ofe.v 40 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5 6 7 8 9 10 11 12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16 17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20 21 22

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
23
  | _ => progress simplify_eq/=
24 25 26 27
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
28
  repeat match goal with
29
  | _ => progress simplify_eq/=
30 31
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
32
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
33

34
Record OfeMixin A `{Equiv A, Dist A} := {
35
  mixin_equiv_dist x y : x  y   n, x {n} y;
36
  mixin_dist_equivalence n : Equivalence (dist n);
37
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
38 39 40
}.

(** Bundeled version *)
41 42 43 44 45
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
46
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
47
}.
48 49 50 51 52 53 54 55 56
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
57 58

(** Lifting properties from the mixin *)
59 60
Section ofe_mixin.
  Context {A : ofeT}.
61
  Implicit Types x y : A.
62
  Lemma equiv_dist x y : x  y   n, x {n} y.
63
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
64
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
65
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
66
  Lemma dist_S n x y : x {S n} y  x {n} y.
67 68
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
69

Robbert Krebbers's avatar
Robbert Krebbers committed
70 71
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

72
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
73
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
74
   more sense. *)
75 76
Class Timeless `{Equiv A, Dist A} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_ _ _} _ {_} _ _.
77 78 79 80 81 82 83 84 85 86
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

87 88 89 90 91
Program Definition chain_map {A B : ofeT} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

92 93 94 95 96 97
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
98

99 100 101 102 103
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c
      `( n : nat, Proper (dist n ==> dist n) f) :
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
104 105
(** General properties *)
Section cofe.
106
  Context {A : ofeT}.
107
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
108 109 110
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
111 112
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
113
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
  Qed.
115
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
116 117
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
118 119
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
120
  Qed.
121
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
122
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
124 125 126
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
127
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
  Proof. induction 2; eauto using dist_S. Qed.
129 130
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
131
  Instance ne_proper {B : ofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
134
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
135 136 137 138
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
139
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
140
  Qed.
141

142
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
143 144 145 146
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
147 148
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
149
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
150
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
151 152
End cofe.

153
(** Contractive functions *)
154 155 156 157 158 159 160 161
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
162

163
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
164 165
Proof. by intros n y1 y2. Qed.

166
Section contractive.
167
  Set Default Proof Using "Type*".
168 169 170 171
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
172
  Proof. by apply (_ : Contractive f). Qed.
173
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
174
  Proof. intros. by apply (_ : Contractive f). Qed.
175 176 177 178 179 180 181

  Global Instance contractive_ne n : Proper (dist n ==> dist n) f | 100.
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

182 183 184 185 186 187 188
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
189 190
  | |- @dist_later ?A ?n ?x ?y =>
         destruct n as [|n]; [done|change (@dist A _ n x y)]
191 192 193 194 195 196
  end;
  try reflexivity.

Ltac solve_contractive :=
  preprocess_solve_proper;
  solve [repeat (first [f_contractive|f_equiv]; try eassumption)].
Robbert Krebbers's avatar
Robbert Krebbers committed
197

Robbert Krebbers's avatar
Robbert Krebbers committed
198
(** Fixpoint *)
199
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
200
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
201
Next Obligation.
202
  intros A ? f ? n.
203
  induction n as [|n IH]=> -[|i] //= ?; try omega.
204 205
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
206
Qed.
207

208
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
209
  `{!Contractive f} : A := compl (fixpoint_chain f).
210 211 212
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
213 214

Section fixpoint.
215
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
216

217
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
218
  Proof.
219 220
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
221
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
222
  Qed.
223 224 225

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
226 227 228
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
229 230
  Qed.

231
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
232
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
233
  Proof.
234
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
235
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
236 237
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
  Qed.
239 240
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
241
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
242 243

  Lemma fixpoint_ind (P : A  Prop) :
244
    Proper (() ==> impl) P 
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
    { intros n. induction n as [|n IH]=> -[|i] //= ?; try omega.
      - apply (contractive_0 f).
      - apply (contractive_S f), IH; auto with omega. }
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
    rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr.
    apply equiv_dist=>n.
    rewrite /fp2 (conv_compl n) /= /chcar.
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
260 261
End fixpoint.

Robbert Krebbers's avatar
Robbert Krebbers committed
262 263
(** Mutual fixpoints *)
Section fixpoint2.
264 265
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
End fixpoint2.

Section fixpoint2_ne.
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
End fixpoint2_ne.

343
(** Function space *)
344
(* We make [ofe_fun] a definition so that we can register it as a canonical
345
structure. *)
346
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
347

348 349 350 351 352
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
353 354 355 356 357 358 359 360 361 362
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
363
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
364

365 366 367 368 369 370 371 372 373
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
374
Notation "A -c> B" :=
375 376
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
377 378
  Inhabited (A -c> B) := populate (λ _, inhabitant).

379
(** Non-expansive function space *)
380 381 382
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
  ofe_mor_ne n : Proper (dist n ==> dist n) ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
383 384
}.
Arguments CofeMor {_ _} _ {_}.
385 386
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
387

388 389 390 391
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

392 393 394 395 396 397 398
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
399 400
  Proof.
    split.
401
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
402
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
403
    - intros n; split.
404 405
      + by intros f x.
      + by intros f g ? x.
406
      + by intros f g h ?? x; trans (g x).
407
    - by intros n f g ? x; apply dist_S.
408
  Qed.
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
426

427 428
  Global Instance ofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@ofe_mor_car A B).
429
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
430 431 432
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
433
  Proof. done. Qed.
434
End ofe_mor.
435

436
Arguments ofe_morC : clear implicits.
437
Notation "A -n> B" :=
438 439
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
440
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
441

442
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
443 444
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
445
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
446
Instance: Params (@cconst) 2.
447

Robbert Krebbers's avatar
Robbert Krebbers committed
448 449 450 451 452
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
453
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
454
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
455

Ralf Jung's avatar
Ralf Jung committed
456
(* Function space maps *)
457
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
458
  (h : A -n> B) : A' -n> B' := g  h  f.
459 460
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
461
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
462

463 464 465 466
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
Instance ofe_morC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
467
Proof.
468
  intros f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
469
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
470 471
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
472
(** unit *)
473 474
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
475
  Definition unit_ofe_mixin : OfeMixin unit.
476
  Proof. by repeat split; try exists 0. Qed.
477
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
478

479 480
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
481 482

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
483
  Proof. done. Qed.
484
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
485 486

(** Product *)
487
Section product.
488
  Context {A B : ofeT}.
489 490 491 492 493 494

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
495
  Definition prod_ofe_mixin : OfeMixin (A * B).
496 497
  Proof.
    split.
498
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
499
      rewrite !equiv_dist; naive_solver.
500 501
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
502
  Qed.
503 504 505 506 507 508 509 510 511
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

512 513 514
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
515 516
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
517 518 519 520 521
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

522
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
523 524 525 526 527 528 529 530 531
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

532 533
(** Functors *)
Structure cFunctor := CFunctor {
534
  cFunctor_car : ofeT  ofeT  ofeT;
535 536
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
537 538
  cFunctor_ne {A1 A2 B1 B2} n :
    Proper (dist n ==> dist n) (@cFunctor_map A1 A2 B1 B2);
539
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
540 541 542 543 544
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
545
Existing Instance cFunctor_ne.
546 547
Instance: Params (@cFunctor_map) 5.

548 549 550
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

551 552 553
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

554
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
555 556
Coercion cFunctor_diag : cFunctor >-> Funclass.

557
Program Definition constCF (B : ofeT) : cFunctor :=
558 559
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
560
Coercion constCF : ofeT >-> cFunctor.
561

562
Instance constCF_contractive B : cFunctorContractive (constCF B).
563
Proof. rewrite /cFunctorContractive; apply _. Qed.
564 565 566 567

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
568
Notation "∙" := idCF : cFunctor_scope.
569

570 571 572 573 574
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
575 576 577
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
578 579 580 581 582
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
583
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
584

585 586 587 588 589 590 591 592
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

593
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') n :
594 595 596
  Proper (dist n ==> dist n) (compose f : (A -c> B)  A -c> B').
Proof. intros g g' Hf x; simpl. by rewrite (Hf x). Qed.

597
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
598
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
599 600
Instance ofe_funC_map_ne {A B B'} n :
  Proper (dist n ==> dist n) (@ofe_funC_map A B B').
601 602
Proof. intros f f' Hf g x. apply Hf. Qed.

603 604 605
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
606 607
|}.
Next Obligation.
608
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
609 610 611 612 613 614
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.
615
Notation "T -c> F" := (ofe_funCF T%type F%CF) : cFunctor_scope.
616

617 618
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
619 620
Proof.
  intros ?? A1 A2 B1 B2 n ???;
621
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
622 623
Qed.

624
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
625
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
626
  cFunctor_map A1 A2 B1 B2 fg :=
627
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
628
|}.
629 630
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
631
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
632
Qed.
Ralf Jung's avatar
Ralf Jung committed
633
Next Obligation.
634 635
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
636 637
Qed.
Next Obligation.
638 639
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
640
Qed.
641
Notation "F1 -n> F2" := (ofe_morCF F1%CF F2%CF) : cFunctor_scope.
Ralf Jung's avatar
Ralf Jung committed
642

643
Instance ofe_morCF_contractive F1 F2 :
644
  cFunctorContractive F1  cFunctorContractive F2 
645
  cFunctorContractive (ofe_morCF F1 F2).
646 647
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
648
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
649 650
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
651 652
(** Sum *)
Section sum.
653
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
654 655 656 657 658 659 660

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
  Global Instance inl_ne : Proper (dist n ==> dist n) (@inl A B) := _.
  Global Instance inr_ne : Proper (dist n ==> dist n) (@inr A B) := _.
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

661 662 663 664 665 666 667 668 669 670 671 672
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program Definition inl_chain (c : chain sumC) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
673 674
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
675
  Program Definition inr_chain (c : chain sumC) (b : B) : chain B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
676 677 678
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

679
  Definition sum_compl `{Cofe A, Cofe B} : Compl sumC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
680 681 682 683
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.
684 685 686 687 688 689 690
  Global Program Instance sum_cofe `{Cofe A, Cofe B} : Cofe sumC :=
    { compl := sum_compl }.
  Next Obligation.
    intros ?? n c; rewrite /compl /sum_compl.
    feed inversion (chain_cauchy c 0 n); first by auto with lia; constructor.
    - rewrite (conv_compl n (inl_chain c _)) /=. destruct (c n); naive_solver.
    - rewrite (conv_compl n (inr_chain c _)) /=. destruct (c n); naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
691 692 693 694 695 696 697 698 699 700 701 702 703
  Qed.

  Global Instance inl_timeless (x : A) : Timeless x  Timeless (inl x).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance inr_timeless (y : B) : Timeless y  Timeless (inr y).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance sum_discrete_cofe : Discrete A  Discrete B  Discrete sumC.
  Proof. intros ?? [?|?]; apply _. Qed.
End sum.

Arguments sumC : clear implicits.
Typeclasses Opaque sum_dist.

704
Instance sum_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@sum_map A A' B B').
Proof.
  intros f f' Hf g g' Hg ??; destruct 1; constructor; [by apply Hf|by apply Hg].
Qed.
Definition sumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  sumC A B -n> sumC A' B' := CofeMor (sum_map f g).
Instance sumC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@sumC_map A A' B B').
Proof. intros f f' Hf g g' Hg [?|?]; constructor; [apply Hf|apply Hg]. Qed.

Program Definition sumCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := sumC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    sumC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply sumC_map_ne; apply cFunctor_ne.
Qed.
Next Obligation. by intros F1 F2 A B [?|?]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [?|?]; simpl;
    by rewrite !cFunctor_compose.
Qed.
729
Notation "F1 + F2" := (sumCF F1%CF F2%CF) : cFunctor_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
730 731 732 733 734 735 736 737 738

Instance sumCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (sumCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply sumC_map_ne; apply cFunctor_contractive.
Qed.

739 740 741
(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
742

743
  Instance discrete_dist : Dist A := λ n x y, x  y.
744
  Definition discrete_ofe_mixin : OfeMixin A.
745 746
  Proof.
    split.
747 748 749
    - intros x y; split; [done|intros Hn; apply (Hn 0)].
    - done.
    - done.
750
  Qed.
751

752 753 754 755 756
  Global Program Instance discrete_cofe : Cofe (OfeT A discrete_ofe_mixin) :=
    { compl c := c 0 }.
  Next Obligation.
    intros n c. rewrite /compl /=;
    symmetry; apply (chain_cauchy c 0 n). omega.
757 758 759
  Qed.
End discrete_cofe.

760 761
Notation discreteC A := (OfeT A discrete_ofe_mixin).
Notation leibnizC A := (OfeT A (@discrete_ofe_mixin _ equivL _)).
762 763 764 765 766 767

Instance discrete_discrete_cofe `{Equiv A, @Equivalence A ()} :
  Discrete (discreteC A).
Proof. by intros x y. Qed.
Instance leibnizC_leibniz A : LeibnizEquiv (leibnizC A).
Proof. by intros x y. Qed.
768

Robbert Krebbers's avatar
Robbert Krebbers committed
769
Canonical Structure boolC := leibnizC bool.
770 771 772 773
Canonical Structure natC := leibnizC nat.
Canonical Structure positiveC := leibnizC positive.
Canonical Structure NC := leibnizC N.
Canonical Structure ZC := leibnizC Z.
774

775 776
(* Option *)
Section option.
777
  Context {A : ofeT}.
778

779
  Instance option_dist : Dist (option A) := λ n, option_Forall2 (dist n).
780
  Lemma dist_option_Forall2 n mx my : mx {n} my  option_Forall2 (dist n) mx my.
781
  Proof. done. Qed.
782

783
  Definition option_ofe_mixin : OfeMixin (option A).
784 785 786 787 788
  Proof.
    split.
    - intros mx my; split; [by destruct 1; constructor; apply equiv_dist|].
      intros Hxy; destruct (Hxy 0); constructor; apply equiv_dist.
      by intros n; feed inversion (Hxy n).
789
    - apply _.
790 791
    - destruct 1; constructor; by apply dist_S.
  Qed.