gamma &= \star \\
% 	\Sem{\vctx \proves (\term_1, \term_2) : \sort_1 \times \sort_2}_\gamma &= (\Sem{\vctx \proves \term_1 : \sort_1}_\gamma, \Sem{\vctx \proves \term_2 : \sort_2}_\gamma) \\
% 	\Sem{\vctx \proves \pi_i~\term : \sort_1}_\gamma &= \pi_i(\Sem{\vctx \proves \term : \sort_1 \times \sort_2}_\gamma)
% \end{align*}
% %
% \begin{align*}
% 	\Sem{\vctx \proves \mzero : \textsort{Monoid}}_\gamma &= \mzero \\
% 	\Sem{\vctx \proves \munit : \textsort{Monoid}}_\gamma &= \munit \\
% 	\Sem{\vctx \proves \melt \mtimes \meltB : \textsort{Monoid}}_\gamma &=
% 	\Sem{\vctx \proves \melt : \textsort{Monoid}}_\gamma \mtimes \Sem{\vctx \proves \meltB : \textsort{Monoid}}_\gamma
% \end{align*}
% %
%	\Sem{\vctx \proves \MU x. \pred : \sort \to \Prop}_\gamma &\eqdef
%	\mathit{fix}(\Lam v : \Sem{\sort \to \Prop}. \Sem{\vctx, x : \sort \to \Prop \proves \pred : \sort \to \Prop}_{\gamma[x \mapsto v]}) \\


	% \Sem{\vctx \proves \knowInv{\iname}{\prop} : \Prop}_\gamma &=
	% inv(\Sem{\vctx \proves \iname : \textsort{InvName}}_\gamma, \Sem{\vctx \proves \prop : \Prop}_\gamma) \\
	% \Sem{\vctx \proves \ownGGhost{\melt} : \Prop}_\gamma &=
	% \Lam W. \{\, (n, \rs) \mid \rs.\ghostRes \geq \Sem{\vctx \proves \melt : \textsort{Monoid}}_\gamma \,\} \\
	% \Sem{\vctx \proves \ownPhys{\state} : \Prop}_\gamma &=
	% \Lam W. \{\, (n, \rs) \mid \rs.\pres = \Sem{\vctx \proves \state : \textsort{State}}_\gamma \,\}


% %
% \begin{align*}
% 	\Sem{\vctx \proves \pvsA{\prop}{\mask_1}{\mask_2} : \Prop}_\gamma &=
% 	\textdom{vs}^{\Sem{\vctx \proves \mask_2 : \textsort{InvMask}}_\gamma}_{\Sem{\vctx \proves \mask_1 : \textsort{InvMask}}_\gamma}(\Sem{\vctx \proves \prop : \Prop}_\gamma) \\
% 	\Sem{\vctx \proves \dynA{\expr}{\pred}{\mask} : \Prop}_\gamma &=
% 	\textdom{wp}_{\Sem{\vctx \proves \mask : \textsort{InvMask}}_\gamma}(\Sem{\vctx \proves \expr : \textsort{Exp}}_\gamma, \Sem{\vctx \proves \pred : \textsort{Val} \to \Prop}_\gamma) \\
% 	\Sem{\vctx \proves \wtt{\timeless{\prop}}{\Prop}}_\gamma &=
% 	\textdom{timeless}(\Sem{\vctx \proves \prop : \Prop}_\gamma)
% \end{align*}
433

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
% \typedsection{Interpretation of entailment}{\Sem{\vctx \mid \pfctx \proves \prop} : 2 \in \mathit{Sets}}

% \[
% \Sem{\vctx \mid \pfctx \proves \propB} \eqdef
% \begin{aligned}[t]
% \MoveEqLeft
% \forall n \in \mathbb{N}.\;
% \forall W \in \textdom{World}.\;
% \forall \rs \in \textdom{Res}.\; 
% \forall \gamma \in \Sem{\vctx},\;
% \\&
% \bigl(\All \propB \in \pfctx. (n, \rs) \in \Sem{\vctx \proves \propB : \Prop}_\gamma(W)\bigr)
% \implies (n, \rs) \in \Sem{\vctx \proves \prop : \Prop}_\gamma(W)
% \end{aligned}
% \]
449
450
451
452
453

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: